-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathPatterns-solutions.tex
560 lines (434 loc) · 16.3 KB
/
Patterns-solutions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
\section{Solutions}
{\small
\begin{multicols}{2}
%I will be adding this soon. For now, use the handwritten solutions that you can access from the preparation problems list.
\begin{enumerate}
\item \textbf{Definitions:}
\begin{enumerate}
\item Orthogonal: $(1,2)\cdot(-4,2)=0$. Not: $(1,2)\cdot(0,1)\neq 0$. Answers will vary.
\item $
\begin{bmatrix}
1 &2 &3\\
0&1&4
\end{bmatrix}
\xrightarrow{\rref}
\begin{bmatrix}
1 &0 &-5\\
0 &1 &4
\end{bmatrix}
$. Row echelon form doesn't require zeros above pivots, whereas reduced row echelon form requires zeros above each pivot. Row echelon form is not unique.
\item
$
\begin{bmatrix}[ccc|c]
\cl{1\\1\\0}
&\cl{1\\0\\1}
&\cl{0\\1\\1}
&\cl{0\\0\\0}
\end{bmatrix}
\xrightarrow{\rref}
\begin{bmatrix}[ccc|c]
\cl{1\\0\\0}
&\cl{0\\1\\0}
&\cl{0\\0\\1}
&\cl{0\\0\\0}
\end{bmatrix}
$, hence the only solution is $c_1=c_2=c_3=0$. The only way you'll get a solution other than the trivial solution is if there is a free variable, hence one column is not a pivot column.
\item
$A$ reduces to $\begin{bmatrix}
1 & 0 & -\frac{4}{5} & \frac{9}{5} \\
0 & 1 & \frac{2}{5} & \frac{3}{5} \\
0 & 0 & 0 & 0
\end{bmatrix}$.
Column space basis: $\{(1,2,-1),(2,4,3)\}$.
Row space basis:
$\{(1,0, -\frac{4}{5}, \frac{9}{5}),
( 0 , 1 , \frac{2}{5}, \frac{3}{5})\}$.
Coord. of $(1,2,-1)$ are $(1,0)$.
Coord. of $(2,4,3)$ are $(0,1)$.
Coord. of $(0,0,2)$ are $(-4/5, 2/5)$.
Coord. of $(3,6,0)$ are $(9/5,4/5)$.
\item The product is the identity either way. Hence $B$ satisfies the definition of being the identity, $AB=BA=I$.
\item
$A\vec x_1 =(-1,1,0)=1\vec x_1$ so $\lambda =1$;
$A\vec x_2=(16,14,3)\neq \lambda \vec x_2$ so not an eigenvector;
$A\vec x_3=(3,3,0)=3\vec x_3$ so $\lambda = 3$;
$A\vec x_4=(-4,0,1) = 1\vec x_4$ so $\lambda =1$;
\end{enumerate}
\item \textbf{Illustrating Theorems:}
\begin{enumerate}
\item $A$ and $C$ are row equivalent because they have the same rref.
\item The rref is
$
\begin{bmatrix}[cccc|c]
1 & 0 & -2 & -12 & -14 \\
0 & 1 & 1 & 8 & 9 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
$.
The last column is not a pivot column, so both $A$ and $[A|b]$ have two pivot columns. Hence there is a solution. With 4 variables and 2 pivot columns, there are $4-2=2$ free variables.
The general solution is $(-14,9,0,0)+z(2,-1,1,0)+w(12,-8,0,1)$. Two solution are $(-12,8,1,0)$ and $(-2,1,0,1)$.
The difference is $\vec x_1 - \vec x_2 = (-10,7,1,-1)$ and $A(-10,7,1,-1) = (0,0,0)$.
\item The rref is
$
\begin{bmatrix}[cccc|c]
1 & 0 & -2 & -12 & 0 \\
0 & 1 & 1 & 8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
$.
Unknowns = 4. Pivots = 2. Free variables = 4-2.
The general solution is $z(2,-1,1,0)+w(12,-8,0,1)$. Two solutions are $\vec x_1 = (2,-1,1,0)$, $\vec x_2 = (12,-8,0,1)$, sum is $\vec w=(14,-9,1,1)$ and $A\vec w=(0,0,0)$. The sum of any two solutions is again a solution.
\item
$AB
=
\begin{bmatrix}
9 \\
21
\end{bmatrix}
$,
$(AB)^T =
\begin{bmatrix}
9 & 21
\end{bmatrix}
$,
$A^TB^T$ is not defined,
$B^TA^T =
\begin{bmatrix}
9 & 21
\end{bmatrix}
$.
\item
$AB =
\begin{bmatrix}
\begin{pmatrix}\cl{1\\4}\end{pmatrix}(2)
+\begin{pmatrix}\cl{2\\5}\end{pmatrix}(-1)
+\begin{pmatrix}\cl{3\\6}\end{pmatrix}(3)
\end{bmatrix}
=
\begin{bmatrix}
1(2)+2(-1)+3(3)\\
4(2)+2(-1)+6(3)
\end{bmatrix}
$
\item rref is $\begin{bmatrix}
1 & 0 & -2 & -12 \\
0 & 1 & 1 & 8 \\
0 & 0 & 0 & 0
\end{bmatrix}$. Two pivot columns means rank is 2. Not every column is a pivot column, so dependent.
Column space basis: $\{(1,2,3),(2,3,5)\}$.
Coord. of $(1,2,3)$ are $(1,0)$.
Coord. of $(2,3,5)$ are $(0,1)$.
Coord. of $(0,-1,-1)$ are $(-2,1)$.
Coord. of $(4,0,4)$ are $(-12,8)$.
(These coordinates come from the columns of the nonzero rows of rref.)
Row space basis: $\{(1,0,-2,-12), (0,1,1,8)\}$.
Coord. of $(1,2,0,4)$ are $(1,2)$.
Coord. of $(2,3,-1,0)$ are $(2,3)$.
Coord. of $(3,5,-1,4)$ are $(3,5)$.
(These coordinates come from the rows of the pivot columns.)
\item
$
\begin{bmatrix}[cc|cc]
1 & 2 & 1 & 0 \\
3 & 5 & 0 & 1
\end{bmatrix}
\xrightarrow{\rref}
\begin{bmatrix}[cc|cc]
1 & 0 & -5 & 2 \\
0 & 1 & 3 & -1
\end{bmatrix}
$,
$
\begin{bmatrix}[cc|cc]
-5 & 2 & 1 & 0 \\
3 & -1 & 0 & 1
\end{bmatrix}
\xrightarrow{\rref}
\begin{bmatrix}[cc|cc]
1 & 0 & 1 & 2 \\
0 & 1 & 3 & 5
\end{bmatrix}
$,
$(A^T)\inv = (A\inv)^T =
\begin{bmatrix}
-5 & 3 \\
2 & -1
\end{bmatrix}
$.
\item
$A\inv = \begin{bmatrix}
-5 & 2 \\
3 & -1
\end{bmatrix}$,
$B\inv=\begin{bmatrix}
3 & -2 \\
-4 & 3
\end{bmatrix}$,
$(AB)\inv = B\inv A\inv=\begin{bmatrix}
-21 & 8 \\
29 & -11
\end{bmatrix}$.
\item
$|A| = (1)(2)(-3)(4) = -24$. Cofactor along column 1 at each step. Characteristic polynomial is
$|A-\lambda I| = (1-\lambda)(2-\lambda)(-3-\lambda)(4-\lambda)$, which means $\lambda = 1,2,-3,4$. The diagonal entries are the eigenvalues.
\item $|A| = 33 = |A^T|$.
$|A-\lambda I|=|A^T-\lambda I| = (1-\lambda)[(3-\lambda)(1-\lambda)+12]-2[(-1)(1-\lambda)-8]$. Since the characteristic polynomials are the same, the eigenvalues are the same.
\item
$|A| = 0$, row 3 is twice row 1. Since the determinant is zero, there is no inverse.
\item The matrix of cofactors is
$C_{ij} =
\begin{bmatrix}
6 & -2 & -13 \\
-4 & 2 & 9 \\
0 & 0 & 1
\end{bmatrix}
$.
The adjoint is
$\text{adj}(A) =
\begin{bmatrix}
6 & -4 & 0 \\
-2 & 2 & 0 \\
-13 & 9 & 1
\end{bmatrix}
$. Determinant is $|A|=2$. Inverse is
$\frac{1}{|A|}\text{adj}(A)=\begin{bmatrix}
3 & -2 & 0 \\
-1 & 1 & 0 \\
-\frac{13}{2} & \frac{9}{2} & \frac{1}{2}
\end{bmatrix}
$.
\item Each row sums to 2. Just compute $A(1,1,1,1)=(2,2,2,2)$ to show $\lambda =2$ is an eigenvalue corresponding to $(1,1,1,1)$.
\item The eigenvalues are $\lambda = 1, 3, 4$ with corresponding eigenvectors $(1,-1,0),(1,1,0),(0,0,1)$. All three dot products are zero. Placing the three vectors into the columns of a matrix and reducing gives the identity, so they are independent.
\end{enumerate}
\item \textbf{Proofs:}
\item \textbf{A Huge Equivalence:}
\begin{enumerate}
\item
(1) only the trivial solution,
(2) a unique solution,
(3) rref is $I$,
(4) every column is a pivot,
(5) columns are independent,
(6) rank is 2,
(7) rows are independent,
(8)
$
\begin{bmatrix}[cc|cc] 2&1&1&0\\3&4&0&1\end{bmatrix}
\xrightarrow{\rref}
\begin{bmatrix}[cc|cc] 1&0&4/5&-1/5\\0&1&-3/5&1/5\end{bmatrix}
$ so $(1,0)$ and $(0,1)$ are in column space,
(9) $A\inv= \begin{bmatrix}4/5&-1/5\\-3/5&1/5\end{bmatrix}
$,
(10) $|A|= 5 \neq 0 $,
(11) $\lambda = 5, 1$ (none are zero).
\item
(1) Infinitely many solutions,
(2) not unique solutions,
(3) rref is not $I$,
(4) column 2 is not a pivot,
(5) columns are dependent,
(6) rank is 1 (less than 2),
(7) rows are dependent,
(8)
$
\begin{bmatrix}[cc|cc] 2&1&1&0\\4&2&0&1\end{bmatrix}
\xrightarrow{\rref}
\begin{bmatrix}[cc|cc] 1&1/2&0&1/4 \\0&0&1&-1/2\end{bmatrix}
$ so $(1,0)$ is not in column space,
(9) $A\inv$ does not exist,
(10) $|A|=0 $,
(11) $\lambda = 4, 0$ (zero is an eigenvalue).
\item The only solution to the homogeneous system is zero, which means all 11 items are true. In particular, $A\inv=\begin{bmatrix}
\frac{2}{3} & -\frac{1}{3} & -\frac{2}{9} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{5}{9} \\
0 & 0 & \frac{1}{3}
\end{bmatrix}$,
$|A| = 9$, $\lambda = 3,3,1$.
\item There is more than one solution to the homogeneous system. So all 11 items are false. $|A|=0$. The eigenvalues are $\frac12(-1 -\sqrt{21}), \frac12 (-1 + \sqrt{21}), 0$ (zero is an eigenvalue).
\end{enumerate}
\item \textbf{Vector Spaces:}
\begin{enumerate}
\item Theorem \ref{matrix vector space properties} basically states this.
\item Function addition is associative $(f+g)+h=f+(g+h)$ and commutative $f+g=g+f$ because addition on real numbers is. The zero function $f(x)=0$ is the additive identity, and additive inverses are $(-f)(x) = -f(x)$. Scalar multiplication distributes across vector addition $c(f+g)(x) = cf(x)+cg(x)$ and scalar addition $((c+d)f)(x) = cf(x)+df(x)$ because of the distributive rules for real numbers. We also know that $c(df(x)) = (cd)f(x)$ and $1(f(x))=f(x)$ from the properties of real numbers.
You could change ``the entire real number line'' to any interval, and nothing above would change.
\item Vector addition is $(a,b)+(c,d) = (ac,bd)$. Scalar multiplication is $x(a,b) = (a^x, b^x)$. Vector addition is closed because multiplication of two positive numbers is positive. Scalar multiplication is closed because $a^x> 0$ as long as $a>0$.
\\ (A1) $((a,b)+(c,d))+(e,f) =(ac,bd)+(e,f) =(ace,bdf) =(a,b)+(ce,df) = (a,b)+((c,d)+(e,f))$.
\\ (A2) $(a,b)+(c,d) =(ac,bd) = (ca,db) = (c,d)+(a,b)$. The zero vector $(1,1)$ satisfies $(1,1)+(a,b) = (1a,1b)=(a,b)+(1,1)$ as required.
\\ (A3) $(1,1)+(a,b) = (a,b) = (a,b)+(1,1)$.
\\ (A4) The additive inverse of $(a,b)$ is $(1/a,1/b)$, since $(1/a,1/b)+(a,b) = (1,1) = (a,b)+(1/a,1/b)$.
\\ (M1) $k[(a,b)+(c,d)] = k(ac,bd) = ((ac)^k,(bd)^k) = (a^kc^k,b^kd^k) = (a^k,b^k)+(c^k,d^k)=k(a,b)+k(c,d)$.
\\ (M2) $(j+k)(a,b) = (a^{j+k},b^{j+k}) = (a^ja^k,b^jb^k) = (a^j,b^j)+(a^k,b^k) = j(a,b)+k(a,b)$.
\\ (M3) $j(k(a,b)) = j(a^k,b^k)=(a^{jk},b^{jk})=jk(a,b)$.
\\ (M4) $1(a,b) = (a^1,b^1)=(a,b)$.
The following image shows you what 1 dimensional subspace of the logarithmic vector space look like. These ``straight'' lines through the origin $(1,1)$ do not appear straight at all when graphed in the regular Cartesian coordinate system.
\includegraphics[width=2in]{Patterns/support/logspace-picture}
\item The 3rd and 4th axioms for scalar multiplication fail.
% (M1) $k[(a,b)+(c,d)] = k(a+c,b+d) = (2k(a+c),2k(b+d)) = (2ka+2kc,2kb+2kd) = (2ka,2kb)+(2kc,2kd)=k(a,b)+k(c,d)$.
% (M2) $(j+k)(a,b) = (2(j+k)a,2(j+k)b) = (2ja + 2ka,2jb+2kb) = (2ja,2jb)+(2ka,2kb) = j(a,b)+k(a,b)$.
(M3) $j(k(a,b)) = j(2ka,2kb)=(2j2ka,2j2kb)=jk(2a,2b)$ instead of $jk(a,b)$.
(M4) $1(a,b) = (2a,2b)\neq (a,b)$.
\item
\begin{enumerate}
\item
Distribution across scalar multiplication fails:
$(j+k)(a,b) = (a,(j+k)b) = (a,jb+kb)$ whereas $j(a,b)+k(a,b) = (a,jb)+(a,kb) = (2a,(j+k)b)$
(notice that $a$ is doubled if we multiply first before adding).
\item
Vector addition is not commutative. $(a,b)+(c,d) = (a+c,b)$ while $(c,d)+(a,b) = (a+c,d)$
(the second components are not the same, $b\neq d$.
\end{enumerate}
\item
\begin{enumerate}
\item Distribution across scalar multiplication fails.
(M2) $(j+k)(a,b) = ((j+k)^2a,(j+k)b)$ whereas $j(a,b)+k(a,b) = (j^2a,jb)+(k^2a,b) = ((j^2+k^2)a,(j+k)b)$, and $j^2+k^2\neq (j+k)^2$.
\item
Vector addition is not commutative. $(a,b)+(c,d) = (a,d)$ while $(c,d)+(a,b) = (c,b)$.
\end{enumerate}
\end{enumerate}
\item \textbf{Vector Subspaces:}
See chapter 4 problems 13-15, 45-46. Complete at least 13, 15, 46.
\begin{enumerate}
\item
\begin{enumerate}
\item Yes. It contains zero, the sum of any two vectors on the $y$ axis is on the $y$ axis, and any scalar multiple of a vector on the $y$ axis is still on the $y$ axis. The span of $(0,1)$ is the $y$ axis.
\item No. The zero vector is not on the positive $x$ axis.
\item No. You cannot times vectors by negative scalars, so it's not closed under scalar multiplication.
\item Yes. It is the span of $(1,3)$. Lines through the origin are vector subspaces.
\item No. The line does not contain the zero vector. It doesn't pass through the origin.
\item No. It does contain the origin, and is closed under scalar multiplication, but not under vector addition. The sum $(1,0)+(0,1)=(1,1)$ is not on either axis.
\item No. Not closed under scalar multiplication. The product $4(1/2,0) = (2,0)$ is not in the set.
\end{enumerate}
\item Use theorem \ref{thm subspace iff closed}.
(1) The zero function is continuous, so zero is in the set.
(2) The sum of two continuous functions is a continuous function, so the set is closed under addition.
(3) A constant times a continuous function is still continuous, so the set is closed under scalar multiplication.
\item Use theorem \ref{thm subspace iff closed}.
(1) The zero function is a polynomial, so zero is in the set.
(2) The sum of two polynomials is a polynomial, so the set is closed under addition.
(3) A constant times a polynomial is a polynomial, so the set is closed under scalar multiplication.
\item
\begin{enumerate}
\item
(1) The zero function is said to be in the set, so zero is in the set.
(2) The sum of two polynomials of degree three must be a polynomial of degree 3 or less, so the set is closed under addition.
(3) Multiplying a polynomial by a nonzero constant does not change the degree, so the set is closed under scalar multiplication.
\item The span of the polynomials $\{1,x,x^2,x^3\}$ is $P_3(x)$.
\end{enumerate}
\item Let $V$ be the set of 3 by 3 upper triangular matrices. Show that $V$ is a subspace of the vector space $M_{33}$ of 3 by 3 matrices in 2 ways:
\begin{enumerate}
\item
(1) The zero matrix is upper triangular.
(2) The sum of two upper triangular matrices is upper triangular, so the set is closed under addition.
(3) Multiplying an upper triangular matrix by a constant gives an upper triangular matrix, so the set is closed under scalar multiplication.
\item
The span of
$\begin{bmatrix}
1&0&0\\
0&0&0\\
0&0&0
\end{bmatrix}$,
$\begin{bmatrix}
0&1&0\\
0&0&0\\
0&0&0
\end{bmatrix}$,
$\begin{bmatrix}
0&0&1\\
0&0&0\\
0&0&0
\end{bmatrix}$,
$\begin{bmatrix}
0&0&0\\
0&1&0\\
0&0&0
\end{bmatrix}$,
$\begin{bmatrix}
0&0&0\\
0&0&1\\
0&0&0
\end{bmatrix}$,
$\begin{bmatrix}
0&0&0\\
0&0&0\\
0&0&1
\end{bmatrix}$
is the set of upper triangular matrices
$\begin{bmatrix}
a&b&c\\
0&d&e\\
0&0&f
\end{bmatrix}$.
\end{enumerate}
\item
\begin{enumerate}
\item
Yes. Zero is a symmetric matrix. The sum of two symmetric matrices is symmetric. A constant times a symmetric matrix is symmetric. Alternatively, the symmetric matrices
$\begin{bmatrix}
a&b\\
b&c
\end{bmatrix}$
are spanned by
$\begin{bmatrix}
1&0\\
0&0
\end{bmatrix}$
,
$\begin{bmatrix}
0&0\\
0&1
\end{bmatrix}$
,
$\begin{bmatrix}
0&1\\
1&0
\end{bmatrix}$, and hence are a subspace of $M_22$.
\item No. The zero matrix is not invertible.
\item Yes. Similar to the previous problem related to 3 by 3 matrices.
\end{enumerate}
\item
\begin{enumerate}
\item No. The zero polynomial does not have degree 2.
\item No. The sum of two degree 2 polynomials may be lower in degree. For example $(x^2) + (x-x^2) = x$. So this set is not closed under addition.
\item Yes. It is spanned by $\{1,x,x^2\}$
\item No. Similar to part (b).
\end{enumerate}
\end{enumerate}
\item \textbf{Spans:} \label{span solutions} \hypertarget{span solutions target}{\hyperlink{span problems target}{(problems link)}}
\begin{enumerate}
\item
All but the third have the same row space. The rref of these matrices has the same nonzero rows.
\item
All but the third have the same column space. The rref of the transpose of each matrix has the same nonzero rows.
\item
\begin{enumerate}
\item Yes. The rref is the identity.
\item No. Only 2 independent columns. Column 3 has coordinates $(3,-1)$.
\item No. You need at least 3 vectors to span $P_2(x)$.
\item Yes. There are 3 independent vectors. The 4th column has coordinates $(1,-1,2)$.
\item No. Only 2 independent vectors. The coordinates of column 3 are $(1,-1)$, column 4 $(1,2)$.
\end{enumerate}
\item
\begin{enumerate}
\item No. You need at least 4 vectors.
\item Yes.
\item No. The third polynomial is the sum of the first 2. There are only 3 independent vectors.
\end{enumerate}
\item
\begin{enumerate}
\item
Yes.
\item
No.
\item
No.
\item
Yes.
\end{enumerate}
\item \textbf{Basis and Dimension:}
\end{enumerate}
\end{enumerate}
\end{multicols}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../linear-algebra"
%%% End: