@@ -43,13 +43,15 @@ record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
43
43
isEquivalence : IsEquivalence _≈_
44
44
45
45
open IsEquivalence isEquivalence public
46
+ using (refl; reflexive; isPartialEquivalence)
46
47
47
48
partialSetoid : PartialSetoid c ℓ
48
49
partialSetoid = record
49
50
{ isPartialEquivalence = isPartialEquivalence
50
51
}
51
52
52
- open PartialSetoid partialSetoid public using (_≉_)
53
+ open PartialSetoid partialSetoid public
54
+ hiding (Carrier; _≈_; isPartialEquivalence)
53
55
54
56
55
57
record DecSetoid c ℓ : Set (suc (c ⊔ ℓ)) where
@@ -60,14 +62,15 @@ record DecSetoid c ℓ : Set (suc (c ⊔ ℓ)) where
60
62
isDecEquivalence : IsDecEquivalence _≈_
61
63
62
64
open IsDecEquivalence isDecEquivalence public
65
+ using (_≟_; isEquivalence)
63
66
64
67
setoid : Setoid c ℓ
65
68
setoid = record
66
69
{ isEquivalence = isEquivalence
67
70
}
68
71
69
- open Setoid setoid public using (partialSetoid; _≉_)
70
-
72
+ open Setoid setoid public
73
+ hiding (Carrier; _≈_; isEquivalence)
71
74
72
75
------------------------------------------------------------------------
73
76
-- Preorders
@@ -99,6 +102,9 @@ record Preorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
99
102
infix 4 _≳_
100
103
_≳_ = flip _≲_
101
104
105
+ infix 4 _⋧_
106
+ _⋧_ = flip _⋦_
107
+
102
108
-- Deprecated.
103
109
infix 4 _∼_
104
110
_∼_ = _≲_
@@ -117,14 +123,15 @@ record TotalPreorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
117
123
isTotalPreorder : IsTotalPreorder _≈_ _≲_
118
124
119
125
open IsTotalPreorder isTotalPreorder public
120
- hiding ( module Eq )
126
+ using (total; isPreorder )
121
127
122
128
preorder : Preorder c ℓ₁ ℓ₂
123
- preorder = record { isPreorder = isPreorder }
129
+ preorder = record
130
+ { isPreorder = isPreorder
131
+ }
124
132
125
133
open Preorder preorder public
126
- using (module Eq ; _≳_; _⋦_)
127
-
134
+ hiding (Carrier; _≈_; _≲_; isPreorder)
128
135
129
136
------------------------------------------------------------------------
130
137
-- Partial orders
@@ -139,16 +146,21 @@ record Poset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
139
146
isPartialOrder : IsPartialOrder _≈_ _≤_
140
147
141
148
open IsPartialOrder isPartialOrder public
142
- hiding ( module Eq )
149
+ using (antisym; isPreorder )
143
150
144
151
preorder : Preorder c ℓ₁ ℓ₂
145
152
preorder = record
146
153
{ isPreorder = isPreorder
147
154
}
148
155
149
156
open Preorder preorder public
150
- using (module Eq )
151
- renaming (_⋦_ to _≰_)
157
+ hiding (Carrier; _≈_; _≲_; isPreorder)
158
+ renaming
159
+ ( _⋦_ to _≰_; _≳_ to _≥_; _⋧_ to _≱_
160
+ ; ≲-respˡ-≈ to ≤-respˡ-≈
161
+ ; ≲-respʳ-≈ to ≤-respʳ-≈
162
+ ; ≲-resp-≈ to ≤-resp-≈
163
+ )
152
164
153
165
154
166
record DecPoset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
@@ -159,17 +171,18 @@ record DecPoset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
159
171
_≤_ : Rel Carrier ℓ₂
160
172
isDecPartialOrder : IsDecPartialOrder _≈_ _≤_
161
173
162
- private
163
- module DPO = IsDecPartialOrder isDecPartialOrder
164
- open DPO public hiding (module Eq )
174
+ private module DPO = IsDecPartialOrder isDecPartialOrder
175
+
176
+ open DPO public
177
+ using (_≟_; _≤?_; isPartialOrder)
165
178
166
179
poset : Poset c ℓ₁ ℓ₂
167
180
poset = record
168
181
{ isPartialOrder = isPartialOrder
169
182
}
170
183
171
184
open Poset poset public
172
- using (preorder ; _≰_ )
185
+ hiding (Carrier ; _≈_; _≤_; isPartialOrder; module Eq )
173
186
174
187
module Eq where
175
188
decSetoid : DecSetoid c ℓ₁
@@ -203,6 +216,12 @@ record StrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂))
203
216
_≮_ : Rel Carrier _
204
217
x ≮ y = ¬ (x < y)
205
218
219
+ infix 4 _>_
220
+ _>_ = flip _<_
221
+
222
+ infix 4 _≯_
223
+ _≯_ = flip _≮_
224
+
206
225
207
226
record DecStrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
208
227
infix 4 _≈_ _<_
@@ -212,17 +231,18 @@ record DecStrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂
212
231
_<_ : Rel Carrier ℓ₂
213
232
isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_
214
233
215
- private
216
- module DSPO = IsDecStrictPartialOrder isDecStrictPartialOrder
217
- open DSPO public hiding (module Eq )
234
+ private module DSPO = IsDecStrictPartialOrder isDecStrictPartialOrder
235
+
236
+ open DSPO public
237
+ using (_<?_; _≟_; isStrictPartialOrder)
218
238
219
239
strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂
220
240
strictPartialOrder = record
221
241
{ isStrictPartialOrder = isStrictPartialOrder
222
242
}
223
243
224
244
open StrictPartialOrder strictPartialOrder public
225
- using (_≮_ )
245
+ hiding (Carrier; _≈_; _<_; isStrictPartialOrder; module Eq )
226
246
227
247
module Eq where
228
248
@@ -247,15 +267,15 @@ record TotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
247
267
isTotalOrder : IsTotalOrder _≈_ _≤_
248
268
249
269
open IsTotalOrder isTotalOrder public
250
- hiding ( module Eq )
270
+ using (total; isPartialOrder; isTotalPreorder )
251
271
252
272
poset : Poset c ℓ₁ ℓ₂
253
273
poset = record
254
274
{ isPartialOrder = isPartialOrder
255
275
}
256
276
257
277
open Poset poset public
258
- using ( module Eq ; preorder ; _≰_ )
278
+ hiding (Carrier; _≈_ ; _≤_; isPartialOrder )
259
279
260
280
totalPreorder : TotalPreorder c ℓ₁ ℓ₂
261
281
totalPreorder = record
@@ -271,17 +291,18 @@ record DecTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
271
291
_≤_ : Rel Carrier ℓ₂
272
292
isDecTotalOrder : IsDecTotalOrder _≈_ _≤_
273
293
274
- private
275
- module DTO = IsDecTotalOrder isDecTotalOrder
276
- open DTO public hiding (module Eq )
294
+ private module DTO = IsDecTotalOrder isDecTotalOrder
295
+
296
+ open DTO public
297
+ using (_≟_; _≤?_; isTotalOrder; isDecPartialOrder)
277
298
278
299
totalOrder : TotalOrder c ℓ₁ ℓ₂
279
300
totalOrder = record
280
301
{ isTotalOrder = isTotalOrder
281
302
}
282
303
283
304
open TotalOrder totalOrder public
284
- using (poset; preorder ; _≰_ )
305
+ hiding (Carrier; _≈_ ; _≤_; isTotalOrder; module Eq )
285
306
286
307
decPoset : DecPoset c ℓ₁ ℓ₂
287
308
decPoset = record
@@ -306,25 +327,37 @@ record StrictTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) wh
306
327
isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_
307
328
308
329
open IsStrictTotalOrder isStrictTotalOrder public
309
- hiding (module Eq )
330
+ using
331
+ ( _≟_; _<?_; compare; isStrictPartialOrder
332
+ ; isDecStrictPartialOrder; isDecEquivalence
333
+ )
310
334
311
335
strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂
312
336
strictPartialOrder = record
313
337
{ isStrictPartialOrder = isStrictPartialOrder
314
338
}
315
339
316
340
open StrictPartialOrder strictPartialOrder public
317
- using (module Eq ; _≮_)
341
+ hiding (Carrier; _≈_; _<_; isStrictPartialOrder; module Eq )
342
+
343
+ decStrictPartialOrder : DecStrictPartialOrder c ℓ₁ ℓ₂
344
+ decStrictPartialOrder = record
345
+ { isDecStrictPartialOrder = isDecStrictPartialOrder
346
+ }
347
+
348
+ open DecStrictPartialOrder decStrictPartialOrder public
349
+ using (module Eq )
318
350
319
351
decSetoid : DecSetoid c ℓ₁
320
352
decSetoid = record
321
- { isDecEquivalence = isDecEquivalence
353
+ { isDecEquivalence = Eq. isDecEquivalence
322
354
}
323
355
{-# WARNING_ON_USAGE decSetoid
324
356
"Warning: decSetoid was deprecated in v1.3.
325
357
Please use Eq.decSetoid instead."
326
358
#-}
327
359
360
+
328
361
record DenseLinearOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
329
362
infix 4 _≈_ _<_
330
363
field
@@ -342,6 +375,7 @@ record DenseLinearOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) wh
342
375
}
343
376
344
377
open StrictTotalOrder strictTotalOrder public
378
+ hiding (Carrier; _≈_; _<_; isStrictTotalOrder)
345
379
346
380
347
381
------------------------------------------------------------------------
0 commit comments