-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathcoreEngine.py
186 lines (157 loc) · 6.05 KB
/
coreEngine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import abc, os
import numpy as np
import onnxruntime
import tensorrt as trt
import pycuda.driver as cuda
class EngineBase(abc.ABC):
'''
Currently only supports Onnx/TensorRT framework
'''
def __init__(self, model_path):
if not os.path.isfile(model_path):
raise Exception("The model path [%s] can't not found!" % model_path)
assert model_path.endswith(('.onnx', '.trt')), 'Onnx/TensorRT Parameters must be a .onnx/.trt file.'
self._framework_type = None
@property
def framework_type(self):
if (self._framework_type == None):
raise Exception("Framework type can't be None")
return self._framework_type
@framework_type.setter
def framework_type(self, value):
if ( not isinstance(value, str)):
raise Exception("Framework type need be str")
self._framework_type = value
@abc.abstractmethod
def get_engine_input_shape(self):
return NotImplemented
@abc.abstractmethod
def get_engine_output_shape(self):
return NotImplemented
@abc.abstractmethod
def engine_inference(self):
return NotImplemented
class TensorRTBase():
def __init__(self, engine_file_path):
self.providers = 'CUDAExecutionProvider'
self.framework_type = "trt"
# Create a Context on this device,
cuda.init()
device = cuda.Device(0)
self.cuda_driver_context = device.make_context()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
runtime = trt.Runtime(TRT_LOGGER)
# Deserialize the engine from file
with open(engine_file_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
self.context = self._create_context(engine)
self.dtype = trt.nptype(engine.get_binding_dtype(0))
self.host_inputs, self.cuda_inputs, self.host_outputs, self.cuda_outputs, self.bindings = self._allocate_buffers(engine)
# Store
self.stream = stream
self.engine = engine
def _allocate_buffers(self, engine):
"""Allocates all host/device in/out buffers required for an engine."""
host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(cuda_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)
return host_inputs, cuda_inputs, host_outputs, cuda_outputs, bindings
def _create_context(self, engine):
return engine.create_execution_context()
def inference(self, input_tensor):
self.cuda_driver_context.push()
# Restore
stream = self.stream
context = self.context
engine = self.engine
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
bindings = self.bindings
# Copy input image to host buffer
np.copyto(host_inputs[0], input_tensor.ravel())
# Transfer input data to the GPU.
cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
# Run inference.
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
for host_output, cuda_output in zip(host_outputs, cuda_outputs) :
cuda.memcpy_dtoh_async(host_output, cuda_output, stream)
# Synchronize the stream
stream.synchronize()
# Remove any context from the top of the context stack, deactivating it.
self.cuda_driver_context.pop()
return host_outputs
class TensorRTEngine(EngineBase, TensorRTBase):
def __init__(self, engine_file_path):
EngineBase.__init__(self, engine_file_path)
TensorRTBase.__init__(self, engine_file_path)
self.engine_dtype = self.dtype
self.__load_engine_interface()
def __load_engine_interface(self):
# Get the number of bindings
num_bindings = self.engine.num_bindings
self.__input_shape = []
self.__input_names = []
self.__output_names = []
self.__output_shapes = []
for i in range(num_bindings):
if self.engine.binding_is_input(i):
self.__input_shape.append(self.engine.get_binding_shape(i))
self.__input_names.append(self.engine.get_binding_name(i))
continue
self.__output_names.append(self.engine.get_binding_name(i))
self.__output_shapes.append(self.engine.get_binding_shape(i))
def get_engine_input_shape(self):
return self.__input_shape[0]
def get_engine_output_shape(self):
return self.__output_shapes, self.__output_names
def engine_inference(self, input_tensor):
host_outputs = self.inference(input_tensor)
# Here we use the first row of output in that batch_size = 1
trt_outputs = []
for i, output in enumerate(host_outputs) :
trt_outputs.append(np.reshape(output, self.__output_shapes[i]))
return trt_outputs
class OnnxEngine(EngineBase):
def __init__(self, onnx_file_path):
EngineBase.__init__(self, onnx_file_path)
if (onnxruntime.get_device() == 'GPU') :
self.session = onnxruntime.InferenceSession(onnx_file_path, providers=['CUDAExecutionProvider'])
else :
self.session = onnxruntime.InferenceSession(onnx_file_path)
self.providers = self.session.get_providers()
self.engine_dtype = np.float16 if 'float16' in self.session.get_inputs()[0].type else np.float32
self.framework_type = "onnx"
self.__load_engine_interface()
def __load_engine_interface(self):
self.__input_shape = [input.shape for input in self.session.get_inputs()]
self.__input_names = [input.name for input in self.session.get_inputs()]
self.__output_shape = [output.shape for output in self.session.get_outputs()]
self.__output_names = [output.name for output in self.session.get_outputs()]
def get_engine_input_shape(self):
return self.__input_shape[0]
def get_engine_output_shape(self):
return self.__output_shape, self.__output_names
def engine_inference(self, input_tensor):
output = self.session.run(self.__output_names, {self.__input_names[0]: input_tensor})
return output