-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathtrain_eval.py
61 lines (55 loc) · 2.12 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from sklearn import metrics
from model import TextRCNN_Bert
from load_data import traindataloader, valdataloader
from transformers import AdamW
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
SAVED_DIR = './saved_model'
EPOCHS = 5
BERT_PATH = './bert-base-chinese'
WARMUP_PROPORTION = 0.1
device = "cuda" if torch.cuda.is_available() else 'cpu'
model = TextRCNN_Bert.from_pretrained(BERT_PATH)
model.to(device)
total_steps = len(traindataloader) * EPOCHS
optimizer = AdamW(model.parameters(), lr=5e-5)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(WARMUP_PROPORTION * total_steps), num_training_steps=total_steps)
criterion = nn.NLLLoss()
loss_vals = []
for epoch in range(EPOCHS):
model.train()
epoch_loss= []
pbar = tqdm(traindataloader)
pbar.set_description("[Epoch {}]".format(epoch))
for tokens_ids, mask, label in pbar:
tokens_ids, mask, label = tokens_ids.to(device), mask.to(device), label.to(device)
model.zero_grad()
out = model(tokens_ids, mask)
loss = criterion(out, label)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
epoch_loss.append(loss.item())
optimizer.step()
scheduler.step()
pbar.set_postfix(loss=loss.item())
loss_vals.append(np.mean(epoch_loss))
model.save_pretrained(SAVED_DIR)
plt.plot(np.linspace(1, EPOCHS, EPOCHS).astype(int), loss_vals)
model.eval()
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
with torch.no_grad():
for tokens_ids, mask, label in valdataloader:
tokens_ids, mask, label = tokens_ids.to(device), mask.to(device), label.to(device)
pred = model(tokens_ids, mask)
pred = torch.max(pred.data, 1)[1].cpu().numpy()
predict_all = np.append(predict_all, pred)
truth = label.cpu().numpy()
labels_all = np.append(labels_all, truth)
acc = metrics.accuracy_score(labels_all, predict_all)
print(f'accuracy on dev is {acc}')