@@ -14,13 +14,15 @@ open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
14
14
open import Data.Nat.Properties as ℕ
15
15
open import Data.Product.Base using (_,_; proj₁; ∃-syntax; _×_)
16
16
open import Function.Base using (_∘_)
17
- open import Induction.WellFounded using (WellFounded; Acc; acc; acc-inverse; module Some )
17
+ open import Induction.WellFounded
18
+ using (WellFounded; Acc; acc; acc-inverse; module Some )
18
19
open import Level using (Level)
19
20
open import Relation.Binary.Core using (Rel)
20
21
open import Relation.Binary.Construct.Closure.Transitive
21
22
open import Relation.Binary.PropositionalEquality.Core
22
23
open import Relation.Nullary.Negation.Core as Negation using (¬_)
23
- open import Relation.Unary using (Pred; _∩_; _⇒_; Universal; IUniversal; Stable)
24
+ open import Relation.Unary
25
+ using (Pred; ∁; _∩_; _⇒_; Universal; IUniversal; Stable)
24
26
25
27
private
26
28
variable
@@ -199,14 +201,9 @@ module FurtherCorollaries {_<_ : Rel A r} (P : Pred A ℓ) where
199
201
------------------------------------------------------------------------
200
202
-- Finally: the (classical) 'no smallest counterexample' principle itself
201
203
202
- -- these belong in Relation.Unary
203
-
204
- CounterExample : Pred A ℓ → Pred A ℓ
205
- CounterExample P = ¬_ ∘ P
206
-
207
204
module _ {_<_ : Rel A r} {P : Pred A ℓ} (stable : Stable P) where
208
205
209
- open FurtherCorollaries {_<_ = _<_} (CounterExample P)
206
+ open FurtherCorollaries {_<_ = _<_} (∁ P)
210
207
using (acc⇒noInfiniteDescent⁺; wf⇒noInfiniteDescent⁺)
211
208
renaming (Acc⇒Descent⁺ to NoSmallestCounterExample)
212
209
0 commit comments