-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdensity_scatter_plotly.py
194 lines (161 loc) · 5.58 KB
/
density_scatter_plotly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# %%
from __future__ import annotations
import numpy as np
import pandas as pd
import pymatviz as pmv
pmv.set_plotly_template("pymatviz_white")
# %% Visualizing ML model predictions with uncertainty
np_rng = np.random.default_rng(seed=123)
n_samples = 20000
true_values = np.linspace(0, 10, n_samples) + np_rng.normal(0, 0.5, n_samples)
predictions = true_values + np_rng.normal(0, 1.0, n_samples)
df_ml = pd.DataFrame(
{
"True Values": true_values,
"Predictions": predictions,
}
)
fig = pmv.density_scatter_plotly(
df_ml,
x="True Values",
y="Predictions",
hover_format=".0f",
title="ML Model Performance (20k points)",
identity_line={"line": {"color": "black", "width": 1, "dash": "dash"}},
best_fit_line={"line": {"color": "red", "width": 2}},
)
fig.layout.update(margin_t=40, title_x=0.5)
fig.show()
# %% Visualizing structure-property relationships
np_rng = np.random.default_rng(seed=456)
n_samples = 30000
lattice_constant = np_rng.uniform(3.5, 6.0, n_samples)
bond_length = lattice_constant * 0.4 + np_rng.normal(0, 0.1, n_samples)
conductivity = np.exp(-bond_length) * 1000 + np_rng.normal(0, 50, n_samples)
df_structure = pd.DataFrame(
{
"Lattice Constant (Å)": lattice_constant,
"Bond Length (Å)": bond_length,
"Conductivity (S/cm)": conductivity,
}
)
fig = pmv.density_scatter_plotly(
df_structure,
x="Bond Length (Å)",
y="Conductivity (S/cm)",
hover_format=".0f",
title="Structure-Property Relationship (30k points)",
log_density=True,
identity_line=False,
)
fig.layout.update(margin_t=40, title_x=0.5)
fig.show()
# %% Visualizing composition-property relationships
np_rng = np.random.default_rng(seed=101)
n_samples = 40000
comp_a = np_rng.uniform(20, 80, n_samples)
comp_b = np_rng.uniform(10, 50, n_samples)
comp_c = 100 - comp_a - comp_b
valid_idx = comp_c > 0
comp_a, comp_b, comp_c = comp_a[valid_idx], comp_b[valid_idx], comp_c[valid_idx]
hardness = 0.3 * comp_a + 0.5 * comp_b + 0.1 * comp_c + np_rng.normal(0, 5, len(comp_a))
df_alloys = pd.DataFrame(
{
"Composition A (%)": comp_a,
"Composition B (%)": comp_b,
"Composition C (%)": comp_c,
"Hardness (HV)": hardness,
}
)
df_alloys["Dominant Element"] = "Mixed"
df_alloys.loc[comp_a > 50, "Dominant Element"] = "A-rich"
df_alloys.loc[comp_b > 40, "Dominant Element"] = "B-rich"
df_alloys.loc[comp_c > 40, "Dominant Element"] = "C-rich"
fig = pmv.density_scatter_plotly(
df_alloys,
x="Composition A (%)",
y="Hardness (HV)",
facet_col="Dominant Element",
bin_counts_col="Data Density",
hover_format=".0f",
n_bins=200,
title="Composition-Property Relationship (40k points)",
)
fig.layout.update(margin_t=40, title_x=0.5)
fig.show()
# %% Materials science relationship: atomic radius vs melting point
np_rng = np.random.default_rng(seed=555)
n_samples = 75000
# Create a more realistic materials science relationship:
# Atomic radius vs melting point (generally inversely related)
atomic_radius = np_rng.uniform(0.5, 3.0, n_samples) # Angstroms
# Melting point decreases with increasing atomic radius (with noise)
melting_point = 2500 / (atomic_radius + 0.2) + np_rng.normal(0, 150, n_samples)
# Group by element groups
element_groups = (
"Alkali Metals,Transition Metals,Noble Gases,Lanthanides,Actinides".split(",") # noqa: SIM905
)
element_weights = [0.2, 0.4, 0.15, 0.15, 0.1]
element_group = np_rng.choice(element_groups, n_samples, p=element_weights)
# Add some group-specific offsets to make the data more realistic
for group in element_groups:
mask = element_group == group
# Add group-specific characteristics
if group == "Alkali Metals":
atomic_radius[mask] += 0.5 # Larger atomic radii
melting_point[mask] -= 300 # Lower melting points
elif group == "Transition Metals":
melting_point[mask] += 500 # Higher melting points
elif group == "Noble Gases":
melting_point[mask] -= 1000 # Very low melting points
elif group == "Lanthanides":
atomic_radius[mask] += 0.2 # Slightly larger radii
# Actinides remain as baseline
df_publication = pd.DataFrame(
{
"Atomic Radius (Å)": atomic_radius,
"Melting Point (K)": melting_point,
"Element Group": element_group,
}
)
# Ensure melting points are physically reasonable
df_publication.loc[df_publication["Melting Point (K)"] < 0, "Melting Point (K)"] = (
np_rng.uniform(4, 100, len(df_publication[df_publication["Melting Point (K)"] < 0]))
)
fig = pmv.density_scatter_plotly(
df_publication,
x="Atomic Radius (Å)",
y="Melting Point (K)",
facet_col="Element Group",
hover_format=".0f",
n_bins=250,
log_density=True,
identity_line=False,
title="Atomic Radius vs Melting Point by Element Group (75k points)",
)
fig.layout.update(margin_t=60, title_x=0.5)
fig.show()
# %% large data scale: 1 million points
np_rng = np.random.default_rng(seed=999)
n_samples = 1_000_000
x1 = np_rng.normal(-5, 1, n_samples // 4)
y1 = np_rng.normal(-5, 1, n_samples // 4)
x2 = np_rng.normal(5, 1, n_samples // 4)
y2 = np_rng.normal(5, 1, n_samples // 4)
x3 = np_rng.normal(0, 5, n_samples // 2)
y3 = x3 + np_rng.normal(0, 2, n_samples // 2)
x = np.concatenate([x1, x2, x3])
y = np.concatenate([y1, y2, y3])
df_massive = pd.DataFrame({"X Coordinate": x, "Y Coordinate": y})
fig = pmv.density_scatter_plotly(
df_massive,
x="X Coordinate",
y="Y Coordinate",
n_bins=300,
hover_format=".0f",
log_density=True,
identity_line=False,
title="Large Data: 1 Million Points",
)
fig.layout.update(margin_t=40, title_x=0.5)
fig.show()