diff --git a/.gitattributes b/.gitattributes index 6313b56c5..d3877a538 100644 --- a/.gitattributes +++ b/.gitattributes @@ -1 +1,2 @@ * text=auto eol=lf +*.svg binary diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml new file mode 100644 index 000000000..490051876 --- /dev/null +++ b/.github/FUNDING.yml @@ -0,0 +1 @@ +github: iliakan diff --git a/.gitignore b/.gitignore index 6f90fd190..1a71fb7c8 100644 --- a/.gitignore +++ b/.gitignore @@ -21,3 +21,4 @@ sftp-config.json Thumbs.db +/svgs \ No newline at end of file diff --git a/1-js/01-getting-started/1-intro/article.md b/1-js/01-getting-started/1-intro/article.md index 727cf4ac3..8af048b43 100644 --- a/1-js/01-getting-started/1-intro/article.md +++ b/1-js/01-getting-started/1-intro/article.md @@ -1,12 +1,18 @@ # En introduksjon til JavaScript -Let's see what's so special about JavaScript, what we can achieve with it, and which other technologies play well with it. +Let's see what's so special about JavaScript, what we can achieve with it, and what other technologies play well with it. La oss se litt nærmere på hva som er så spesielt med JavaScript, hva vi kan oppnå ved å bruke det, og hvilke andre teknologier som passer godt sammen med det. +<<<<<<< HEAD ## Hva er JavaScript? *JavaScript* var egentlig ment for å *"gi hjemmesider mer liv"*. +======= +*JavaScript* was initially created to "make web pages alive". + +The programs in this language are called *scripts*. They can be written right in a web page's HTML and run automatically as the page loads. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Programmer skrevet i JavaScript kalles for *scripts*. De kan skrives rett inn i en nettsides's HTML og kjører automatisk så fort siden blir lastet. @@ -14,8 +20,13 @@ Scripts er utdelt og kjørt som ren tekst. De trenger altså ingen forberedelser Med dette øyemed, er JavaScript veldig annerledes fra et annet språk kalt [Java](https://en.wikipedia.org/wiki/Java_(programming_language)). +<<<<<<< HEAD ```smart header="Why JavaScript?" Når JavaScript ble skapt, hadde det i utgangspunktet navnet: "LiveScript". Men Java var veldig populært på den tiden, så det ble bestemt at å presentere et nytt programmeringsspråk som en "lillebror" til Java ville være en god ide. +======= +```smart header="Why is it called JavaScript?" +When JavaScript was created, it initially had another name: "LiveScript". But Java was very popular at that time, so it was decided that positioning a new language as a "younger brother" of Java would help. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Men etterhvert som det utviklet seg ble JavaScript et helt uavhengig programmeringsspårk med sitt eget sett med spesifikasjoner kalt [ECMAScript](http://en.wikipedia.org/wiki/ECMAScript), og nå har det ingenting med Java å gjøre i det hele tatt. ``` @@ -27,27 +38,47 @@ Nettleseren har en innebygget motor som noenganger blir kalt for en "JavaScript Different engines have different "codenames". For example: Det finnes flere forskjellige motorer som har skilles fra hverandre med forskjellige "kodenavn". For eksempel: +<<<<<<< HEAD - [V8](https://en.wikipedia.org/wiki/V8_(JavaScript_engine)) -- i Chrome og Opera. - [SpiderMonkey](https://en.wikipedia.org/wiki/SpiderMonkey) -- i Firefox. - ...Det er også andre kodenavn som "Trident" og "Chakra" for forskjellige versjoner av IE, "ChakraCore" for Microsoft Edge, "Nitro" og "SquirrelFish" for Safari, osv. Begrepene ovenfor er gode å huske fordi de ofte brukt i artikler skrevet av utviklere på nettet. Vi vil bruke de også. For eksempel, hvis "en funksjon x er støttet av v8", vil den sannsynlig fungere i Chrome og Opera. +======= +- [V8](https://en.wikipedia.org/wiki/V8_(JavaScript_engine)) -- in Chrome, Opera and Edge. +- [SpiderMonkey](https://en.wikipedia.org/wiki/SpiderMonkey) -- in Firefox. +- ...There are other codenames like "Chakra" for IE, "JavaScriptCore", "Nitro" and "SquirrelFish" for Safari, etc. + +The terms above are good to remember because they are used in developer articles on the internet. We'll use them too. For instance, if "a feature X is supported by V8", then it probably works in Chrome, Opera and Edge. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ```smart header="How do engines work?" Motorer er kompliserte. Men det grunnleggende er ganske lett. +<<<<<<< HEAD 1. Motoren (Innebygd hvis det er en nettleser) leser ("parser") scriptet. 2. Så konverterer den ("kompilerer") scriptet til maskin språk 3. Og så kjører maskin koden, veldig raskt. Motoren tar ibruk optimaliseringer til hver eneste steg i prosessen. Passer til og med på det kompilerte scriptet imens det kjører, analyserer data som flyter gjennom det, og legger så til optimaliseringer til maskin koden basert på denne kunnskapen. Når dette gjøres, kjører scripts rimelig fort. +======= +1. The engine (embedded if it's a browser) reads ("parses") the script. +2. Then it converts ("compiles") the script to machine code. +3. And then the machine code runs, pretty fast. + +The engine applies optimizations at each step of the process. It even watches the compiled script as it runs, analyzes the data that flows through it, and further optimizes the machine code based on that knowledge. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ``` ## Hva kan JavaScript gjøre i nettleseren? +<<<<<<< HEAD Moderne JavaScript er et "trygt" programmeringsspråk. Det gir ikke lavniå tilgang til minne eller CPU, fordi det i utgangspunktet var laget for nettlesere som ikke krever det. +======= +Modern JavaScript is a "safe" programming language. It does not provide low-level access to memory or the CPU, because it was initially created for browsers which do not require it. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b JavaScript's evber er sterkt avhengig av miljøet det kjører i. For eksempel, [Node.js](https://wikipedia.org/wiki/Node.js) støtter funksjoner som lar JavaScript lese/skrive vilkårlig, gjennomføre nettverksforespørsler, osv. @@ -63,14 +94,23 @@ For eksempel, i-nettleser JavaScript er i stand til å: ## Hva KAN IKKE JavaScript gjøre i nettleseren? +<<<<<<< HEAD JavaScript's egenskaper i nettleseren er begrensede på vegne av brukeren trygghet. Dette er ment for å hindre nettsider med onde hensikter fra å aksessere informasjon eller ramme brukerens data på noen som helst måte. +======= +JavaScript's abilities in the browser are limited to protect the user's safety. The aim is to prevent an evil webpage from accessing private information or harming the user's data. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Eksempler på slike begrensninger inkluderer: +<<<<<<< HEAD - JavaScript på en nettside kan ikke lese/skrive vilkårlige filer på en harddisk, kopiere eller kjøre programmer. Det har ingen direkte tilgang til funksjoner som er tilknyttet operativsystemet (OS). +======= +- JavaScript on a webpage may not read/write arbitrary files on the hard disk, copy them or execute programs. It has no direct access to OS functions. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Moderne nettlesere tillater det til å behandle filer, men denne adgangen er begrenset og kun gitt hvis brukeren gjennomfører utvalgte hendelser, som å "slippe" en fil over et nettleservindu eller velger det via en `` tag. +<<<<<<< HEAD Det finnes måter å interragere med kamera og mikrofon og andre enheter, men disse krever at brukeren gir eksplisitt tillatelse. Så en JavaScript-akrivert side kan ikke på en lumsk måte aktivere webkameraet, se seg rundt og sende informasjonen om dette til [PST](https://no.wikipedia.org/wiki/Politiets_sikkerhetstjeneste). - Forskjellige paneler/vinduer i en nettleser vet i utgangspunktet ingenting om hverandre. Noenganger gjør de det, for eksempel når et vindu bruker JavaScript til å åpne et annet vindu. Men selv i dette tilfellet, JavaScript fra en side til en kan ikke aksessere et annet vindu hvis det kommer fra forskjellige sider (fra et annet domene, protokoll eller port). @@ -80,6 +120,19 @@ Eksempler på slike begrensninger inkluderer: Denne begrensningen er, igjen satt på plass med brukerens trygghet i tankene. En side fra `http://hvilkensomhelstside.no` som en bruker har åpnet kan overhodet ikke være i stand til å aksessere et annet panel med URL'en `http://gmail.com` og stjele informasjon derfra. - JavaScript kan med letthet kommunisere med en tjener over nettet hvor den nåværende siden kom fra. Men dets egenskap til å motta data fra andre sider/domener er veldig tungvint, men det er mulig, dette krever eksplisitt tillatelse (uttrykt via HTTP headere) fra den eksterne siden. Igjen, dette er sikkerhetsbegrensning. +======= + There are ways to interact with the camera/microphone and other devices, but they require a user's explicit permission. So a JavaScript-enabled page may not sneakily enable a web-camera, observe the surroundings and send the information to the [NSA](https://en.wikipedia.org/wiki/National_Security_Agency). +- Different tabs/windows generally do not know about each other. Sometimes they do, for example when one window uses JavaScript to open the other one. But even in this case, JavaScript from one page may not access the other page if they come from different sites (from a different domain, protocol or port). + + This is called the "Same Origin Policy". To work around that, *both pages* must agree for data exchange and must contain special JavaScript code that handles it. We'll cover that in the tutorial. + + This limitation is, again, for the user's safety. A page from `http://anysite.com` which a user has opened must not be able to access another browser tab with the URL `http://gmail.com`, for example, and steal information from there. +- JavaScript can easily communicate over the net to the server where the current page came from. But its ability to receive data from other sites/domains is crippled. Though possible, it requires explicit agreement (expressed in HTTP headers) from the remote side. Once again, that's a safety limitation. + +![](limitations.svg) + +Such limitations do not exist if JavaScript is used outside of the browser, for example on a server. Modern browsers also allow plugins/extensions which may ask for extended permissions. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ![](limitations.svg) @@ -90,17 +143,27 @@ Slike begrensninger eksisterer ikke hvis JavaScript brukes på utsiden av nettle Dette er de *tre* minst gode ting om JavaScript: ```compare +<<<<<<< HEAD + Full integrasjon med HTML/CSS. + Enkle ting kan gjøres på en enkel måte. + Støttet av alle de største nettleserne og er påslått som standard. +======= ++ Full integration with HTML/CSS. ++ Simple things are done simply. ++ Supported by all major browsers and enabled by default. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ``` JavaScript er den eneste nettleser teknologien som kombinerer disse tre tingene. Dette er det som gjør JavaScript unikt. Dette er grunnen til at JavaScript er det mest utstrakte verktøyet for utvikling av grensesnitt i nettleseren. +<<<<<<< HEAD Imens du har planer om å lære deg en teknologi, er det gunstig å sjekke dens perspektiver. Så la oss fortsette til de moderne trendene som påvirker den, inkluderende nye språk og ny nettleser-funksjonalitet. ## Språk "via" JavaScript +======= +That said, JavaScript can be used to create servers, mobile applications, etc. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b JavaScript's syntax er tilpasset alle sitt behov. Forskjellige folk trenger forskjellige funksjoner. @@ -108,7 +171,11 @@ Dette er ikke overraskende, siden forskjellige prosjekter har forskjellige krav. En haug av nye språk har nylig dukket opp, som er *transpilert* (konvertert) til JavaScript før de kjører i nettleseren. +<<<<<<< HEAD Moderne verktøy gjør transpileringen veldig rask og forutsigbar, faktisk så lar dette utviklere å skrive kode på et annet språk som blir automatisk konvertert "under panseret". +======= +So, recently a plethora of new languages appeared, which are *transpiled* (converted) to JavaScript before they run in the browser. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Dette er eksempler på slike språk: @@ -116,11 +183,28 @@ Dette er eksempler på slike språk: - [TypeScript](http://www.typescriptlang.org/) er konsentrert rundt å legge til "streng datatyping" for å gjøre utvikling og drifting av komplekse systemer lettere. TypeScript er utviklet av Microsoft. - [Dart](https://www.dartlang.org/) er et selvstendig språk som har sin egen motor som kjører ukjente miljøer for nettleseren (som mobilapplikasjoner). Det var i utgangspunktet lagt frem av Google som en erstatter for JavaScript, men foreløpig krever nettlesere at Dart transpileres til JavaScript akkurat som de andre nevnt ovenfor. +<<<<<<< HEAD Det finnes flere selvfølgelig. Men selv om vi bruker noen av disse språkene, er det lurt av oss å kjenne JavaScript for å vite hva vi egentlig driver med. +======= +- [CoffeeScript](https://coffeescript.org/) is "syntactic sugar" for JavaScript. It introduces shorter syntax, allowing us to write clearer and more precise code. Usually, Ruby devs like it. +- [TypeScript](https://www.typescriptlang.org/) is concentrated on adding "strict data typing" to simplify the development and support of complex systems. It is developed by Microsoft. +- [Flow](https://flow.org/) also adds data typing, but in a different way. Developed by Facebook. +- [Dart](https://www.dartlang.org/) is a standalone language that has its own engine that runs in non-browser environments (like mobile apps), but also can be transpiled to JavaScript. Developed by Google. +- [Brython](https://brython.info/) is a Python transpiler to JavaScript that enables the writing of applications in pure Python without JavaScript. +- [Kotlin](https://kotlinlang.org/docs/reference/js-overview.html) is a modern, concise and safe programming language that can target the browser or Node. + +There are more. Of course, even if we use one of these transpiled languages, we should also know JavaScript to really understand what we're doing. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ## Summary ## Oppsummering +<<<<<<< HEAD - JavaScript var i utgangspunktet skapt som et kun-nettleser språk, men finnes også i mange andre miljøer i tillegg. - Idag, har JavaScript en unik position som det mest brukt nettleser språket med full integrasjon mot HTML/CSS. - Det finnes mange språk som blir "transpilert" til JavaScript og som gir utvalgte funksjoner. Det er anbefalt å ta en kikk på de, ihvertfall ganske kort, etter at du mestrer JavaScript. +======= +- JavaScript was initially created as a browser-only language, but it is now used in many other environments as well. +- Today, JavaScript has a unique position as the most widely-adopted browser language, fully integrated with HTML/CSS. +- There are many languages that get "transpiled" to JavaScript and provide certain features. It is recommended to take a look at them, at least briefly, after mastering JavaScript. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/01-getting-started/2-manuals-specifications/article.md b/1-js/01-getting-started/2-manuals-specifications/article.md new file mode 100644 index 000000000..3fa243336 --- /dev/null +++ b/1-js/01-getting-started/2-manuals-specifications/article.md @@ -0,0 +1,37 @@ + +# Manuals and specifications + +This book is a *tutorial*. It aims to help you gradually learn the language. But once you're familiar with the basics, you'll need other resources. + +## Specification + +[The ECMA-262 specification](https://www.ecma-international.org/publications/standards/Ecma-262.htm) contains the most in-depth, detailed and formalized information about JavaScript. It defines the language. + +But being that formalized, it's difficult to understand at first. So if you need the most trustworthy source of information about the language details, the specification is the right place. But it's not for everyday use. + +A new specification version is released every year. Between these releases, the latest specification draft is at . + +To read about new bleeding-edge features, including those that are "almost standard" (so-called "stage 3"), see proposals at . + +Also, if you're developing for the browser, then there are other specifications covered in the [second part](info:browser-environment) of the tutorial. + +## Manuals + +- **MDN (Mozilla) JavaScript Reference** is the main manual with examples and other information. It's great to get in-depth information about individual language functions, methods etc. + + You can find it at . + +Although, it's often best to use an internet search instead. Just use "MDN [term]" in the query, e.g. to search for the `parseInt` function. + +## Compatibility tables + +JavaScript is a developing language, new features get added regularly. + +To see their support among browser-based and other engines, see: + +- - per-feature tables of support, e.g. to see which engines support modern cryptography functions: . +- - a table with language features and engines that support those or don't support. + +All these resources are useful in real-life development, as they contain valuable information about language details, their support, etc. + +Please remember them (or this page) for the cases when you need in-depth information about a particular feature. diff --git a/1-js/01-getting-started/2-code-editors/article.md b/1-js/01-getting-started/3-code-editors/article.md similarity index 60% rename from 1-js/01-getting-started/2-code-editors/article.md rename to 1-js/01-getting-started/3-code-editors/article.md index d36561bc6..ca6194741 100644 --- a/1-js/01-getting-started/2-code-editors/article.md +++ b/1-js/01-getting-started/3-code-editors/article.md @@ -12,14 +12,12 @@ An IDE loads the project (which can be many files), allows navigation between fi If you haven't selected an IDE yet, consider the following options: -- [WebStorm](http://www.jetbrains.com/webstorm/) for frontend development. The same company offers other editors for other languages (paid). -- [Netbeans](http://netbeans.org/) (free). +- [Visual Studio Code](https://code.visualstudio.com/) (cross-platform, free). +- [WebStorm](https://www.jetbrains.com/webstorm/) (cross-platform, paid). -All of these IDEs are cross-platform. +For Windows, there's also "Visual Studio", not to be confused with "Visual Studio Code". "Visual Studio" is a paid and mighty Windows-only editor, well-suited for the .NET platform. It's also good at JavaScript. There's also a free version [Visual Studio Community](https://www.visualstudio.com/vs/community/). -For Windows, there's also "Visual Studio", not to be confused with "Visual Studio Code." "Visual Studio" is a paid and mighty Windows-only editor, well-suited for the .NET platform. A free version of it is called [Visual Studio Community](https://www.visualstudio.com/vs/community/). - -Many IDEs are paid but have a trial period. Their cost is usually negligible compared to a qualified developer's salary, so just choose the best one for you. +Many IDEs are paid, but have a trial period. Their cost is usually negligible compared to a qualified developer's salary, so just choose the best one for you. ## Lightweight editors @@ -31,22 +29,11 @@ The main difference between a "lightweight editor" and an "IDE" is that an IDE w In practice, lightweight editors may have a lot of plugins including directory-level syntax analyzers and autocompleters, so there's no strict border between a lightweight editor and an IDE. -The following options deserve your attention: +There are many options, for instance: -- [Visual Studio Code](https://code.visualstudio.com/) (cross-platform, free) also has many IDE-like features. -- [Atom](https://atom.io/) (cross-platform, free). -- [Sublime Text](http://www.sublimetext.com) (cross-platform, shareware). +- [Sublime Text](https://www.sublimetext.com/) (cross-platform, shareware). - [Notepad++](https://notepad-plus-plus.org/) (Windows, free). -- [Vim](http://www.vim.org/) and [Emacs](https://www.gnu.org/software/emacs/) are also cool if you know how to use them. - -## My favorites - -The personal preference of the author is to have both an IDE for projects and a lightweight editor for quick and easy file editing. - -I'm using: - -- As an IDE for JS -- [WebStorm](http://www.jetbrains.com/webstorm/) (I switch to one of the other JetBrains offerings when using other languages) -- As a lightweight editor -- [Sublime Text](http://www.sublimetext.com) or [Atom](https://atom.io/). +- [Vim](https://www.vim.org/) and [Emacs](https://www.gnu.org/software/emacs/) are also cool if you know how to use them. ## Let's not argue @@ -55,3 +42,8 @@ The editors in the lists above are those that either I or my friends whom I cons There are other great editors in our big world. Please choose the one you like the most. The choice of an editor, like any other tool, is individual and depends on your projects, habits, and personal preferences. + +The author's personal opinion: + +- I'd use [Visual Studio Code](https://code.visualstudio.com/) if I develop mostly frontend. +- Otherwise, if it's mostly another language/platform and partially frontend, then consider other editors, such as XCode (Mac), Visual Studio (Windows) or Jetbrains family (Webstorm, PHPStorm, RubyMine etc, depending on the language). diff --git a/1-js/01-getting-started/3-devtools/chrome.png b/1-js/01-getting-started/3-devtools/chrome.png deleted file mode 100644 index 4cb3ea2f4..000000000 Binary files a/1-js/01-getting-started/3-devtools/chrome.png and /dev/null differ diff --git a/1-js/01-getting-started/3-devtools/chrome@2x.png b/1-js/01-getting-started/3-devtools/chrome@2x.png deleted file mode 100644 index b87404a8f..000000000 Binary files a/1-js/01-getting-started/3-devtools/chrome@2x.png and /dev/null differ diff --git a/1-js/01-getting-started/3-devtools/safari.png b/1-js/01-getting-started/3-devtools/safari.png deleted file mode 100644 index 37598a261..000000000 Binary files a/1-js/01-getting-started/3-devtools/safari.png and /dev/null differ diff --git a/1-js/01-getting-started/3-devtools/safari@2x.png b/1-js/01-getting-started/3-devtools/safari@2x.png deleted file mode 100644 index c59cebef2..000000000 Binary files a/1-js/01-getting-started/3-devtools/safari@2x.png and /dev/null differ diff --git a/1-js/01-getting-started/3-devtools/article.md b/1-js/01-getting-started/4-devtools/article.md similarity index 91% rename from 1-js/01-getting-started/3-devtools/article.md rename to 1-js/01-getting-started/4-devtools/article.md index ae5b3845d..bbe8af920 100644 --- a/1-js/01-getting-started/3-devtools/article.md +++ b/1-js/01-getting-started/4-devtools/article.md @@ -22,17 +22,22 @@ The developer tools will open on the Console tab by default. It looks somewhat like this: -![chrome](chrome.png) +![chrome](chrome.webp) The exact look of developer tools depends on your version of Chrome. It changes from time to time but should be similar. - Here we can see the red-colored error message. In this case, the script contains an unknown "lalala" command. - On the right, there is a clickable link to the source `bug.html:12` with the line number where the error has occurred. -Below the error message, there is a blue `>` symbol. It marks a "command line" where we can type JavaScript commands. Press `key:Enter` to run them (`key:Shift+Enter` to input multi-line commands). +Below the error message, there is a blue `>` symbol. It marks a "command line" where we can type JavaScript commands. Press `key:Enter` to run them. Now we can see errors, and that's enough for a start. We'll come back to developer tools later and cover debugging more in-depth in the chapter . +```smart header="Multi-line input" +Usually, when we put a line of code into the console, and then press `key:Enter`, it executes. + +To insert multiple lines, press `key:Shift+Enter`. This way one can enter long fragments of JavaScript code. +``` ## Firefox, Edge, and others @@ -44,18 +49,12 @@ The look & feel of them is quite similar. Once you know how to use one of these Safari (Mac browser, not supported by Windows/Linux) is a little bit special here. We need to enable the "Develop menu" first. -Open Preferences and go to the "Advanced" pane. There's a checkbox at the bottom: +Open Settings and go to the "Advanced" pane. There's a checkbox at the bottom: ![safari](safari.png) Now `key:Cmd+Opt+C` can toggle the console. Also, note that the new top menu item named "Develop" has appeared. It has many commands and options. -## Multi-line input - -Usually, when we put a line of code into the console, and then press `key:Enter`, it executes. - -To insert multiple lines, press `key:Shift+Enter`. - ## Summary - Developer tools allow us to see errors, run commands, examine variables, and much more. diff --git a/1-js/01-getting-started/3-devtools/bug.html b/1-js/01-getting-started/4-devtools/bug.html similarity index 100% rename from 1-js/01-getting-started/3-devtools/bug.html rename to 1-js/01-getting-started/4-devtools/bug.html diff --git a/1-js/01-getting-started/4-devtools/chrome.webp b/1-js/01-getting-started/4-devtools/chrome.webp new file mode 100644 index 000000000..bdf067079 Binary files /dev/null and b/1-js/01-getting-started/4-devtools/chrome.webp differ diff --git a/1-js/01-getting-started/4-devtools/chrome@2.webp b/1-js/01-getting-started/4-devtools/chrome@2.webp new file mode 100644 index 000000000..2aeca5898 Binary files /dev/null and b/1-js/01-getting-started/4-devtools/chrome@2.webp differ diff --git a/1-js/01-getting-started/4-devtools/safari.png b/1-js/01-getting-started/4-devtools/safari.png new file mode 100644 index 000000000..4538827eb Binary files /dev/null and b/1-js/01-getting-started/4-devtools/safari.png differ diff --git a/1-js/01-getting-started/4-devtools/safari@2x.png b/1-js/01-getting-started/4-devtools/safari@2x.png new file mode 100644 index 000000000..1561b2bd9 Binary files /dev/null and b/1-js/01-getting-started/4-devtools/safari@2x.png differ diff --git a/1-js/02-first-steps/01-hello-world/1-hello-alert/index.html b/1-js/02-first-steps/01-hello-world/1-hello-alert/index.html new file mode 100644 index 000000000..ff1d871b0 --- /dev/null +++ b/1-js/02-first-steps/01-hello-world/1-hello-alert/index.html @@ -0,0 +1,12 @@ + + + + + + + + + + diff --git a/1-js/02-first-steps/01-hello-world/1-hello-alert/solution.md b/1-js/02-first-steps/01-hello-world/1-hello-alert/solution.md index e69de29bb..81552913b 100644 --- a/1-js/02-first-steps/01-hello-world/1-hello-alert/solution.md +++ b/1-js/02-first-steps/01-hello-world/1-hello-alert/solution.md @@ -0,0 +1,2 @@ + +[html src="index.html"] diff --git a/1-js/02-first-steps/01-hello-world/article.md b/1-js/02-first-steps/01-hello-world/article.md index d96ffd76f..35f82bf5d 100644 --- a/1-js/02-first-steps/01-hello-world/article.md +++ b/1-js/02-first-steps/01-hello-world/article.md @@ -1,6 +1,6 @@ # Hello, world! -The tutorial that you're reading is about core JavaScript, which is platform-independent. Later on, you'll learn about Node.js and other platforms that use it. +This part of the tutorial is about core JavaScript, the language itself. But we need a working environment to run our scripts and, since this book is online, the browser is a good choice. We'll keep the amount of browser-specific commands (like `alert`) to a minimum so that you don't spend time on them if you plan to concentrate on another environment (like Node.js). We'll focus on JavaScript in the browser in the [next part](/ui) of the tutorial. @@ -9,7 +9,7 @@ So first, let's see how we attach a script to a webpage. For server-side environ ## The "script" tag -JavaScript programs can be inserted into any part of an HTML document with the help of the ` ``` - This trick isn't used in modern JavaScript. These comments hid JavaScript code from old browsers that didn't know how to process the ` ``` -Here, `/path/to/script.js` is an absolute path to the script file (from the site root). - -You can also provide a relative path from the current page. For instance, `src="script.js"` would mean a file `"script.js"` in the current folder. +Here, `/path/to/script.js` is an absolute path to the script from the site root. One can also provide a relative path from the current page. For instance, `src="script.js"`, just like `src="./script.js"`, would mean a file `"script.js"` in the current folder. We can give a full URL as well. For instance: ```html - + ``` To attach several scripts, use multiple tags: diff --git a/1-js/02-first-steps/02-structure/article.md b/1-js/02-first-steps/02-structure/article.md index b18aab19e..e81fd343d 100644 --- a/1-js/02-first-steps/02-structure/article.md +++ b/1-js/02-first-steps/02-structure/article.md @@ -46,7 +46,7 @@ alert(3 + + 2); ``` -The code outputs `6` because JavaScript does not insert semicolons here. It is intuitively obvious that if the line ends with a plus `"+"`, then it is an "incomplete expression", so the semicolon is not required. And in this case that works as intended. +The code outputs `6` because JavaScript does not insert semicolons here. It is intuitively obvious that if the line ends with a plus `"+"`, then it is an "incomplete expression", so a semicolon there would be incorrect. And in this case, that works as intended. **But there are situations where JavaScript "fails" to assume a semicolon where it is really needed.** @@ -56,45 +56,41 @@ Errors which occur in such cases are quite hard to find and fix. If you're curious to see a concrete example of such an error, check this code out: ```js run -[1, 2].forEach(alert) +alert("Hello"); + +[1, 2].forEach(alert); ``` -No need to think about the meaning of the brackets `[]` and `forEach` yet. We'll study them later. For now, just remember the result of the code: it shows `1` then `2`. +No need to think about the meaning of the brackets `[]` and `forEach` yet. We'll study them later. For now, just remember the result of running the code: it shows `Hello`, then `1`, then `2`. -Now, let's add an `alert` before the code and *not* finish it with a semicolon: +Now let's remove the semicolon after the `alert`: ```js run no-beautify -alert("There will be an error") +alert("Hello") -[1, 2].forEach(alert) +[1, 2].forEach(alert); ``` -Now if we run the code, only the first `alert` is shown and then we have an error! - -But everything is fine again if we add a semicolon after `alert`: -```js run -alert("All fine now"); +The difference compared to the code above is only one character: the semicolon at the end of the first line is gone. -[1, 2].forEach(alert) -``` +If we run this code, only the first `Hello` shows (and there's an error, you may need to open the console to see it). There are no numbers any more. -Now we have the "All fine now" message followed by `1` and `2`. +That's because JavaScript does not assume a semicolon before square brackets `[...]`. So, the code in the last example is treated as a single statement. - -The error in the no-semicolon variant occurs because JavaScript does not assume a semicolon before square brackets `[...]`. - -So, because the semicolon is not auto-inserted, the code in the first example is treated as a single statement. Here's how the engine sees it: +Here's how the engine sees it: ```js run no-beautify -alert("There will be an error")[1, 2].forEach(alert) +alert("Hello")[1, 2].forEach(alert); ``` -But it should be two separate statements, not one. Such a merging in this case is just wrong, hence the error. This can happen in other situations. +Looks weird, right? Such merging in this case is just wrong. We need to put a semicolon after `alert` for the code to work correctly. + +This can happen in other situations also. ```` We recommend putting semicolons between statements even if they are separated by newlines. This rule is widely adopted by the community. Let's note once again -- *it is possible* to leave out semicolons most of the time. But it's safer -- especially for a beginner -- to use them. -## Comments +## Comments [#code-comments] As time goes on, programs become more and more complex. It becomes necessary to add *comments* which describe what the code does and why. @@ -136,7 +132,7 @@ alert('World'); ``` ```smart header="Use hotkeys!" -In most editors, a line of code can be commented out by pressing the `key:Ctrl+/` hotkey for a single-line comment and something like `key:Ctrl+Shift+/` -- for multiline comments (select a piece of code and press the hotkey). For Mac, try `key:Cmd` instead of `key:Ctrl`. +In most editors, a line of code can be commented out by pressing the `key:Ctrl+/` hotkey for a single-line comment and something like `key:Ctrl+Shift+/` -- for multiline comments (select a piece of code and press the hotkey). For Mac, try `key:Cmd` instead of `key:Ctrl` and `key:Option` instead of `key:Shift`. ``` ````warn header="Nested comments are not supported!" diff --git a/1-js/02-first-steps/03-strict-mode/article.md b/1-js/02-first-steps/03-strict-mode/article.md index 0aab06893..9586733cc 100644 --- a/1-js/02-first-steps/03-strict-mode/article.md +++ b/1-js/02-first-steps/03-strict-mode/article.md @@ -4,7 +4,7 @@ For a long time, JavaScript evolved without compatibility issues. New features w That had the benefit of never breaking existing code. But the downside was that any mistake or an imperfect decision made by JavaScript's creators got stuck in the language forever. -This was the case until 2009 when ECMAScript 5 (ES5) appeared. It added new features to the language and modified some of the existing ones. To keep the old code working, most modifications are off by default. You need to explicitly enable them with a special directive: `"use strict"`. +This was the case until 2009 when ECMAScript 5 (ES5) appeared. It added new features to the language and modified some of the existing ones. To keep the old code working, most such modifications are off by default. You need to explicitly enable them with a special directive: `"use strict"`. ## "use strict" @@ -19,10 +19,7 @@ For example: ... ``` -We will learn functions (a way to group commands) soon. - -Looking ahead, let's just note that `"use strict"` can be put at the start of most kinds of functions instead of the whole script. Doing that enables strict mode in that function only. But usually, people use it for the whole script. - +Quite soon we're going to learn functions (a way to group commands), so let's note in advance that `"use strict"` can be put at the beginning of a function. Doing that enables strict mode in that function only. But usually people use it for the whole script. ````warn header="Ensure that \"use strict\" is at the top" Please make sure that `"use strict"` is at the top of your scripts, otherwise strict mode may not be enabled. @@ -44,36 +41,49 @@ Only comments may appear above `"use strict"`. ```warn header="There's no way to cancel `use strict`" There is no directive like `"no use strict"` that reverts the engine to old behavior. -Once we enter strict mode, there's no return. +Once we enter strict mode, there's no going back. ``` ## Browser console -For the future, when you use a browser console to test features, please note that it doesn't `use strict` by default. +When you use a [developer console](info:devtools) to run code, please note that it doesn't `use strict` by default. Sometimes, when `use strict` makes a difference, you'll get incorrect results. -Even if we press `key:Shift+Enter` to input multiple lines, and put `use strict` on top, it doesn't work. That's because of how the console executes the code internally. +So, how to actually `use strict` in the console? + +First, you can try to press `key:Shift+Enter` to input multiple lines, and put `use strict` on top, like this: + +```js +'use strict'; +// ...your code + +``` + +It works in most browsers, namely Firefox and Chrome. -The reliable way to ensure `use strict` would be to input the code into console like this: +If it doesn't, e.g. in an old browser, there's an ugly, but reliable way to ensure `use strict`. Put it inside this kind of wrapper: ```js (function() { 'use strict'; - // ...your code... + // ...your code here... })() ``` -## Always "use strict" +## Should we "use strict"? + +The question may sound obvious, but it's not so. + +One could recommend to start scripts with `"use strict"`... But you know what's cool? + +Modern JavaScript supports "classes" and "modules" - advanced language structures (we'll surely get to them), that enable `use strict` automatically. So we don't need to add the `"use strict"` directive, if we use them. -We have yet to cover the differences between strict mode and the "default" mode. +**So, for now `"use strict";` is a welcome guest at the top of your scripts. Later, when your code is all in classes and modules, you may omit it.** -In the next chapters, as we learn language features, we'll note the differences between the strict and default modes. Luckily, there aren't many and they actually make our lives better. +As of now, we've got to know about `use strict` in general. -For now, it's enough to know about it in general: +In the next chapters, as we learn language features, we'll see the differences between the strict and old modes. Luckily, there aren't many and they actually make our lives better. -1. The `"use strict"` directive switches the engine to the "modern" mode, changing the behavior of some built-in features. We'll see the details later in the tutorial. -2. Strict mode is enabled by placing `"use strict"` at the top of a script or function. Several language features, like "classes" and "modules", enable strict mode automatically. -3. Strict mode is supported by all modern browsers. -4. We recommended always starting scripts with `"use strict"`. All examples in this tutorial assume strict mode unless (very rarely) specified otherwise. +All examples in this tutorial assume strict mode unless (very rarely) specified otherwise. diff --git a/1-js/02-first-steps/04-variables/2-declare-variables/solution.md b/1-js/02-first-steps/04-variables/2-declare-variables/solution.md index 9ffc3efca..392f4e26f 100644 --- a/1-js/02-first-steps/04-variables/2-declare-variables/solution.md +++ b/1-js/02-first-steps/04-variables/2-declare-variables/solution.md @@ -1,4 +1,4 @@ -First, the variable for the name of our planet. +## The variable for our planet That's simple: @@ -6,9 +6,9 @@ That's simple: let ourPlanetName = "Earth"; ``` -Note, we could use a shorter name `planet`, but it might be not obvious what planet it refers to. It's nice to be more verbose. At least until the variable isNotTooLong. +Note, we could use a shorter name `planet`, but it might not be obvious what planet it refers to. It's nice to be more verbose. At least until the variable isNotTooLong. -Second, the name of the current visitor: +## The name of the current visitor ```js let currentUserName = "John"; diff --git a/1-js/02-first-steps/04-variables/3-uppercast-constant/solution.md b/1-js/02-first-steps/04-variables/3-uppercast-constant/solution.md index f3a96c692..acd643fde 100644 --- a/1-js/02-first-steps/04-variables/3-uppercast-constant/solution.md +++ b/1-js/02-first-steps/04-variables/3-uppercast-constant/solution.md @@ -2,4 +2,4 @@ We generally use upper case for constants that are "hard-coded". Or, in other wo In this code, `birthday` is exactly like that. So we could use the upper case for it. -In contrast, `age` is evaluated in run-time. Today we have one age, a year after we'll have another one. It is constant in a sense that it does not change through the code execution. But it is a bit "less of a constant" than `birthday`, it is calculated, so we should keep the lower case for it. \ No newline at end of file +In contrast, `age` is evaluated in run-time. Today we have one age, a year after we'll have another one. It is constant in a sense that it does not change through the code execution. But it is a bit "less of a constant" than `birthday`: it is calculated, so we should keep the lower case for it. diff --git a/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md b/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md index 5fd18f90a..f3c208a74 100644 --- a/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md +++ b/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md @@ -12,13 +12,14 @@ const birthday = '18.04.1982'; const age = someCode(birthday); ``` -Here we have a constant `birthday` date and the `age` is calculated from `birthday` with the help of some code (it is not provided for shortness, and because details don't matter here). +Here we have a constant `birthday` for the date, and also the `age` constant. + +The `age` is calculated from `birthday` using `someCode()`, which means a function call that we didn't explain yet (we will soon!), but the details don't matter here, the point is that `age` is calculated somehow based on the `birthday`. Would it be right to use upper case for `birthday`? For `age`? Or even for both? ```js -const BIRTHDAY = '18.04.1982'; // make uppercase? +const BIRTHDAY = '18.04.1982'; // make birthday uppercase? -const AGE = someCode(BIRTHDAY); // make uppercase? +const AGE = someCode(BIRTHDAY); // make age uppercase? ``` - diff --git a/1-js/02-first-steps/04-variables/article.md b/1-js/02-first-steps/04-variables/article.md index ab6c47281..e91d0ea7e 100644 --- a/1-js/02-first-steps/04-variables/article.md +++ b/1-js/02-first-steps/04-variables/article.md @@ -12,7 +12,7 @@ A [variable](https://en.wikipedia.org/wiki/Variable_(computer_science)) is a "na To create a variable in JavaScript, use the `let` keyword. -The statement below creates (in other words: *declares* or *defines*) a variable with the name "message": +The statement below creates (in other words: *declares*) a variable with the name "message": ```js let message; @@ -24,7 +24,7 @@ Now, we can put some data into it by using the assignment operator `=`: let message; *!* -message = 'Hello'; // store the string +message = 'Hello'; // store the string 'Hello' in the variable named message */!* ``` @@ -64,6 +64,7 @@ let message = 'Hello'; ``` Some people also define multiple variables in this multiline style: + ```js no-beautify let user = 'John', age = 25, @@ -80,7 +81,6 @@ let user = 'John' Technically, all these variants do the same thing. So, it's a matter of personal taste and aesthetics. - ````smart header="`var` instead of `let`" In older scripts, you may also find another keyword: `var` instead of `let`: @@ -88,22 +88,23 @@ In older scripts, you may also find another keyword: `var` instead of `let`: *!*var*/!* message = 'Hello'; ``` -The `var` keyword is *almost* the same as `let`. It also declares a variable, but in a slightly different, "old-school" way. +The `var` keyword is *almost* the same as `let`. It also declares a variable but in a slightly different, "old-school" way. -There are subtle differences between `let` and `var`, but they do not matter for us yet. We'll cover them in detail in the chapter . +There are subtle differences between `let` and `var`, but they do not matter to us yet. We'll cover them in detail in the chapter . ```` ## A real-life analogy We can easily grasp the concept of a "variable" if we imagine it as a "box" for data, with a uniquely-named sticker on it. -For instance, the variable `message` can be imagined as a box labeled `"message"` with the value `"Hello!"` in it: +For instance, the variable `message` can be imagined as a box labelled `"message"` with the value `"Hello!"` in it: ![](variable.svg) We can put any value in the box. We can also change it as many times as we want: + ```js run let message; @@ -135,12 +136,26 @@ alert(hello); // Hello world! alert(message); // Hello world! ``` +````warn header="Declaring twice triggers an error" +A variable should be declared only once. + +A repeated declaration of the same variable is an error: + +```js run +let message = "This"; + +// repeated 'let' leads to an error +let message = "That"; // SyntaxError: 'message' has already been declared +``` +So, we should declare a variable once and then refer to it without `let`. +```` + ```smart header="Functional languages" -It's interesting to note that [functional](https://en.wikipedia.org/wiki/Functional_programming) programming languages, like [Scala](http://www.scala-lang.org/) or [Erlang](http://www.erlang.org/), forbid changing variable values. +It's interesting to note that there exist so-called [pure functional](https://en.wikipedia.org/wiki/Purely_functional_programming) programming languages, such as [Haskell](https://en.wikipedia.org/wiki/Haskell), that forbid changing variable values. In such languages, once the value is stored "in the box", it's there forever. If we need to store something else, the language forces us to create a new box (declare a new variable). We can't reuse the old one. -Though it may seem a little odd at first sight, these languages are quite capable of serious development. More than that, there are areas like parallel computations where this limitation confers certain benefits. Studying such a language (even if you're not planning to use it soon) is recommended to broaden the mind. +Though it may seem a little odd at first sight, these languages are quite capable of serious development. More than that, there are areas like parallel computations where this limitation confers certain benefits. ``` ## Variable naming [#variable-naming] @@ -179,18 +194,18 @@ let my-name; // hyphens '-' aren't allowed in the name ``` ```smart header="Case matters" -Variables named `apple` and `AppLE` are two different variables. +Variables named `apple` and `APPLE` are two different variables. ``` -````smart header="Non-English letters are allowed, but not recommended" -It is possible to use any language, including cyrillic letters or even hieroglyphs, like this: +````smart header="Non-Latin letters are allowed, but not recommended" +It is possible to use any language, including Cyrillic letters, Chinese logograms and so on, like this: ```js let имя = '...'; let 我 = '...'; ``` -Technically, there is no error here, such names are allowed, but there is an international tradition to use English in variable names. Even if we're writing a small script, it may have a long life ahead. People from other countries may need to read it some time. +Technically, there is no error here. Such names are allowed, but there is an international convention to use English in variable names. Even if we're writing a small script, it may have a long life ahead. People from other countries may need to read it sometime. ```` ````warn header="Reserved names" @@ -237,7 +252,7 @@ To declare a constant (unchanging) variable, use `const` instead of `let`: const myBirthday = '18.04.1982'; ``` -Variables declared using `const` are called "constants". They cannot be changed. An attempt to do so would cause an error: +Variables declared using `const` are called "constants". They cannot be reassigned. An attempt to do so would cause an error: ```js run const myBirthday = '18.04.1982'; @@ -245,16 +260,15 @@ const myBirthday = '18.04.1982'; myBirthday = '01.01.2001'; // error, can't reassign the constant! ``` -When a programmer is sure that a variable will never change, they can declare it with `const` to guarantee and clearly communicate that fact to everyone. - +When a programmer is sure that a variable will never change, they can declare it with `const` to guarantee and communicate that fact to everyone. ### Uppercase constants -There is a widespread practice to use constants as aliases for difficult-to-remember values that are known prior to execution. +There is a widespread practice to use constants as aliases for difficult-to-remember values that are known before execution. Such constants are named using capital letters and underscores. -Like this: +For instance, let's make constants for colors in so-called "web" (hexadecimal) format: ```js run const COLOR_RED = "#F00"; @@ -275,35 +289,36 @@ Benefits: When should we use capitals for a constant and when should we name it normally? Let's make that clear. -Being a "constant" just means that a variable's value never changes. But there are constants that are known prior to execution (like a hexadecimal value for red) and there are constants that are *calculated* in run-time, during the execution, but do not change after their initial assignment. +Being a "constant" just means that a variable's value never changes. But some constants are known before execution (like a hexadecimal value for red) and some constants are *calculated* in run-time, during the execution, but do not change after their initial assignment. For instance: + ```js const pageLoadTime = /* time taken by a webpage to load */; ``` -The value of `pageLoadTime` is not known prior to the page load, so it's named normally. But it's still a constant because it doesn't change after assignment. +The value of `pageLoadTime` is not known before the page load, so it's named normally. But it's still a constant because it doesn't change after the assignment. -In other words, capital-named constants are only used as aliases for "hard-coded" values. +In other words, capital-named constants are only used as aliases for "hard-coded" values. ## Name things right Talking about variables, there's one more extremely important thing. -Please name your variables sensibly. Take time to think about this. +A variable name should have a clean, obvious meaning, describing the data that it stores. -Variable naming is one of the most important and complex skills in programming. A quick glance at variable names can reveal which code was written by a beginner versus an experienced developer. +Variable naming is one of the most important and complex skills in programming. A glance at variable names can reveal which code was written by a beginner versus an experienced developer. -In a real project, most of the time is spent modifying and extending an existing code base rather than writing something completely separate from scratch. When we return to some code after doing something else for a while, it's much easier to find information that is well-labeled. Or, in other words, when the variables have good names. +In a real project, most of the time is spent modifying and extending an existing code base rather than writing something completely separate from scratch. When we return to some code after doing something else for a while, it's much easier to find information that is well-labelled. Or, in other words, when the variables have good names. Please spend time thinking about the right name for a variable before declaring it. Doing so will repay you handsomely. Some good-to-follow rules are: - Use human-readable names like `userName` or `shoppingCart`. -- Stay away from abbreviations or short names like `a`, `b`, `c`, unless you really know what you're doing. +- Stay away from abbreviations or short names like `a`, `b`, and `c`, unless you know what you're doing. - Make names maximally descriptive and concise. Examples of bad names are `data` and `value`. Such names say nothing. It's only okay to use them if the context of the code makes it exceptionally obvious which data or value the variable is referencing. -- Agree on terms within your team and in your own mind. If a site visitor is called a "user" then we should name related variables `currentUser` or `newUser` instead of `currentVisitor` or `newManInTown`. +- Agree on terms within your team and in your mind. If a site visitor is called a "user" then we should name related variables `currentUser` or `newUser` instead of `currentVisitor` or `newManInTown`. Sounds simple? Indeed it is, but creating descriptive and concise variable names in practice is not. Go for it. @@ -323,7 +338,7 @@ Modern JavaScript minifiers and browsers optimize code well enough, so it won't We can declare variables to store data by using the `var`, `let`, or `const` keywords. -- `let` -- is a modern variable declaration. The code must be in strict mode to use `let` in Chrome (V8). +- `let` -- is a modern variable declaration. - `var` -- is an old-school variable declaration. Normally we don't use it at all, but we'll cover subtle differences from `let` in the chapter , just in case you need them. - `const` -- is like `let`, but the value of the variable can't be changed. diff --git a/1-js/02-first-steps/05-types/article.md b/1-js/02-first-steps/05-types/article.md index 0c9954ecf..04e8b2450 100644 --- a/1-js/02-first-steps/05-types/article.md +++ b/1-js/02-first-steps/05-types/article.md @@ -1,6 +1,10 @@ # Data types -A variable in JavaScript can contain any data. A variable can at one moment be a string and at another be a number: +A value in JavaScript is always of a certain type. For example, a string or a number. + +There are eight basic data types in JavaScript. Here, we'll cover them in general and in the next chapters we'll talk about each of them in detail. + +We can put any type in a variable. For example, a variable can at one moment be a string and then store a number: ```js // no error @@ -8,11 +12,9 @@ let message = "hello"; message = 123456; ``` -Programming languages that allow such things are called "dynamically typed", meaning that there are data types, but variables are not bound to any of them. +Programming languages that allow such things, such as JavaScript, are called "dynamically typed", meaning that there exist data types, but variables are not bound to any of them. -There are seven basic data types in JavaScript. Here, we'll cover them in general and in the next chapters we'll talk about each of them in detail. - -## A number +## Number ```js let n = 123; @@ -44,13 +46,15 @@ Besides regular numbers, there are so-called "special numeric values" which also alert( "not a number" / 2 ); // NaN, such division is erroneous ``` - `NaN` is sticky. Any further operation on `NaN` returns `NaN`: + `NaN` is sticky. Any further mathematical operation on `NaN` returns `NaN`: ```js run - alert( "not a number" / 2 + 5 ); // NaN + alert( NaN + 1 ); // NaN + alert( 3 * NaN ); // NaN + alert( "not a number" / 2 - 1 ); // NaN ``` - So, if there's a `NaN` somewhere in a mathematical expression, it propagates to the whole result. + So, if there's a `NaN` somewhere in a mathematical expression, it propagates to the whole result (there's only one exception to that: `NaN ** 0` is `1`). ```smart header="Mathematical operations are safe" Doing maths is "safe" in JavaScript. We can do anything: divide by zero, treat non-numeric strings as numbers, etc. @@ -62,14 +66,42 @@ Special numeric values formally belong to the "number" type. Of course they are We'll see more about working with numbers in the chapter . -## A string +## BigInt [#bigint-type] + +In JavaScript, the "number" type cannot safely represent integer values larger than (253-1) (that's `9007199254740991`), or less than -(253-1) for negatives. + +To be really precise, the "number" type can store larger integers (up to 1.7976931348623157 * 10308), but outside of the safe integer range ±(253-1) there'll be a precision error, because not all digits fit into the fixed 64-bit storage. So an "approximate" value may be stored. + +For example, these two numbers (right above the safe range) are the same: + +```js +console.log(9007199254740991 + 1); // 9007199254740992 +console.log(9007199254740991 + 2); // 9007199254740992 +``` + +So to say, all odd integers greater than (253-1) can't be stored at all in the "number" type. + +For most purposes ±(253-1) range is quite enough, but sometimes we need the entire range of really big integers, e.g. for cryptography or microsecond-precision timestamps. + +`BigInt` type was recently added to the language to represent integers of arbitrary length. + +A `BigInt` value is created by appending `n` to the end of an integer: + +```js +// the "n" at the end means it's a BigInt +const bigInt = 1234567890123456789012345678901234567890n; +``` + +As `BigInt` numbers are rarely needed, we don't cover them here, but devoted them a separate chapter . Read it when you need such big numbers. + +## String A string in JavaScript must be surrounded by quotes. ```js let str = "Hello"; let str2 = 'Single quotes are ok too'; -let phrase = `can embed ${str}`; +let phrase = `can embed another ${str}`; ``` In JavaScript, there are 3 types of quotes. @@ -78,7 +110,7 @@ In JavaScript, there are 3 types of quotes. 2. Single quotes: `'Hello'`. 3. Backticks: `Hello`. -Double and single quotes are "simple" quotes. There's no difference between them in JavaScript. +Double and single quotes are "simple" quotes. There's practically no difference between them in JavaScript. Backticks are "extended functionality" quotes. They allow us to embed variables and expressions into a string by wrapping them in `${…}`, for example: @@ -102,12 +134,12 @@ alert( "the result is ${1 + 2}" ); // the result is ${1 + 2} (double quotes do n We'll cover strings more thoroughly in the chapter . ```smart header="There is no *character* type." -In some languages, there is a special "character" type for a single character. For example, in the C language and in Java it is `char`. +In some languages, there is a special "character" type for a single character. For example, in the C language and in Java it is called "char". -In JavaScript, there is no such type. There's only one type: `string`. A string may consist of only one character or many of them. +In JavaScript, there is no such type. There's only one type: `string`. A string may consist of zero characters (be empty), one character or many of them. ``` -## A boolean (logical type) +## Boolean (logical type) The boolean type has only two values: `true` and `false`. @@ -144,7 +176,7 @@ In JavaScript, `null` is not a "reference to a non-existing object" or a "null p It's just a special value which represents "nothing", "empty" or "value unknown". -The code above states that `age` is unknown or empty for some reason. +The code above states that `age` is unknown. ## The "undefined" value @@ -155,49 +187,47 @@ The meaning of `undefined` is "value is not assigned". If a variable is declared, but not assigned, then its value is `undefined`: ```js run -let x; +let age; -alert(x); // shows "undefined" +alert(age); // shows "undefined" ``` -Technically, it is possible to assign `undefined` to any variable: +Technically, it is possible to explicitly assign `undefined` to a variable: ```js run -let x = 123; +let age = 100; -x = undefined; +// change the value to undefined +age = undefined; -alert(x); // "undefined" +alert(age); // "undefined" ``` -...But we don't recommend doing that. Normally, we use `null` to assign an "empty" or "unknown" value to a variable, and we use `undefined` for checks like seeing if a variable has been assigned. +...But we don't recommend doing that. Normally, one uses `null` to assign an "empty" or "unknown" value to a variable, while `undefined` is reserved as a default initial value for unassigned things. ## Objects and Symbols The `object` type is special. -All other types are called "primitive" because their values can contain only a single thing (be it a string or a number or whatever). In contrast, objects are used to store collections of data and more complex entities. We'll deal with them later in the chapter after we learn more about primitives. - -The `symbol` type is used to create unique identifiers for objects. We have to mention it here for completeness, but it's better to study this type after objects. - -## The typeof operator [#type-typeof] +All other types are called "primitive" because their values can contain only a single thing (be it a string or a number or whatever). In contrast, objects are used to store collections of data and more complex entities. -The `typeof` operator returns the type of the argument. It's useful when we want to process values of different types differently or just want to do a quick check. +Being that important, objects deserve a special treatment. We'll deal with them later in the chapter , after we learn more about primitives. -It supports two forms of syntax: +The `symbol` type is used to create unique identifiers for objects. We have to mention it here for the sake of completeness, but also postpone the details till we know objects. -1. As an operator: `typeof x`. -2. As a function: `typeof(x)`. +## The typeof operator [#type-typeof] -In other words, it works with parentheses or without them. The result is the same. +The `typeof` operator returns the type of the operand. It's useful when we want to process values of different types differently or just want to do a quick check. -The call to `typeof x` returns a string with the type name: +A call to `typeof x` returns a string with the type name: ```js typeof undefined // "undefined" typeof 0 // "number" +typeof 10n // "bigint" + typeof true // "boolean" typeof "foo" // "string" @@ -220,25 +250,37 @@ typeof alert // "function" (3) The last three lines may need additional explanation: 1. `Math` is a built-in object that provides mathematical operations. We will learn it in the chapter . Here, it serves just as an example of an object. -2. The result of `typeof null` is `"object"`. That's wrong. It is an officially recognized error in `typeof`, kept for compatibility. Of course, `null` is not an object. It is a special value with a separate type of its own. So, again, this is an error in the language. -3. The result of `typeof alert` is `"function"`, because `alert` is a function of the language. We'll study functions in the next chapters where we'll see that there's no special "function" type in JavaScript. Functions belong to the object type. But `typeof` treats them differently. Formally, it's incorrect, but very convenient in practice. +2. The result of `typeof null` is `"object"`. That's an officially recognized error in `typeof`, coming from very early days of JavaScript and kept for compatibility. Definitely, `null` is not an object. It is a special value with a separate type of its own. The behavior of `typeof` is wrong here. +3. The result of `typeof alert` is `"function"`, because `alert` is a function. We'll study functions in the next chapters where we'll also see that there's no special "function" type in JavaScript. Functions belong to the object type. But `typeof` treats them differently, returning `"function"`. That also comes from the early days of JavaScript. Technically, such behavior isn't correct, but can be convenient in practice. + +```smart header="The `typeof(x)` syntax" +You may also come across another syntax: `typeof(x)`. It's the same as `typeof x`. +To put it clear: `typeof` is an operator, not a function. The parentheses here aren't a part of `typeof`. It's the kind of parentheses used for mathematical grouping. + +Usually, such parentheses contain a mathematical expression, such as `(2 + 2)`, but here they contain only one argument `(x)`. Syntactically, they allow to avoid a space between the `typeof` operator and its argument, and some people like it. + +Some people prefer `typeof(x)`, although the `typeof x` syntax is much more common. +``` ## Summary -There are 7 basic data types in JavaScript. +There are 8 basic data types in JavaScript. -- `number` for numbers of any kind: integer or floating-point. -- `string` for strings. A string may have one or more characters, there's no separate single-character type. -- `boolean` for `true`/`false`. -- `null` for unknown values -- a standalone type that has a single value `null`. -- `undefined` for unassigned values -- a standalone type that has a single value `undefined`. -- `object` for more complex data structures. -- `symbol` for unique identifiers. +- Seven primitive data types: + - `number` for numbers of any kind: integer or floating-point, integers are limited by ±(253-1). + - `bigint` for integer numbers of arbitrary length. + - `string` for strings. A string may have zero or more characters, there's no separate single-character type. + - `boolean` for `true`/`false`. + - `null` for unknown values -- a standalone type that has a single value `null`. + - `undefined` for unassigned values -- a standalone type that has a single value `undefined`. + - `symbol` for unique identifiers. +- And one non-primitive data type: + - `object` for more complex data structures. The `typeof` operator allows us to see which type is stored in a variable. -- Two forms: `typeof x` or `typeof(x)`. +- Usually used as `typeof x`, but `typeof(x)` is also possible. - Returns a string with the name of the type, like `"string"`. - For `null` returns `"object"` -- this is an error in the language, it's not actually an object. diff --git a/1-js/02-first-steps/09-alert-prompt-confirm/1-simple-page/solution.md b/1-js/02-first-steps/06-alert-prompt-confirm/1-simple-page/solution.md similarity index 100% rename from 1-js/02-first-steps/09-alert-prompt-confirm/1-simple-page/solution.md rename to 1-js/02-first-steps/06-alert-prompt-confirm/1-simple-page/solution.md diff --git a/1-js/02-first-steps/09-alert-prompt-confirm/1-simple-page/task.md b/1-js/02-first-steps/06-alert-prompt-confirm/1-simple-page/task.md similarity index 100% rename from 1-js/02-first-steps/09-alert-prompt-confirm/1-simple-page/task.md rename to 1-js/02-first-steps/06-alert-prompt-confirm/1-simple-page/task.md diff --git a/1-js/02-first-steps/09-alert-prompt-confirm/article.md b/1-js/02-first-steps/06-alert-prompt-confirm/article.md similarity index 71% rename from 1-js/02-first-steps/09-alert-prompt-confirm/article.md rename to 1-js/02-first-steps/06-alert-prompt-confirm/article.md index f69c2d233..ef0f333cb 100644 --- a/1-js/02-first-steps/09-alert-prompt-confirm/article.md +++ b/1-js/02-first-steps/06-alert-prompt-confirm/article.md @@ -1,18 +1,10 @@ # Interaction: alert, prompt, confirm -This part of the tutorial aims to cover JavaScript "as is", without environment-specific tweaks. - -But we'll still be using the browser as our demo environment, so we should know at least a few of its user-interface functions. In this chapter, we'll get familiar with the browser functions `alert`, `prompt` and `confirm`. +As we'll be using the browser as our demo environment, let's see a couple of functions to interact with the user: `alert`, `prompt` and `confirm`. ## alert -Syntax: - -```js -alert(message); -``` - -This shows a message and pauses script execution until the user presses "OK". +This one we've seen already. It shows a message and waits for the user to press "OK". For example: @@ -20,7 +12,7 @@ For example: alert("Hello"); ``` -The mini-window with the message is called a *modal window*. The word "modal" means that the visitor can't interact with the rest of the page, press other buttons, etc. until they have dealt with the window. In this case -- until they press "OK". +The mini-window with the message is called a *modal window*. The word "modal" means that the visitor can't interact with the rest of the page, press other buttons, etc, until they have dealt with the window. In this case -- until they press "OK". ## prompt @@ -30,7 +22,7 @@ The function `prompt` accepts two arguments: result = prompt(title, [default]); ``` -It shows a modal window with a text message, an input field for the visitor, and the buttons OK/CANCEL. +It shows a modal window with a text message, an input field for the visitor, and the buttons OK/Cancel. `title` : The text to show the visitor. @@ -38,7 +30,11 @@ It shows a modal window with a text message, an input field for the visitor, and `default` : An optional second parameter, the initial value for the input field. -The visitor may type something in the prompt input field and press OK. Or they can cancel the input by pressing CANCEL or hitting the `key:Esc` key. +```smart header="The square brackets in syntax `[...]`" +The square brackets around `default` in the syntax above denote that the parameter is optional, not required. +``` + +The visitor can type something in the prompt input field and press OK. Then we get that text in the `result`. Or they can cancel the input by pressing Cancel or hitting the `key:Esc` key, then we get `null` as the `result`. The call to `prompt` returns the text from the input field or `null` if the input was canceled. @@ -74,7 +70,7 @@ The syntax: result = confirm(question); ``` -The function `confirm` shows a modal window with a `question` and two buttons: OK and CANCEL. +The function `confirm` shows a modal window with a `question` and two buttons: OK and Cancel. The result is `true` if OK is pressed and `false` otherwise. @@ -94,10 +90,10 @@ We covered 3 browser-specific functions to interact with visitors: : shows a message. `prompt` -: shows a message asking the user to input text. It returns the text or, if CANCEL or `key:Esc` is clicked, `null`. +: shows a message asking the user to input text. It returns the text or, if Cancel button or `key:Esc` is clicked, `null`. `confirm` -: shows a message and waits for the user to press "OK" or "CANCEL". It returns `true` for OK and `false` for CANCEL/`key:Esc`. +: shows a message and waits for the user to press "OK" or "Cancel". It returns `true` for OK and `false` for Cancel/`key:Esc`. All these methods are modal: they pause script execution and don't allow the visitor to interact with the rest of the page until the window has been dismissed. diff --git a/1-js/02-first-steps/06-type-conversions/article.md b/1-js/02-first-steps/07-type-conversions/article.md similarity index 70% rename from 1-js/02-first-steps/06-type-conversions/article.md rename to 1-js/02-first-steps/07-type-conversions/article.md index 6ac695e84..329556141 100644 --- a/1-js/02-first-steps/06-type-conversions/article.md +++ b/1-js/02-first-steps/07-type-conversions/article.md @@ -1,16 +1,18 @@ # Type Conversions -Most of the time, operators and functions automatically convert the values given to them to the right type. +Most of the time, operators and functions automatically convert the values given to them to the right type. For example, `alert` automatically converts any value to a string to show it. Mathematical operations convert values to numbers. There are also cases when we need to explicitly convert a value to the expected type. ```smart header="Not talking about objects yet" -In this chapter, we won't cover objects. Instead, we'll study primitives first. Later, after we learn about objects, we'll see how object conversion works in the chapter . +In this chapter, we won't cover objects. For now, we'll just be talking about primitives. + +Later, after we learn about objects, in the chapter we'll see how objects fit in. ``` -## ToString +## String Conversion String conversion happens when we need the string form of a value. @@ -30,9 +32,9 @@ alert(typeof value); // string String conversion is mostly obvious. A `false` becomes `"false"`, `null` becomes `"null"`, etc. -## ToNumber +## Numeric Conversion -Numeric conversion happens in mathematical functions and expressions automatically. +Numeric conversion in mathematical functions and expressions happens automatically. For example, when division `/` is applied to non-numbers: @@ -68,7 +70,7 @@ Numeric conversion rules: |`undefined`|`NaN`| |`null`|`0`| |true and false | `1` and `0` | -| `string` | Whitespaces from the start and end are removed. If the remaining string is empty, the result is `0`. Otherwise, the number is "read" from the string. An error gives `NaN`. | +| `string` | Whitespaces (includes spaces, tabs `\t`, newlines `\n` etc.) from the start and end are removed. If the remaining string is empty, the result is `0`. Otherwise, the number is "read" from the string. An error gives `NaN`. | Examples: @@ -81,20 +83,9 @@ alert( Number(false) ); // 0 Please note that `null` and `undefined` behave differently here: `null` becomes zero while `undefined` becomes `NaN`. -````smart header="Addition '+' concatenates strings" -Almost all mathematical operations convert values to numbers. A notable exception is addition `+`. If one of the added values is a string, the other one is also converted to a string. - -Then, it concatenates (joins) them: - -```js run -alert( 1 + '2' ); // '12' (string to the right) -alert( '1' + 2 ); // '12' (string to the left) -``` - -This only happens when at least one of the arguments is a string. Otherwise, values are converted to numbers. -```` +Most mathematical operators also perform such conversion, we'll see that in the next chapter. -## ToBoolean +## Boolean Conversion Boolean conversion is the simplest one. @@ -124,14 +115,13 @@ alert( Boolean(" ") ); // spaces, also true (any non-empty string is true) ``` ```` - ## Summary The three most widely used type conversions are to string, to number, and to boolean. -**`ToString`** -- Occurs when we output something. Can be performed with `String(value)`. The conversion to string is usually obvious for primitive values. +**`String Conversion`** -- Occurs when we output something. Can be performed with `String(value)`. The conversion to string is usually obvious for primitive values. -**`ToNumber`** -- Occurs in math operations. Can be performed with `Number(value)`. +**`Numeric Conversion`** -- Occurs in math operations. Can be performed with `Number(value)`. The conversion follows the rules: @@ -140,9 +130,9 @@ The conversion follows the rules: |`undefined`|`NaN`| |`null`|`0`| |true / false | `1 / 0` | -| `string` | The string is read "as is", whitespaces from both sides are ignored. An empty string becomes `0`. An error gives `NaN`. | +| `string` | The string is read "as is", whitespaces (includes spaces, tabs `\t`, newlines `\n` etc.) from both sides are ignored. An empty string becomes `0`. An error gives `NaN`. | -**`ToBoolean`** -- Occurs in logical operations. Can be performed with `Boolean(value)`. +**`Boolean Conversion`** -- Occurs in logical operations. Can be performed with `Boolean(value)`. Follows the rules: diff --git a/1-js/02-first-steps/08-comparison/1-comparison-questions/solution.md b/1-js/02-first-steps/08-comparison/1-comparison-questions/solution.md deleted file mode 100644 index 5c8bd2bc4..000000000 --- a/1-js/02-first-steps/08-comparison/1-comparison-questions/solution.md +++ /dev/null @@ -1,21 +0,0 @@ - - -```js no-beautify -5 > 4 → true -"apple" > "pineapple" → false -"2" > "12" → true -undefined == null → true -undefined === null → false -null == "\n0\n" → false -null === +"\n0\n" → false -``` - -Some of the reasons: - -1. Obviously, true. -2. Dictionary comparison, hence false. -3. Again, dictionary comparison, first char of `"2"` is greater than the first char of `"1"`. -4. Values `null` and `undefined` equal each other only. -5. Strict equality is strict. Different types from both sides lead to false. -6. See (4). -7. Strict equality of different types. diff --git a/1-js/02-first-steps/07-operators/1-increment-order/solution.md b/1-js/02-first-steps/08-operators/1-increment-order/solution.md similarity index 100% rename from 1-js/02-first-steps/07-operators/1-increment-order/solution.md rename to 1-js/02-first-steps/08-operators/1-increment-order/solution.md diff --git a/1-js/02-first-steps/07-operators/1-increment-order/task.md b/1-js/02-first-steps/08-operators/1-increment-order/task.md similarity index 100% rename from 1-js/02-first-steps/07-operators/1-increment-order/task.md rename to 1-js/02-first-steps/08-operators/1-increment-order/task.md diff --git a/1-js/02-first-steps/07-operators/2-assignment-result/solution.md b/1-js/02-first-steps/08-operators/2-assignment-result/solution.md similarity index 100% rename from 1-js/02-first-steps/07-operators/2-assignment-result/solution.md rename to 1-js/02-first-steps/08-operators/2-assignment-result/solution.md diff --git a/1-js/02-first-steps/07-operators/2-assignment-result/task.md b/1-js/02-first-steps/08-operators/2-assignment-result/task.md similarity index 100% rename from 1-js/02-first-steps/07-operators/2-assignment-result/task.md rename to 1-js/02-first-steps/08-operators/2-assignment-result/task.md diff --git a/1-js/02-first-steps/06-type-conversions/1-primitive-conversions-questions/solution.md b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md similarity index 69% rename from 1-js/02-first-steps/06-type-conversions/1-primitive-conversions-questions/solution.md rename to 1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md index 7dd0d61c2..7370b66af 100644 --- a/1-js/02-first-steps/06-type-conversions/1-primitive-conversions-questions/solution.md +++ b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md @@ -9,11 +9,11 @@ true + false = 1 "$" + 4 + 5 = "$45" "4" - 2 = 2 "4px" - 2 = NaN -7 / 0 = Infinity -" -9 " + 5 = " -9 5" // (3) -" -9 " - 5 = -14 // (4) +" -9 " + 5 = " -9 5" // (3) +" -9 " - 5 = -14 // (4) null + 1 = 1 // (5) undefined + 1 = NaN // (6) +" \t \n" - 2 = -2 // (7) ``` 1. The addition with a string `"" + 1` converts `1` to a string: `"" + 1 = "1"`, and then we have `"1" + 0`, the same rule is applied. @@ -22,3 +22,4 @@ undefined + 1 = NaN // (6) 4. The subtraction always converts to numbers, so it makes `" -9 "` a number `-9` (ignoring spaces around it). 5. `null` becomes `0` after the numeric conversion. 6. `undefined` becomes `NaN` after the numeric conversion. +7. Space characters are trimmed off string start and end when a string is converted to a number. Here the whole string consists of space characters, such as `\t`, `\n` and a "regular" space between them. So, similarly to an empty string, it becomes `0`. diff --git a/1-js/02-first-steps/06-type-conversions/1-primitive-conversions-questions/task.md b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/task.md similarity index 95% rename from 1-js/02-first-steps/06-type-conversions/1-primitive-conversions-questions/task.md rename to 1-js/02-first-steps/08-operators/3-primitive-conversions-questions/task.md index f17e870de..068420c7d 100644 --- a/1-js/02-first-steps/06-type-conversions/1-primitive-conversions-questions/task.md +++ b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/task.md @@ -16,11 +16,11 @@ true + false "$" + 4 + 5 "4" - 2 "4px" - 2 -7 / 0 " -9 " + 5 " -9 " - 5 null + 1 undefined + 1 +" \t \n" - 2 ``` Think well, write down and then compare with the answer. diff --git a/1-js/02-first-steps/08-operators/4-fix-prompt/solution.md b/1-js/02-first-steps/08-operators/4-fix-prompt/solution.md new file mode 100644 index 000000000..209a0702c --- /dev/null +++ b/1-js/02-first-steps/08-operators/4-fix-prompt/solution.md @@ -0,0 +1,32 @@ +The reason is that prompt returns user input as a string. + +So variables have values `"1"` and `"2"` respectively. + +```js run +let a = "1"; // prompt("First number?", 1); +let b = "2"; // prompt("Second number?", 2); + +alert(a + b); // 12 +``` + +What we should do is to convert strings to numbers before `+`. For example, using `Number()` or prepending them with `+`. + +For example, right before `prompt`: + +```js run +let a = +prompt("First number?", 1); +let b = +prompt("Second number?", 2); + +alert(a + b); // 3 +``` + +Or in the `alert`: + +```js run +let a = prompt("First number?", 1); +let b = prompt("Second number?", 2); + +alert(+a + +b); // 3 +``` + +Using both unary and binary `+` in the latest code. Looks funny, doesn't it? diff --git a/1-js/02-first-steps/08-operators/4-fix-prompt/task.md b/1-js/02-first-steps/08-operators/4-fix-prompt/task.md new file mode 100644 index 000000000..b3ea4a3a3 --- /dev/null +++ b/1-js/02-first-steps/08-operators/4-fix-prompt/task.md @@ -0,0 +1,18 @@ +importance: 5 + +--- + +# Fix the addition + +Here's a code that asks the user for two numbers and shows their sum. + +It works incorrectly. The output in the example below is `12` (for default prompt values). + +Why? Fix it. The result should be `3`. + +```js run +let a = prompt("First number?", 1); +let b = prompt("Second number?", 2); + +alert(a + b); // 12 +``` diff --git a/1-js/02-first-steps/07-operators/article.md b/1-js/02-first-steps/08-operators/article.md similarity index 67% rename from 1-js/02-first-steps/07-operators/article.md rename to 1-js/02-first-steps/08-operators/article.md index 74b27e871..d52c37a17 100644 --- a/1-js/02-first-steps/07-operators/article.md +++ b/1-js/02-first-steps/08-operators/article.md @@ -1,8 +1,8 @@ -# Operators +# Basic operators, maths We know many operators from school. They are things like addition `+`, multiplication `*`, subtraction `-`, and so on. -In this chapter, we'll concentrate on aspects of operators that are not covered by school arithmetic. +In this chapter, we’ll start with simple operators, then concentrate on JavaScript-specific aspects, not covered by school arithmetic. ## Terms: "unary", "binary", "operand" @@ -26,11 +26,62 @@ Before we move on, let's grasp some common terminology. alert( y - x ); // 2, binary minus subtracts values ``` - Formally, we're talking about two different operators here: the unary negation (single operand: reverses the sign) and the binary subtraction (two operands: subtracts). + Formally, in the examples above we have two different operators that share the same symbol: the negation operator, a unary operator that reverses the sign, and the subtraction operator, a binary operator that subtracts one number from another. -## String concatenation, binary + +## Maths -Now, let's see special features of JavaScript operators that are beyond school arithmetics. +The following math operations are supported: + +- Addition `+`, +- Subtraction `-`, +- Multiplication `*`, +- Division `/`, +- Remainder `%`, +- Exponentiation `**`. + +The first four are straightforward, while `%` and `**` need a few words about them. + +### Remainder % + +The remainder operator `%`, despite its appearance, is not related to percents. + +The result of `a % b` is the [remainder](https://en.wikipedia.org/wiki/Remainder) of the integer division of `a` by `b`. + +For instance: + +```js run +alert( 5 % 2 ); // 1, the remainder of 5 divided by 2 +alert( 8 % 3 ); // 2, the remainder of 8 divided by 3 +alert( 8 % 4 ); // 0, the remainder of 8 divided by 4 +``` + +### Exponentiation ** + +The exponentiation operator `a ** b` raises `a` to the power of `b`. + +In school maths, we write that as ab. + +For instance: + +```js run +alert( 2 ** 2 ); // 2² = 4 +alert( 2 ** 3 ); // 2³ = 8 +alert( 2 ** 4 ); // 2⁴ = 16 +``` + +Just like in maths, the exponentiation operator is defined for non-integer numbers as well. + +For example, a square root is an exponentiation by ½: + +```js run +alert( 4 ** (1/2) ); // 2 (power of 1/2 is the same as a square root) +alert( 8 ** (1/3) ); // 2 (power of 1/3 is the same as a cubic root) +``` + + +## String concatenation with binary + + +Let's meet the features of JavaScript operators that are beyond school arithmetics. Usually, the plus operator `+` sums numbers. @@ -41,7 +92,7 @@ let s = "my" + "string"; alert(s); // mystring ``` -Note that if one of the operands is a string, the other one is converted to a string too. +Note that if any of the operands is a string, then the other one is converted to a string too. For example: @@ -50,22 +101,28 @@ alert( '1' + 2 ); // "12" alert( 2 + '1' ); // "21" ``` -See, it doesn't matter whether the first operand is a string or the second one. The rule is simple: if either operand is a string, the other one is converted into a string as well. - -However, note that operations run from left to right. If there are two numbers followed by a string, the numbers will be added before being converted to a string: +See, it doesn't matter whether the first operand is a string or the second one. +Here's a more complex example: ```js run alert(2 + 2 + '1' ); // "41" and not "221" ``` -String concatenation and conversion is a special feature of the binary plus `+`. Other arithmetic operators work only with numbers and always convert their operands to numbers. +Here, operators work one after another. The first `+` sums two numbers, so it returns `4`, then the next `+` adds the string `1` to it, so it's like `4 + '1' = '41'`. -For instance, subtraction and division: +```js run +alert('1' + 2 + 2); // "122" and not "14" +``` +Here, the first operand is a string, the compiler treats the other two operands as strings too. The `2` gets concatenated to `'1'`, so it's like `'1' + 2 = "12"` and `"12" + 2 = "122"`. + +The binary `+` is the only operator that supports strings in such a way. Other arithmetic operators work only with numbers and always convert their operands to numbers. + +Here's the demo for subtraction and division: ```js run -alert( 2 - '1' ); // 1 -alert( '6' / '2' ); // 3 +alert( 6 - '2' ); // 4, converts '2' to a number +alert( '6' / '2' ); // 3, converts both operands to numbers ``` ## Numeric conversion, unary + @@ -93,9 +150,7 @@ alert( +"" ); // 0 It actually does the same thing as `Number(...)`, but is shorter. -The need to convert strings to numbers arises very often. For example, if we are getting values from HTML form fields, they are usually strings. - -What if we want to sum them? +The need to convert strings to numbers arises very often. For example, if we are getting values from HTML form fields, they are usually strings. What if we want to sum them? The binary plus would add them as strings: @@ -127,34 +182,35 @@ Why are unary pluses applied to values before the binary ones? As we're going to ## Operator precedence -If an expression has more than one operator, the execution order is defined by their *precedence*, or, in other words, the implicit priority order of operators. +If an expression has more than one operator, the execution order is defined by their *precedence*, or, in other words, the default priority order of operators. From school, we all know that the multiplication in the expression `1 + 2 * 2` should be calculated before the addition. That's exactly the precedence thing. The multiplication is said to have *a higher precedence* than the addition. -Parentheses override any precedence, so if we're not satisfied with the implicit order, we can use them to change it. For example: `(1 + 2) * 2`. +Parentheses override any precedence, so if we're not satisfied with the default order, we can use them to change it. For example, write `(1 + 2) * 2`. There are many operators in JavaScript. Every operator has a corresponding precedence number. The one with the larger number executes first. If the precedence is the same, the execution order is from left to right. -Here's an extract from the [precedence table](https://developer.mozilla.org/en/JavaScript/Reference/operators/operator_precedence) (you don't need to remember this, but note that unary operators are higher than corresponding binary ones): +Here's an extract from the [precedence table](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence) (you don't need to remember this, but note that unary operators are higher than corresponding binary ones): | Precedence | Name | Sign | |------------|------|------| | ... | ... | ... | -| 16 | unary plus | `+` | -| 16 | unary negation | `-` | -| 14 | multiplication | `*` | -| 14 | division | `/` | -| 13 | addition | `+` | -| 13 | subtraction | `-` | +| 14 | unary plus | `+` | +| 14 | unary negation | `-` | +| 13 | exponentiation | `**` | +| 12 | multiplication | `*` | +| 12 | division | `/` | +| 11 | addition | `+` | +| 11 | subtraction | `-` | | ... | ... | ... | -| 3 | assignment | `=` | +| 2 | assignment | `=` | | ... | ... | ... | -As we can see, the "unary plus" has a priority of `16` which is higher than the `13` of "addition" (binary plus). That's why, in the expression `"+apples + +oranges"`, unary pluses work before the addition. +As we can see, the "unary plus" has a priority of `14` which is higher than the `11` of "addition" (binary plus). That's why, in the expression `"+apples + +oranges"`, unary pluses work before the addition. ## Assignment -Let's note that an assignment `=` is also an operator. It is listed in the precedence table with the very low priority of `3`. +Let's note that an assignment `=` is also an operator. It is listed in the precedence table with the very low priority of `2`. That's why, when we assign a variable, like `x = 2 * 2 + 1`, the calculations are done first and then the `=` is evaluated, storing the result in `x`. @@ -164,24 +220,11 @@ let x = 2 * 2 + 1; alert( x ); // 5 ``` -It is possible to chain assignments: - -```js run -let a, b, c; - -*!* -a = b = c = 2 + 2; -*/!* - -alert( a ); // 4 -alert( b ); // 4 -alert( c ); // 4 -``` +### Assignment = returns a value -Chained assignments evaluate from right to left. First, the rightmost expression `2 + 2` is evaluated and then assigned to the variables on the left: `c`, `b` and `a`. At the end, all the variables share a single value. +The fact of `=` being an operator, not a "magical" language construct has an interesting implication. -````smart header="The assignment operator `\"=\"` returns a value" -An operator always returns a value. That's obvious for most of them like addition `+` or multiplication `*`. But the assignment operator follows this rule too. +All operators in JavaScript return a value. That's obvious for `+` and `-`, but also true for `=`. The call `x = value` writes the `value` into `x` *and then returns it*. @@ -199,51 +242,76 @@ alert( a ); // 3 alert( c ); // 0 ``` -In the example above, the result of `(a = b + 1)` is the value which is assigned to `a` (that is `3`). It is then used to subtract from `3`. - -Funny code, isn't it? We should understand how it works, because sometimes we see it in 3rd-party libraries, but shouldn't write anything like that ourselves. Such tricks definitely don't make code clearer or readable. -```` +In the example above, the result of expression `(a = b + 1)` is the value which was assigned to `a` (that is `3`). It is then used for further evaluations. -## Remainder % +Funny code, isn't it? We should understand how it works, because sometimes we see it in JavaScript libraries. -The remainder operator `%`, despite its appearance, is not related to percents. +Although, please don't write the code like that. Such tricks definitely don't make code clearer or readable. -The result of `a % b` is the remainder of the integer division of `a` by `b`. +### Chaining assignments -For instance: +Another interesting feature is the ability to chain assignments: ```js run -alert( 5 % 2 ); // 1 is a remainder of 5 divided by 2 -alert( 8 % 3 ); // 2 is a remainder of 8 divided by 3 -alert( 6 % 3 ); // 0 is a remainder of 6 divided by 3 +let a, b, c; + +*!* +a = b = c = 2 + 2; +*/!* + +alert( a ); // 4 +alert( b ); // 4 +alert( c ); // 4 ``` -## Exponentiation ** +Chained assignments evaluate from right to left. First, the rightmost expression `2 + 2` is evaluated and then assigned to the variables on the left: `c`, `b` and `a`. At the end, all the variables share a single value. -The exponentiation operator `**` is a recent addition to the language. +Once again, for the purposes of readability it's better to split such code into few lines: -For a natural number `b`, the result of `a ** b` is `a` multiplied by itself `b` times. +```js +c = 2 + 2; +b = c; +a = c; +``` +That's easier to read, especially when eye-scanning the code fast. -For instance: +## Modify-in-place + +We often need to apply an operator to a variable and store the new result in that same variable. + +For example: + +```js +let n = 2; +n = n + 5; +n = n * 2; +``` + +This notation can be shortened using the operators `+=` and `*=`: ```js run -alert( 2 ** 2 ); // 4 (2 * 2) -alert( 2 ** 3 ); // 8 (2 * 2 * 2) -alert( 2 ** 4 ); // 16 (2 * 2 * 2 * 2) +let n = 2; +n += 5; // now n = 7 (same as n = n + 5) +n *= 2; // now n = 14 (same as n = n * 2) + +alert( n ); // 14 ``` -The operator works for non-integer numbers as well. +Short "modify-and-assign" operators exist for all arithmetical and bitwise operators: `/=`, `-=`, etc. -For instance: +Such operators have the same precedence as a normal assignment, so they run after most other calculations: ```js run -alert( 4 ** (1/2) ); // 2 (power of 1/2 is the same as a square root, that's maths) -alert( 8 ** (1/3) ); // 2 (power of 1/3 is the same as a cubic root) +let n = 2; + +n *= 3 + 5; // right part evaluated first, same as n *= 8 + +alert( n ); // 16 ``` ## Increment/decrement - + Increasing or decreasing a number by one is among the most common numerical operations. @@ -253,14 +321,14 @@ So, there are special operators for it: ```js run no-beautify let counter = 2; - counter++; // works the same as counter = counter + 1, but is shorter + counter++; // works the same as counter = counter + 1, but is shorter alert( counter ); // 3 ``` - **Decrement** `--` decreases a variable by 1: ```js run no-beautify let counter = 2; - counter--; // works the same as counter = counter - 1, but is shorter + counter--; // works the same as counter = counter - 1, but is shorter alert( counter ); // 1 ``` @@ -370,41 +438,7 @@ The list of operators: - RIGHT SHIFT ( `>>` ) - ZERO-FILL RIGHT SHIFT ( `>>>` ) -These operators are used very rarely. To understand them, we need to delve into low-level number representation and it would not be optimal to do that right now, especially since we won't need them any time soon. If you're curious, you can read the [Bitwise Operators](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators) article on MDN. It would be more practical to do that when a real need arises. - -## Modify-in-place - -We often need to apply an operator to a variable and store the new result in that same variable. - -For example: - -```js -let n = 2; -n = n + 5; -n = n * 2; -``` - -This notation can be shortened using the operators `+=` and `*=`: - -```js run -let n = 2; -n += 5; // now n = 7 (same as n = n + 5) -n *= 2; // now n = 14 (same as n = n * 2) - -alert( n ); // 14 -``` - -Short "modify-and-assign" operators exist for all arithmetical and bitwise operators: `/=`, `-=`, etc. - -Such operators have the same precedence as a normal assignment, so they run after most other calculations: - -```js run -let n = 2; - -n *= 3 + 5; - -alert( n ); // 16 (right part evaluated first, same as n *= 8) -``` +These operators are used very rarely, when we need to fiddle with numbers on the very lowest (bitwise) level. We won't need these operators any time soon, as web development has little use of them, but in some special areas, such as cryptography, they are useful. You can read the [Bitwise Operators](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#bitwise_operators) chapter on MDN when a need arises. ## Comma @@ -427,10 +461,10 @@ Here, the first expression `1 + 2` is evaluated and its result is thrown away. T ```smart header="Comma has a very low precedence" Please note that the comma operator has very low precedence, lower than `=`, so parentheses are important in the example above. -Without them: `a = 1 + 2, 3 + 4` evaluates `+` first, summing the numbers into `a = 3, 7`, then the assignment operator `=` assigns `a = 3`, and finally the number after the comma, `7`, is not processed so it's ignored. +Without them: `a = 1 + 2, 3 + 4` evaluates `+` first, summing the numbers into `a = 3, 7`, then the assignment operator `=` assigns `a = 3`, and the rest is ignored. It's like `(a = 1 + 2), 3 + 4`. ``` -Why do we need an operator that throws away everything except the last part? +Why do we need an operator that throws away everything except the last expression? Sometimes, people use it in more complex constructs to put several actions in one line. @@ -443,4 +477,4 @@ for (*!*a = 1, b = 3, c = a * b*/!*; a < 10; a++) { } ``` -Such tricks are used in many JavaScript frameworks. That's why we're mentioning them. But, usually, they don't improve code readability so we should think well before using them. +Such tricks are used in many JavaScript frameworks. That's why we're mentioning them. But usually they don't improve code readability so we should think well before using them. diff --git a/1-js/02-first-steps/09-comparison/1-comparison-questions/solution.md b/1-js/02-first-steps/09-comparison/1-comparison-questions/solution.md new file mode 100644 index 000000000..632b1cf4e --- /dev/null +++ b/1-js/02-first-steps/09-comparison/1-comparison-questions/solution.md @@ -0,0 +1,21 @@ + + +```js no-beautify +5 > 4 → true +"apple" > "pineapple" → false +"2" > "12" → true +undefined == null → true +undefined === null → false +null == "\n0\n" → false +null === +"\n0\n" → false +``` + +Some of the reasons: + +1. Obviously, true. +2. Dictionary comparison, hence false. `"a"` is smaller than `"p"`. +3. Again, dictionary comparison, first char `"2"` is greater than the first char `"1"`. +4. Values `null` and `undefined` equal each other only. +5. Strict equality is strict. Different types from both sides lead to false. +6. Similar to `(4)`, `null` only equals `undefined`. +7. Strict equality of different types. diff --git a/1-js/02-first-steps/08-comparison/1-comparison-questions/task.md b/1-js/02-first-steps/09-comparison/1-comparison-questions/task.md similarity index 100% rename from 1-js/02-first-steps/08-comparison/1-comparison-questions/task.md rename to 1-js/02-first-steps/09-comparison/1-comparison-questions/task.md diff --git a/1-js/02-first-steps/08-comparison/article.md b/1-js/02-first-steps/09-comparison/article.md similarity index 84% rename from 1-js/02-first-steps/08-comparison/article.md rename to 1-js/02-first-steps/09-comparison/article.md index 3d5cc1729..a69317fee 100644 --- a/1-js/02-first-steps/08-comparison/article.md +++ b/1-js/02-first-steps/09-comparison/article.md @@ -1,15 +1,21 @@ # Comparisons -We know many comparison operators from maths: +We know many comparison operators from maths. + +In JavaScript they are written like this: - Greater/less than: a > b, a < b. - Greater/less than or equals: a >= b, a <= b. -- Equals: `a == b` (please note the double equals sign `=`. A single symbol `a = b` would mean an assignment). -- Not equals. In maths the notation is , but in JavaScript it's written as an assignment with an exclamation sign before it: a != b. +- Equals: `a == b`, please note the double equality sign `==` means the equality test, while a single one `a = b` means an assignment. +- Not equals: In maths the notation is , but in JavaScript it's written as a != b. + +In this article we'll learn more about different types of comparisons, how JavaScript makes them, including important peculiarities. + +At the end you'll find a good recipe to avoid "JavaScript quirks"-related issues. ## Boolean is the result -Like all other operators, a comparison returns a value. In this case, the value is a boolean. +All comparison operators return a boolean value: - `true` -- means "yes", "correct" or "the truth". - `false` -- means "no", "wrong" or "not the truth". @@ -51,7 +57,9 @@ The algorithm to compare two strings is simple: 4. Repeat until the end of either string. 5. If both strings end at the same length, then they are equal. Otherwise, the longer string is greater. -In the examples above, the comparison `'Z' > 'A'` gets to a result at the first step while the strings `"Glow"` and `"Glee"` are compared character-by-character: +In the first example above, the comparison `'Z' > 'A'` gets to a result at the first step. + +The second comparison `'Glow'` and `'Glee'` needs more steps as strings are compared character-by-character: 1. `G` is the same as `G`. 2. `l` is the same as `l`. @@ -74,7 +82,7 @@ alert( '2' > 1 ); // true, string '2' becomes a number 2 alert( '01' == 1 ); // true, string '01' becomes a number 1 ``` -For boolean values, `true` becomes `1` and `false` becomes `0`. +For boolean values, `true` becomes `1` and `false` becomes `0`. For example: @@ -138,11 +146,8 @@ The strict equality operator is a bit longer to write, but makes it obvious what ## Comparison with null and undefined -Let's see more edge cases. - There's a non-intuitive behavior when `null` or `undefined` are compared to other values. - For a strict equality check `===` : These values are different, because each of them is a different type. @@ -193,15 +198,14 @@ Why does it dislike zero so much? Always false! We get these results because: - Comparisons `(1)` and `(2)` return `false` because `undefined` gets converted to `NaN` and `NaN` is a special numeric value which returns `false` for all comparisons. -- The equality check `(3)` returns `false` because `undefined` only equals `null` and no other value. - -### Evade problems +- The equality check `(3)` returns `false` because `undefined` only equals `null`, `undefined`, and no other value. -Why did we go over these examples? Should we remember these peculiarities all the time? Well, not really. Actually, these tricky things will gradually become familiar over time, but there's a solid way to evade problems with them: +### Avoid problems -Just treat any comparison with `undefined/null` except the strict equality `===` with exceptional care. +Why did we go over these examples? Should we remember these peculiarities all the time? Well, not really. Actually, these tricky things will gradually become familiar over time, but there's a solid way to avoid problems with them: -Don't use comparisons `>= > < <=` with a variable which may be `null/undefined`, unless you're really sure of what you're doing. If a variable can have these values, check for them separately. +- Treat any comparison with `undefined/null` except the strict equality `===` with exceptional care. +- Don't use comparisons `>= > < <=` with a variable which may be `null/undefined`, unless you're really sure of what you're doing. If a variable can have these values, check for them separately. ## Summary diff --git a/1-js/02-first-steps/10-ifelse/2-check-standard/task.md b/1-js/02-first-steps/10-ifelse/2-check-standard/task.md index 418ef4a6d..f29db4b24 100644 --- a/1-js/02-first-steps/10-ifelse/2-check-standard/task.md +++ b/1-js/02-first-steps/10-ifelse/2-check-standard/task.md @@ -6,7 +6,11 @@ viktighet: 2 Ved å bruke `if..else` skal du skrive kode som spør: 'Hva er det "offisielle" navnet til JavaScript' +<<<<<<< HEAD Hvis brukeren skriver inn "ECMAScript", skal tilbakemeldingen være "Korrekt!". Ellers skal den være: "Visste du det ikke? ECMAScript!" +======= +If the visitor enters "ECMAScript", then output "Right!", otherwise -- output: "You don't know? ECMAScript!" +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ![](ifelse_task2.svg) diff --git a/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/solution.md b/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/solution.md index 6b8d9bd67..b7c628174 100644 --- a/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/solution.md +++ b/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/solution.md @@ -1,3 +1,7 @@ ```js +<<<<<<< HEAD result = a + b < 4 ? "Below" : "Over"; +======= +let result = (a + b < 4) ? 'Below' : 'Over'; +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ``` diff --git a/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/task.md b/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/task.md index 421c7110f..2a666870b 100644 --- a/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/task.md +++ b/1-js/02-first-steps/10-ifelse/5-rewrite-if-question/task.md @@ -4,9 +4,15 @@ importance: 5 # Gjør om 'if' til '?' +<<<<<<< HEAD Gjør om denne `if` påstanden ved bruk av ternary operatøren`'?'`: +======= +Rewrite this `if` using the conditional operator `'?'`: +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ```js +let result; + if (a + b < 4) { result = "Below"; } else { diff --git a/1-js/02-first-steps/10-ifelse/article.md b/1-js/02-first-steps/10-ifelse/article.md index 0b90d6364..0edca8a6a 100644 --- a/1-js/02-first-steps/10-ifelse/article.md +++ b/1-js/02-first-steps/10-ifelse/article.md @@ -1,12 +1,24 @@ +<<<<<<< HEAD # Operant betinging: if, '?' +======= +# Conditional branching: if, '?' +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Ofte i koden vår ønsker vi å utføre forskjellige operasjoner basert på ulike betingelser. +<<<<<<< HEAD For å bestemme hvilken kode som skal bli kjørt basert disse ulike betingelsene, bruker vi noe som kalles for "if" påstand (eng: if-statement). Man kan også benytte seg av en (ternary) operator, som vi vil skrive mer om etterpå. +======= +To do that, we can use the `if` statement and the conditional operator `?`, that's also called a "question mark" operator. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ## "if" påstand +<<<<<<< HEAD Oppgaven til en `if` påstand er å evaluere en betingelse (condition). Om resultatet er sant (`true`) kjøres koden. +======= +The `if(...)` statement evaluates a condition in parentheses and, if the result is `true`, executes a block of code. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Eksempel: @@ -66,9 +78,13 @@ if (cond) { ## Else "leddsetningen" +<<<<<<< HEAD Det hender at man ofte vil kjøre én spesifikk kode hvis betingelsen i "if" påstanden stemmer, og ellers en annen kode hvis den ikke stemmer. For å gjøre dette bruker man noe som kalles for en "else statement". Denne kjøres uansett hvis "if" påstanden er false. Eksempel: +======= +The `if` statement may contain an optional `else` block. It executes when the condition is falsy. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ```js run let year = prompt( @@ -108,7 +124,11 @@ Fremgangsmåten til JavaScript er å først sjekke om `alder == 18)`. Hvis det e Merk: Det kan være flere `else if` påstander, men bare en `else` påstand. +<<<<<<< HEAD ## Ternary operatør '?' +======= +## Conditional operator '?' +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Det hender at man ønsker å sette en variabel basert på en betingelse. @@ -129,11 +149,17 @@ if (age > 18) { alert(accessAllowed); ``` +<<<<<<< HEAD For å gjøre dette på en enklere måte, kan vi bruke noe som heter "ternary operator". Noen kaller denne også for "question mark operator". Dettte er fordi denne operatøren brukes med et `?`-tegn. "Ternary" betyr at operatøren har tre "operander", som er tegnene som brukes i uttrykket. Denne er faktisk den eneste operatøren i JavaScript som har tre operander. Syntaksen er som følger: +======= +The so-called "conditional" or "question mark" operator lets us do that in a shorter and simpler way. + +The operator is represented by a question mark `?`. Sometimes it's called "ternary", because the operator has three operands. It is actually the one and only operator in JavaScript which has that many. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ```js let result = condition ? value1 : value2; @@ -147,7 +173,11 @@ For eksempel: let accessAllowed = age > 18 ? true : false; ``` +<<<<<<< HEAD Teknisk sett kan vi sette paranteser rundt `alder > 18`. Men spørsmålstegnet i en ternary operatør har en lav rang, og vil dermed bli kjørt etter `>`-sjekken. +======= +Technically, we can omit the parentheses around `age > 18`. The question mark operator has a low precedence, so it executes after the comparison `>`. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Dette eksemplet vil fungere likt som det forrige: @@ -191,10 +221,17 @@ alert(message); Det kan vøre uvant å forstå hva som foregår her med en gang. Tar vi en nærmere kikk derimot, ser vi at det bare er flere sekvenser med betingelser: +<<<<<<< HEAD 1. Det første spørsmålstegnet sjekker om `age < 3`. 2. Om det er "true" returnerer den `'Hi, baby!'`. Hvis den ikke er "true", går den til neste verdien etter kolontegenet '":"', som er `age < 18`. 3. Om det "true", returner den `'Hello!'`. Hvis den ikke er "true", går den til neste verdien etter kolontegenet '":"', som er `age < 100`. 4. Om det "true", returner den `'Greetings!'`. Hvis den ikke er "true", går den til neste verdien etter kolontegenet '":"', som er `'What an unusual age!'`. +======= +1. The first question mark checks whether `age < 3`. +2. If true -- it returns `'Hi, baby!'`. Otherwise, it continues to the expression after the colon ":", checking `age < 18`. +3. If that's true -- it returns `'Hello!'`. Otherwise, it continues to the expression after the next colon ":", checking `age < 100`. +4. If that's true -- it returns `'Greetings!'`. Otherwise, it continues to the expression after the last colon ":", returning `'What an unusual age!'`. +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Her kan du se hvordan det ville sett ut med `if..else`: @@ -227,7 +264,11 @@ Avhengig om påstanden `selskap == 'Netscape` stemmer eller ikke, vil enten den Her satt vi ikke resultatet til en variabel, men kjørte forskjellig kode avhengig av påstanden. +<<<<<<< HEAD **Vi anbefaler ikke at man bruker spørsmålstegnet på denne måten.** +======= +**It's not recommended to use the question mark operator in this way.** +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b Å skrive det på denne måten er kortere enn en `if` påstand, som kan være attraktivt for mange programmerere. Men det er vanskeligere å lese, og sees dermed på som dårlig vane. diff --git a/1-js/02-first-steps/11-logical-operators/2-alert-or/solution.md b/1-js/02-first-steps/11-logical-operators/2-alert-or/solution.md index 8f4d664e8..f85b56366 100644 --- a/1-js/02-first-steps/11-logical-operators/2-alert-or/solution.md +++ b/1-js/02-first-steps/11-logical-operators/2-alert-or/solution.md @@ -6,7 +6,7 @@ alert( alert(1) || 2 || alert(3) ); The call to `alert` does not return a value. Or, in other words, it returns `undefined`. -1. The first OR `||` evaluates it's left operand `alert(1)`. That shows the first message with `1`. +1. The first OR `||` evaluates its left operand `alert(1)`. That shows the first message with `1`. 2. The `alert` returns `undefined`, so OR goes on to the second operand searching for a truthy value. 3. The second operand `2` is truthy, so the execution is halted, `2` is returned and then shown by the outer alert. diff --git a/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md b/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md index 5c2455ef4..368b59409 100644 --- a/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md +++ b/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md @@ -1,6 +1,6 @@ The answer: `null`, because it's the first falsy value from the list. ```js run -alert( 1 && null && 2 ); +alert(1 && null && 2); ``` diff --git a/1-js/02-first-steps/11-logical-operators/6-check-if-in-range/task.md b/1-js/02-first-steps/11-logical-operators/6-check-if-in-range/task.md index cc00ca9fc..fc9e336c1 100644 --- a/1-js/02-first-steps/11-logical-operators/6-check-if-in-range/task.md +++ b/1-js/02-first-steps/11-logical-operators/6-check-if-in-range/task.md @@ -4,6 +4,6 @@ importance: 3 # Check the range between -Write an "if" condition to check that `age` is between `14` and `90` inclusively. +Write an `if` condition to check that `age` is between `14` and `90` inclusively. "Inclusively" means that `age` can reach the edges `14` or `90`. diff --git a/1-js/02-first-steps/11-logical-operators/7-check-if-out-range/task.md b/1-js/02-first-steps/11-logical-operators/7-check-if-out-range/task.md index 7c22d6ad1..9b947d00f 100644 --- a/1-js/02-first-steps/11-logical-operators/7-check-if-out-range/task.md +++ b/1-js/02-first-steps/11-logical-operators/7-check-if-out-range/task.md @@ -4,6 +4,6 @@ importance: 3 # Check the range outside -Write an `if` condition to check that `age` is NOT between 14 and 90 inclusively. +Write an `if` condition to check that `age` is NOT between `14` and `90` inclusively. Create two variants: the first one using NOT `!`, the second one -- without it. diff --git a/1-js/02-first-steps/11-logical-operators/9-check-login/solution.md b/1-js/02-first-steps/11-logical-operators/9-check-login/solution.md index b535650ec..604606259 100644 --- a/1-js/02-first-steps/11-logical-operators/9-check-login/solution.md +++ b/1-js/02-first-steps/11-logical-operators/9-check-login/solution.md @@ -3,19 +3,19 @@ ```js run demo let userName = prompt("Who's there?", ''); -if (userName == 'Admin') { +if (userName === 'Admin') { let pass = prompt('Password?', ''); - if (pass == 'TheMaster') { + if (pass === 'TheMaster') { alert( 'Welcome!' ); - } else if (pass == '' || pass == null) { - alert( 'Canceled.' ); + } else if (pass === '' || pass === null) { + alert( 'Canceled' ); } else { alert( 'Wrong password' ); } -} else if (userName == '' || userName == null) { +} else if (userName === '' || userName === null) { alert( 'Canceled' ); } else { alert( "I don't know you" ); diff --git a/1-js/02-first-steps/11-logical-operators/9-check-login/task.md b/1-js/02-first-steps/11-logical-operators/9-check-login/task.md index 0728efad1..290a52642 100644 --- a/1-js/02-first-steps/11-logical-operators/9-check-login/task.md +++ b/1-js/02-first-steps/11-logical-operators/9-check-login/task.md @@ -6,13 +6,13 @@ importance: 3 Write the code which asks for a login with `prompt`. -If the visitor enters `"Admin"`, then `prompt` for a password, if the input is an empty line or `key:Esc` -- show "Canceled.", if it's another string -- then show "I don't know you". +If the visitor enters `"Admin"`, then `prompt` for a password, if the input is an empty line or `key:Esc` -- show "Canceled", if it's another string -- then show "I don't know you". The password is checked as follows: - If it equals "TheMaster", then show "Welcome!", - Another string -- show "Wrong password", -- For an empty string or cancelled input, show "Canceled." +- For an empty string or cancelled input, show "Canceled" The schema: diff --git a/1-js/02-first-steps/11-logical-operators/article.md b/1-js/02-first-steps/11-logical-operators/article.md index 4932020ae..78c4fd2f1 100644 --- a/1-js/02-first-steps/11-logical-operators/article.md +++ b/1-js/02-first-steps/11-logical-operators/article.md @@ -1,6 +1,6 @@ # Logical operators -There are three logical operators in JavaScript: `||` (OR), `&&` (AND), `!` (NOT). +There are four logical operators in JavaScript: `||` (OR), `&&` (AND), `!` (NOT), `??` (Nullish Coalescing). Here we cover the first three, the `??` operator is in the next article. Although they are called "logical", they can be applied to values of any type, not only boolean. Their result can also be of any type. @@ -64,7 +64,7 @@ if (hour < 10 || hour > 18 || isWeekend) { } ``` -## OR finds the first truthy value +## OR "||" finds the first truthy value [#or-finds-the-first-truthy-value] The logic described above is somewhat classical. Now, let's bring in the "extra" features of JavaScript. @@ -84,16 +84,16 @@ The OR `||` operator does the following: A value is returned in its original form, without the conversion. -In other words, a chain of OR `"||"` returns the first truthy value or the last one if no such value is found. +In other words, a chain of OR `||` returns the first truthy value or the last one if no truthy value is found. For instance: ```js run alert( 1 || 0 ); // 1 (1 is truthy) -alert( true || 'no matter what' ); // (true is truthy) alert( null || 1 ); // 1 (1 is the first truthy value) alert( null || 0 || 1 ); // 1 (the first truthy value) + alert( undefined || null || 0 ); // 0 (all falsy, returns the last value) ``` @@ -101,53 +101,40 @@ This leads to some interesting usage compared to a "pure, classical, boolean-onl 1. **Getting the first truthy value from a list of variables or expressions.** - Imagine we have several variables which can either contain data or be `null/undefined`. How can we find the first one with data? + For instance, we have `firstName`, `lastName` and `nickName` variables, all optional (i.e. can be undefined or have falsy values). - We can use OR `||`: + Let's use OR `||` to choose the one that has the data and show it (or `"Anonymous"` if nothing set): ```js run - let currentUser = null; - let defaultUser = "John"; + let firstName = ""; + let lastName = ""; + let nickName = "SuperCoder"; *!* - let name = currentUser || defaultUser || "unnamed"; + alert( firstName || lastName || nickName || "Anonymous"); // SuperCoder */!* - - alert( name ); // selects "John" – the first truthy value ``` - If both `currentUser` and `defaultUser` were falsy, `"unnamed"` would be the result. -2. **Short-circuit evaluation.** - - Operands can be not only values, but arbitrary expressions. OR evaluates and tests them from left to right. The evaluation stops when a truthy value is reached, and the value is returned. This process is called "a short-circuit evaluation" because it goes as short as possible from left to right. + If all variables were falsy, `"Anonymous"` would show up. - This is clearly seen when the expression given as the second argument has a side effect like a variable assignment. +2. **Short-circuit evaluation.** - In the example below, `x` does not get assigned: + Another feature of OR `||` operator is the so-called "short-circuit" evaluation. - ```js run no-beautify - let x; + It means that `||` processes its arguments until the first truthy value is reached, and then the value is returned immediately, without even touching the other argument. - *!*true*/!* || (x = 1); + The importance of this feature becomes obvious if an operand isn't just a value, but an expression with a side effect, such as a variable assignment or a function call. - alert(x); // undefined, because (x = 1) not evaluated - ``` - - If, instead, the first argument is `false`, `||` evaluates the second one, thus running the assignment: + In the example below, only the second message is printed: ```js run no-beautify - let x; - - *!*false*/!* || (x = 1); - - alert(x); // 1 + *!*true*/!* || alert("not printed"); + *!*false*/!* || alert("printed"); ``` - An assignment is a simple case. Other side effects can also be involved. + In the first line, the OR `||` operator stops the evaluation immediately upon seeing `true`, so the `alert` isn't run. - As we can see, such a use case is a "shorter way of doing `if`". The first operand is converted to boolean. If it's false, the second one is evaluated. - - Most of time, it's better to use a "regular" `if` to keep the code easy to understand, but sometimes this can be handy. + Sometimes, people use this feature to execute commands only if the condition on the left part is falsy. ## && (AND) @@ -186,7 +173,7 @@ if (1 && 0) { // evaluated as true && false ``` -## AND finds the first falsy value +## AND "&&" finds the first falsy value Given multiple AND'ed values: @@ -236,7 +223,8 @@ The precedence of AND `&&` operator is higher than OR `||`. So the code `a && b || c && d` is essentially the same as if the `&&` expressions were in parentheses: `(a && b) || (c && d)`. ```` -Just like OR, the AND `&&` operator can sometimes replace `if`. +````warn header="Don't replace `if` with `||` or `&&`" +Sometimes, people use the AND `&&` operator as a "shorter way to write `if`". For instance: @@ -253,14 +241,12 @@ So we basically have an analogue for: ```js run let x = 1; -if (x > 0) { - alert( 'Greater than zero!' ); -} +if (x > 0) alert( 'Greater than zero!' ); ``` -The variant with `&&` appears shorter. But `if` is more obvious and tends to be a little bit more readable. +Although, the variant with `&&` appears shorter, `if` is more obvious and tends to be a little bit more readable. So we recommend using every construct for its purpose: use `if` if we want `if` and use `&&` if we want AND. +```` -So we recommend using every construct for its purpose: use `if` if we want if and use `&&` if we want AND. ## ! (NOT) diff --git a/1-js/02-first-steps/12-nullish-coalescing-operator/article.md b/1-js/02-first-steps/12-nullish-coalescing-operator/article.md new file mode 100644 index 000000000..0b2f092ab --- /dev/null +++ b/1-js/02-first-steps/12-nullish-coalescing-operator/article.md @@ -0,0 +1,169 @@ +# Nullish coalescing operator '??' + +[recent browser="new"] + +The nullish coalescing operator is written as two question marks `??`. + +As it treats `null` and `undefined` similarly, we'll use a special term here, in this article. For brevity, we'll say that a value is "defined" when it's neither `null` nor `undefined`. + +The result of `a ?? b` is: +- if `a` is defined, then `a`, +- if `a` isn't defined, then `b`. + +In other words, `??` returns the first argument if it's not `null/undefined`. Otherwise, the second one. + +The nullish coalescing operator isn't anything completely new. It's just a nice syntax to get the first "defined" value of the two. + +We can rewrite `result = a ?? b` using the operators that we already know, like this: + +```js +result = (a !== null && a !== undefined) ? a : b; +``` + +Now it should be absolutely clear what `??` does. Let's see where it helps. + +The common use case for `??` is to provide a default value. + +For example, here we show `user` if its value isn't `null/undefined`, otherwise `Anonymous`: + +```js run +let user; + +alert(user ?? "Anonymous"); // Anonymous (user is undefined) +``` + +Here's the example with `user` assigned to a name: + +```js run +let user = "John"; + +alert(user ?? "Anonymous"); // John (user is not null/undefined) +``` + +We can also use a sequence of `??` to select the first value from a list that isn't `null/undefined`. + +Let's say we have a user's data in variables `firstName`, `lastName` or `nickName`. All of them may be not defined, if the user decided not to fill in the corresponding values. + +We'd like to display the user name using one of these variables, or show "Anonymous" if all of them are `null/undefined`. + +Let's use the `??` operator for that: + +```js run +let firstName = null; +let lastName = null; +let nickName = "Supercoder"; + +// shows the first defined value: +*!* +alert(firstName ?? lastName ?? nickName ?? "Anonymous"); // Supercoder +*/!* +``` + +## Comparison with || + +The OR `||` operator can be used in the same way as `??`, as it was described in the [previous chapter](info:logical-operators#or-finds-the-first-truthy-value). + +For example, in the code above we could replace `??` with `||` and still get the same result: + +```js run +let firstName = null; +let lastName = null; +let nickName = "Supercoder"; + +// shows the first truthy value: +*!* +alert(firstName || lastName || nickName || "Anonymous"); // Supercoder +*/!* +``` + +Historically, the OR `||` operator was there first. It's been there since the beginning of JavaScript, so developers were using it for such purposes for a long time. + +On the other hand, the nullish coalescing operator `??` was added to JavaScript only recently, and the reason for that was that people weren't quite happy with `||`. + +The important difference between them is that: +- `||` returns the first *truthy* value. +- `??` returns the first *defined* value. + +In other words, `||` doesn't distinguish between `false`, `0`, an empty string `""` and `null/undefined`. They are all the same -- falsy values. If any of these is the first argument of `||`, then we'll get the second argument as the result. + +In practice though, we may want to use default value only when the variable is `null/undefined`. That is, when the value is really unknown/not set. + +For example, consider this: + +```js run +let height = 0; + +alert(height || 100); // 100 +alert(height ?? 100); // 0 +``` + +- The `height || 100` checks `height` for being a falsy value, and it's `0`, falsy indeed. + - so the result of `||` is the second argument, `100`. +- The `height ?? 100` checks `height` for being `null/undefined`, and it's not, + - so the result is `height` "as is", that is `0`. + +In practice, the zero height is often a valid value, that shouldn't be replaced with the default. So `??` does just the right thing. + +## Precedence + +The precedence of the `??` operator is the same as `||`. They both equal `3` in the [MDN table](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#Table). + +That means that, just like `||`, the nullish coalescing operator `??` is evaluated before `=` and `?`, but after most other operations, such as `+`, `*`. + +So we may need to add parentheses in expressions like this: + +```js run +let height = null; +let width = null; + +// important: use parentheses +let area = (height ?? 100) * (width ?? 50); + +alert(area); // 5000 +``` + +Otherwise, if we omit parentheses, then as `*` has the higher precedence than `??`, it would execute first, leading to incorrect results. + +```js +// without parentheses +let area = height ?? 100 * width ?? 50; + +// ...works this way (not what we want): +let area = height ?? (100 * width) ?? 50; +``` + +### Using ?? with && or || + +Due to safety reasons, JavaScript forbids using `??` together with `&&` and `||` operators, unless the precedence is explicitly specified with parentheses. + +The code below triggers a syntax error: + +```js run +let x = 1 && 2 ?? 3; // Syntax error +``` + +The limitation is surely debatable, it was added to the language specification with the purpose to avoid programming mistakes, when people start to switch from `||` to `??`. + +Use explicit parentheses to work around it: + +```js run +*!* +let x = (1 && 2) ?? 3; // Works +*/!* + +alert(x); // 2 +``` + +## Summary + +- The nullish coalescing operator `??` provides a short way to choose the first "defined" value from a list. + + It's used to assign default values to variables: + + ```js + // set height=100, if height is null or undefined + height = height ?? 100; + ``` + +- The operator `??` has a very low precedence, only a bit higher than `?` and `=`, so consider adding parentheses when using it in an expression. +- It's forbidden to use it with `||` or `&&` without explicit parentheses. diff --git a/1-js/02-first-steps/12-while-for/1-loop-last-value/solution.md b/1-js/02-first-steps/13-while-for/1-loop-last-value/solution.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/1-loop-last-value/solution.md rename to 1-js/02-first-steps/13-while-for/1-loop-last-value/solution.md diff --git a/1-js/02-first-steps/12-while-for/1-loop-last-value/task.md b/1-js/02-first-steps/13-while-for/1-loop-last-value/task.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/1-loop-last-value/task.md rename to 1-js/02-first-steps/13-while-for/1-loop-last-value/task.md diff --git a/1-js/02-first-steps/12-while-for/2-which-value-while/solution.md b/1-js/02-first-steps/13-while-for/2-which-value-while/solution.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/2-which-value-while/solution.md rename to 1-js/02-first-steps/13-while-for/2-which-value-while/solution.md diff --git a/1-js/02-first-steps/12-while-for/2-which-value-while/task.md b/1-js/02-first-steps/13-while-for/2-which-value-while/task.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/2-which-value-while/task.md rename to 1-js/02-first-steps/13-while-for/2-which-value-while/task.md diff --git a/1-js/02-first-steps/12-while-for/3-which-value-for/solution.md b/1-js/02-first-steps/13-while-for/3-which-value-for/solution.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/3-which-value-for/solution.md rename to 1-js/02-first-steps/13-while-for/3-which-value-for/solution.md diff --git a/1-js/02-first-steps/12-while-for/3-which-value-for/task.md b/1-js/02-first-steps/13-while-for/3-which-value-for/task.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/3-which-value-for/task.md rename to 1-js/02-first-steps/13-while-for/3-which-value-for/task.md diff --git a/1-js/02-first-steps/12-while-for/4-for-even/solution.md b/1-js/02-first-steps/13-while-for/4-for-even/solution.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/4-for-even/solution.md rename to 1-js/02-first-steps/13-while-for/4-for-even/solution.md diff --git a/1-js/02-first-steps/12-while-for/4-for-even/task.md b/1-js/02-first-steps/13-while-for/4-for-even/task.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/4-for-even/task.md rename to 1-js/02-first-steps/13-while-for/4-for-even/task.md diff --git a/1-js/02-first-steps/12-while-for/5-replace-for-while/solution.md b/1-js/02-first-steps/13-while-for/5-replace-for-while/solution.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/5-replace-for-while/solution.md rename to 1-js/02-first-steps/13-while-for/5-replace-for-while/solution.md diff --git a/1-js/02-first-steps/12-while-for/5-replace-for-while/task.md b/1-js/02-first-steps/13-while-for/5-replace-for-while/task.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/5-replace-for-while/task.md rename to 1-js/02-first-steps/13-while-for/5-replace-for-while/task.md diff --git a/1-js/02-first-steps/12-while-for/6-repeat-until-correct/solution.md b/1-js/02-first-steps/13-while-for/6-repeat-until-correct/solution.md similarity index 80% rename from 1-js/02-first-steps/12-while-for/6-repeat-until-correct/solution.md rename to 1-js/02-first-steps/13-while-for/6-repeat-until-correct/solution.md index 2e04a78c4..c7de5f09b 100644 --- a/1-js/02-first-steps/12-while-for/6-repeat-until-correct/solution.md +++ b/1-js/02-first-steps/13-while-for/6-repeat-until-correct/solution.md @@ -10,6 +10,6 @@ do { The loop `do..while` repeats while both checks are truthy: 1. The check for `num <= 100` -- that is, the entered value is still not greater than `100`. -2. The check `&& num` is false when `num` is `null` or a empty string. Then the `while` loop stops too. +2. The check `&& num` is false when `num` is `null` or an empty string. Then the `while` loop stops too. P.S. If `num` is `null` then `num <= 100` is `true`, so without the 2nd check the loop wouldn't stop if the user clicks CANCEL. Both checks are required. diff --git a/1-js/02-first-steps/12-while-for/6-repeat-until-correct/task.md b/1-js/02-first-steps/13-while-for/6-repeat-until-correct/task.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/6-repeat-until-correct/task.md rename to 1-js/02-first-steps/13-while-for/6-repeat-until-correct/task.md diff --git a/1-js/02-first-steps/12-while-for/7-list-primes/solution.md b/1-js/02-first-steps/13-while-for/7-list-primes/solution.md similarity index 53% rename from 1-js/02-first-steps/12-while-for/7-list-primes/solution.md rename to 1-js/02-first-steps/13-while-for/7-list-primes/solution.md index 9ff0663d7..b4b64b6fa 100644 --- a/1-js/02-first-steps/12-while-for/7-list-primes/solution.md +++ b/1-js/02-first-steps/13-while-for/7-list-primes/solution.md @@ -26,4 +26,4 @@ for (let i = 2; i <= n; i++) { // for each i... } ``` -There's a lot of space to opimize it. For instance, we could look for the divisors from `2` to square root of `i`. But anyway, if we want to be really efficient for large intervals, we need to change the approach and rely on advanced maths and complex algorithms like [Quadratic sieve](https://en.wikipedia.org/wiki/Quadratic_sieve), [General number field sieve](https://en.wikipedia.org/wiki/General_number_field_sieve) etc. +There's a lot of space to optimize it. For instance, we could look for the divisors from `2` to square root of `i`. But anyway, if we want to be really efficient for large intervals, we need to change the approach and rely on advanced maths and complex algorithms like [Quadratic sieve](https://en.wikipedia.org/wiki/Quadratic_sieve), [General number field sieve](https://en.wikipedia.org/wiki/General_number_field_sieve) etc. diff --git a/1-js/02-first-steps/12-while-for/7-list-primes/task.md b/1-js/02-first-steps/13-while-for/7-list-primes/task.md similarity index 100% rename from 1-js/02-first-steps/12-while-for/7-list-primes/task.md rename to 1-js/02-first-steps/13-while-for/7-list-primes/task.md diff --git a/1-js/02-first-steps/12-while-for/article.md b/1-js/02-first-steps/13-while-for/article.md similarity index 83% rename from 1-js/02-first-steps/12-while-for/article.md rename to 1-js/02-first-steps/13-while-for/article.md index 992c21af6..d1b749888 100644 --- a/1-js/02-first-steps/12-while-for/article.md +++ b/1-js/02-first-steps/13-while-for/article.md @@ -6,6 +6,19 @@ For example, outputting goods from a list one after another or just running the *Loops* are a way to repeat the same code multiple times. +```smart header="The for..of and for..in loops" +A small announcement for advanced readers. + +This article covers only basic loops: `while`, `do..while` and `for(..;..;..)`. + +If you came to this article searching for other types of loops, here are the pointers: + +- See [for..in](info:object#forin) to loop over object properties. +- See [for..of](info:array#loops) and [iterables](info:iterable) for looping over arrays and iterable objects. + +Otherwise, please read on. +``` + ## The "while" loop The `while` loop has the following syntax: @@ -17,7 +30,7 @@ while (condition) { } ``` -While the `condition` is `true`, the `code` from the loop body is executed. +While the `condition` is truthy, the `code` from the loop body is executed. For instance, the loop below outputs `i` while `i < 3`: @@ -47,8 +60,8 @@ while (i) { // when i becomes 0, the condition becomes falsy, and the loop stops } ``` -````smart header="Brackets are not required for a single-line body" -If the loop body has a single statement, we can omit the brackets `{…}`: +````smart header="Curly braces are not required for a single-line body" +If the loop body has a single statement, we can omit the curly braces `{…}`: ```js run let i = 3; @@ -84,7 +97,7 @@ This form of syntax should only be used when you want the body of the loop to ex ## The "for" loop -The `for` loop is the most commonly used loop. +The `for` loop is more complex, but it's also the most commonly used loop. It looks like this: @@ -106,13 +119,13 @@ Let's examine the `for` statement part-by-part: | part | | | |-------|----------|----------------------------------------------------------------------------| -| begin | `i = 0` | Executes once upon entering the loop. | +| begin | `let i = 0` | Executes once upon entering the loop. | | condition | `i < 3`| Checked before every loop iteration. If false, the loop stops. | -| step| `i++` | Executes after the body on each iteration but before the condition check. | | body | `alert(i)`| Runs again and again while the condition is truthy. | - +| step| `i++` | Executes after the body on each iteration. | The general loop algorithm works like this: + ``` Run begin → (if condition → run body and run step) @@ -121,6 +134,8 @@ Run begin → ... ``` +That is, `begin` executes once, and then it iterates: after each `condition` test, `body` and `step` are executed. + If you are new to loops, it could help to go back to the example and reproduce how it runs step-by-step on a piece of paper. Here's exactly what happens in our case: @@ -160,10 +175,8 @@ for (i = 0; i < 3; i++) { // use an existing variable alert(i); // 3, visible, because declared outside of the loop ``` - ```` - ### Skipping parts Any part of `for` can be skipped. @@ -210,7 +223,7 @@ But we can force the exit at any time using the special `break` directive. For example, the loop below asks the user for a series of numbers, "breaking" when no number is entered: -```js +```js run let sum = 0; while (true) { @@ -254,7 +267,7 @@ For even values of `i`, the `continue` directive stops executing the body and pa ````smart header="The `continue` directive helps decrease nesting" A loop that shows odd values could look like this: -```js +```js run for (let i = 0; i < 10; i++) { if (i % 2) { @@ -266,7 +279,7 @@ for (let i = 0; i < 10; i++) { From a technical point of view, this is identical to the example above. Surely, we can just wrap the code in an `if` block instead of using `continue`. -But as a side-effect, this created one more level of nesting (the `alert` call inside the curly braces). If the code inside of`if` is longer than a few lines, that may decrease the overall readability. +But as a side effect, this created one more level of nesting (the `alert` call inside the curly braces). If the code inside of `if` is longer than a few lines, that may decrease the overall readability. ```` ````warn header="No `break/continue` to the right side of '?'" @@ -284,13 +297,11 @@ if (i > 5) { ...and rewrite it using a question mark: - ```js no-beautify (i > 5) ? alert(i) : *!*continue*/!*; // continue isn't allowed here ``` -...it stops working. Code like this will give a syntax error: - +...it stops working: there's a syntax error. This is just another reason not to use the question mark operator `?` instead of `if`. ```` @@ -299,7 +310,7 @@ This is just another reason not to use the question mark operator `?` instead of Sometimes we need to break out from multiple nested loops at once. -For example, in the code below we loop over `i` and `j`, prompting for the coordinates `(i, j)` from `(0,0)` to `(3,3)`: +For example, in the code below we loop over `i` and `j`, prompting for the coordinates `(i, j)` from `(0,0)` to `(2,2)`: ```js run no-beautify for (let i = 0; i < 3; i++) { @@ -308,8 +319,7 @@ for (let i = 0; i < 3; i++) { let input = prompt(`Value at coords (${i},${j})`, ''); - // what if I want to exit from here to Done (below)? - + // what if we want to exit from here to Done (below)? } } @@ -318,9 +328,10 @@ alert('Done!'); We need a way to stop the process if the user cancels the input. -The ordinary `break` after `input` would only break the inner loop. That's not sufficient--labels, come to the rescue! +The ordinary `break` after `input` would only break the inner loop. That's not sufficient -- labels, come to the rescue! A *label* is an identifier with a colon before a loop: + ```js labelName: for (...) { ... @@ -342,6 +353,7 @@ The `break ` statement in the loop below breaks out to the label: // do something with the value... } } + alert('Done!'); ``` @@ -358,17 +370,30 @@ for (let i = 0; i < 3; i++) { ... } The `continue` directive can also be used with a label. In this case, code execution jumps to the next iteration of the labeled loop. -````warn header="Labels are not a \"goto\"" +````warn header="Labels do not allow to \"jump\" anywhere" Labels do not allow us to jump into an arbitrary place in the code. For example, it is impossible to do this: + ```js -break label; // jumps to label? No. +break label; // jump to the label below (doesn't work) label: for (...) ``` -A call to `break/continue` is only possible from inside a loop and the label must be somewhere above the directive. +A `break` directive must be inside a code block. Technically, any labelled code block will do, e.g.: + +```js +label: { + // ... + break label; // works + // ... +} +``` + +...Although, 99.9% of the time `break` is used inside loops, as we've seen in the examples above. + +A `continue` is only possible from inside a loop. ```` ## Summary diff --git a/1-js/02-first-steps/14-function-basics/1-if-else-required/solution.md b/1-js/02-first-steps/14-function-basics/1-if-else-required/solution.md deleted file mode 100644 index e41c80418..000000000 --- a/1-js/02-first-steps/14-function-basics/1-if-else-required/solution.md +++ /dev/null @@ -1 +0,0 @@ -No difference. \ No newline at end of file diff --git a/1-js/02-first-steps/14-function-basics/function_basics.png b/1-js/02-first-steps/14-function-basics/function_basics.png deleted file mode 100644 index f5e6f9418..000000000 Binary files a/1-js/02-first-steps/14-function-basics/function_basics.png and /dev/null differ diff --git a/1-js/02-first-steps/14-function-basics/function_basics@2x.png b/1-js/02-first-steps/14-function-basics/function_basics@2x.png deleted file mode 100644 index c31b2636a..000000000 Binary files a/1-js/02-first-steps/14-function-basics/function_basics@2x.png and /dev/null differ diff --git a/1-js/02-first-steps/13-switch/1-rewrite-switch-if-else/solution.md b/1-js/02-first-steps/14-switch/1-rewrite-switch-if-else/solution.md similarity index 100% rename from 1-js/02-first-steps/13-switch/1-rewrite-switch-if-else/solution.md rename to 1-js/02-first-steps/14-switch/1-rewrite-switch-if-else/solution.md diff --git a/1-js/02-first-steps/13-switch/1-rewrite-switch-if-else/task.md b/1-js/02-first-steps/14-switch/1-rewrite-switch-if-else/task.md similarity index 100% rename from 1-js/02-first-steps/13-switch/1-rewrite-switch-if-else/task.md rename to 1-js/02-first-steps/14-switch/1-rewrite-switch-if-else/task.md diff --git a/1-js/02-first-steps/13-switch/2-rewrite-if-switch/solution.md b/1-js/02-first-steps/14-switch/2-rewrite-if-switch/solution.md similarity index 100% rename from 1-js/02-first-steps/13-switch/2-rewrite-if-switch/solution.md rename to 1-js/02-first-steps/14-switch/2-rewrite-if-switch/solution.md diff --git a/1-js/02-first-steps/13-switch/2-rewrite-if-switch/task.md b/1-js/02-first-steps/14-switch/2-rewrite-if-switch/task.md similarity index 100% rename from 1-js/02-first-steps/13-switch/2-rewrite-if-switch/task.md rename to 1-js/02-first-steps/14-switch/2-rewrite-if-switch/task.md diff --git a/1-js/02-first-steps/13-switch/article.md b/1-js/02-first-steps/14-switch/article.md similarity index 95% rename from 1-js/02-first-steps/13-switch/article.md rename to 1-js/02-first-steps/14-switch/article.md index 258f24068..d86babcec 100644 --- a/1-js/02-first-steps/13-switch/article.md +++ b/1-js/02-first-steps/14-switch/article.md @@ -47,7 +47,7 @@ switch (a) { break; */!* case 5: - alert( 'Too large' ); + alert( 'Too big' ); break; default: alert( "I don't know such values" ); @@ -117,7 +117,7 @@ Several variants of `case` which share the same code can be grouped. For example, if we want the same code to run for `case 3` and `case 5`: ```js run no-beautify -let a = 2 + 2; +let a = 3; switch (a) { case 4: @@ -125,7 +125,7 @@ switch (a) { break; *!* - case 3: // (*) grouped two cases + case 3: // (*) grouped two cases case 5: alert('Wrong!'); alert("Why don't you take a math class?"); @@ -139,7 +139,7 @@ switch (a) { Now both `3` and `5` show the same message. -The ability to "group" cases is a side-effect of how `switch/case` works without `break`. Here the execution of `case 3` starts from the line `(*)` and goes through `case 5`, because there's no `break`. +The ability to "group" cases is a side effect of how `switch/case` works without `break`. Here the execution of `case 3` starts from the line `(*)` and goes through `case 5`, because there's no `break`. ## Type matters diff --git a/1-js/02-first-steps/15-function-basics/1-if-else-required/solution.md b/1-js/02-first-steps/15-function-basics/1-if-else-required/solution.md new file mode 100644 index 000000000..e3a0df77c --- /dev/null +++ b/1-js/02-first-steps/15-function-basics/1-if-else-required/solution.md @@ -0,0 +1,3 @@ +No difference! + +In both cases, `return confirm('Did parents allow you?')` executes exactly when the `if` condition is falsy. \ No newline at end of file diff --git a/1-js/02-first-steps/14-function-basics/1-if-else-required/task.md b/1-js/02-first-steps/15-function-basics/1-if-else-required/task.md similarity index 100% rename from 1-js/02-first-steps/14-function-basics/1-if-else-required/task.md rename to 1-js/02-first-steps/15-function-basics/1-if-else-required/task.md diff --git a/1-js/02-first-steps/14-function-basics/2-rewrite-function-question-or/solution.md b/1-js/02-first-steps/15-function-basics/2-rewrite-function-question-or/solution.md similarity index 89% rename from 1-js/02-first-steps/14-function-basics/2-rewrite-function-question-or/solution.md rename to 1-js/02-first-steps/15-function-basics/2-rewrite-function-question-or/solution.md index c8ee9618f..e48502642 100644 --- a/1-js/02-first-steps/14-function-basics/2-rewrite-function-question-or/solution.md +++ b/1-js/02-first-steps/15-function-basics/2-rewrite-function-question-or/solution.md @@ -14,4 +14,4 @@ function checkAge(age) { } ``` -Note that the parentheses around `age > 18` are not required here. They exist for better readabilty. +Note that the parentheses around `age > 18` are not required here. They exist for better readability. diff --git a/1-js/02-first-steps/14-function-basics/2-rewrite-function-question-or/task.md b/1-js/02-first-steps/15-function-basics/2-rewrite-function-question-or/task.md similarity index 85% rename from 1-js/02-first-steps/14-function-basics/2-rewrite-function-question-or/task.md rename to 1-js/02-first-steps/15-function-basics/2-rewrite-function-question-or/task.md index 523bb127a..46da079c0 100644 --- a/1-js/02-first-steps/14-function-basics/2-rewrite-function-question-or/task.md +++ b/1-js/02-first-steps/15-function-basics/2-rewrite-function-question-or/task.md @@ -13,7 +13,7 @@ function checkAge(age) { if (age > 18) { return true; } else { - return confirm('Do you have your parents permission to access this page?'); + return confirm('Did parents allow you?'); } } ``` diff --git a/1-js/02-first-steps/14-function-basics/3-min/solution.md b/1-js/02-first-steps/15-function-basics/3-min/solution.md similarity index 100% rename from 1-js/02-first-steps/14-function-basics/3-min/solution.md rename to 1-js/02-first-steps/15-function-basics/3-min/solution.md diff --git a/1-js/02-first-steps/14-function-basics/3-min/task.md b/1-js/02-first-steps/15-function-basics/3-min/task.md similarity index 100% rename from 1-js/02-first-steps/14-function-basics/3-min/task.md rename to 1-js/02-first-steps/15-function-basics/3-min/task.md diff --git a/1-js/02-first-steps/14-function-basics/4-pow/solution.md b/1-js/02-first-steps/15-function-basics/4-pow/solution.md similarity index 75% rename from 1-js/02-first-steps/14-function-basics/4-pow/solution.md rename to 1-js/02-first-steps/15-function-basics/4-pow/solution.md index 5ef20c386..19fe9011f 100644 --- a/1-js/02-first-steps/14-function-basics/4-pow/solution.md +++ b/1-js/02-first-steps/15-function-basics/4-pow/solution.md @@ -14,10 +14,8 @@ let x = prompt("x?", ''); let n = prompt("n?", ''); if (n < 1) { - alert(`Power ${n} is not supported, - use an integer greater than 0`); + alert(`Power ${n} is not supported, use a positive integer`); } else { alert( pow(x, n) ); } ``` - diff --git a/1-js/02-first-steps/14-function-basics/4-pow/task.md b/1-js/02-first-steps/15-function-basics/4-pow/task.md similarity index 100% rename from 1-js/02-first-steps/14-function-basics/4-pow/task.md rename to 1-js/02-first-steps/15-function-basics/4-pow/task.md diff --git a/1-js/02-first-steps/14-function-basics/article.md b/1-js/02-first-steps/15-function-basics/article.md similarity index 71% rename from 1-js/02-first-steps/14-function-basics/article.md rename to 1-js/02-first-steps/15-function-basics/article.md index 18833cbf1..415fed3e0 100644 --- a/1-js/02-first-steps/14-function-basics/article.md +++ b/1-js/02-first-steps/15-function-basics/article.md @@ -20,9 +20,13 @@ function showMessage() { } ``` -The `function` keyword goes first, then goes the *name of the function*, then a list of *parameters* between the parentheses (empty in the example above) and finally the code of the function, also named "the function body", between curly braces. +The `function` keyword goes first, then goes the *name of the function*, then a list of *parameters* between the parentheses (comma-separated, empty in the example above, we'll see examples later) and finally the code of the function, also named "the function body", between curly braces. -![](function_basics.png) +```js +function name(parameter1, parameter2, ... parameterN) { + // body +} +``` Our new function can be called by its name: `showMessage()`. @@ -101,7 +105,7 @@ showMessage(); alert( userName ); // *!*Bob*/!*, the value was modified by the function ``` -The outer variable is only used if there's no local one. So an occasional modification may happen if we forget `let`. +The outer variable is only used if there's no local one. If a same-named variable is declared inside the function then it *shadows* the outer one. For instance, in the code below the function uses the local `userName`. The outer one is ignored: @@ -128,31 +132,28 @@ Variables declared outside of any function, such as the outer `userName` in the Global variables are visible from any function (unless shadowed by locals). -Usually, a function declares all variables specific to its task. Global variables only store project-level data, and it's important that these variables are accessible from anywhere. Modern code has few or no globals. Most variables reside in their functions. +It's a good practice to minimize the use of global variables. Modern code has few or no globals. Most variables reside in their functions. Sometimes though, they can be useful to store project-level data. ``` ## Parameters -We can pass arbitrary data to functions using parameters (also called *function arguments*) . +We can pass arbitrary data to functions using parameters. In the example below, the function has two parameters: `from` and `text`. ```js run -function showMessage(*!*from, text*/!*) { // arguments: from, text +function showMessage(*!*from, text*/!*) { // parameters: from, text alert(from + ': ' + text); } -*!* -showMessage('Ann', 'Hello!'); // Ann: Hello! (*) -showMessage('Ann', "What's up?"); // Ann: What's up? (**) -*/!* +*!*showMessage('Ann', 'Hello!');*/!* // Ann: Hello! (*) +*!*showMessage('Ann', "What's up?");*/!* // Ann: What's up? (**) ``` When the function is called in lines `(*)` and `(**)`, the given values are copied to local variables `from` and `text`. Then the function uses them. Here's one more example: we have a variable `from` and pass it to the function. Please note: the function changes `from`, but the change is not seen outside, because a function always gets a copy of the value: - ```js run function showMessage(from, text) { @@ -171,9 +172,21 @@ showMessage(from, "Hello"); // *Ann*: Hello alert( from ); // Ann ``` +When a value is passed as a function parameter, it's also called an *argument*. + +In other words, to put these terms straight: + +- A parameter is the variable listed inside the parentheses in the function declaration (it's a declaration time term). +- An argument is the value that is passed to the function when it is called (it's a call time term). + +We declare functions listing their parameters, then call them passing arguments. + +In the example above, one might say: "the function `showMessage` is declared with two parameters, then called with two arguments: `from` and `"Hello"`". + + ## Default values -If a parameter is not provided, then its value becomes `undefined`. +If a function is called, but an argument is not provided, then the corresponding value becomes `undefined`. For instance, the aforementioned function `showMessage(from, text)` can be called with a single argument: @@ -181,9 +194,9 @@ For instance, the aforementioned function `showMessage(from, text)` can be calle showMessage("Ann"); ``` -That's not an error. Such a call would output `"Ann: undefined"`. There's no `text`, so it's assumed that `text === undefined`. +That's not an error. Such a call would output `"*Ann*: undefined"`. As the value for `text` isn't passed, it becomes `undefined`. -If we want to use a "default" `text` in this case, then we can specify it after `=`: +We can specify the so-called "default" (to use if omitted) value for a parameter in the function declaration, using `=`: ```js run function showMessage(from, *!*text = "no text given"*/!*) { @@ -193,7 +206,13 @@ function showMessage(from, *!*text = "no text given"*/!*) { showMessage("Ann"); // Ann: no text given ``` -Now if the `text` parameter is not passed, it will get the value `"no text given"` +Now if the `text` parameter is not passed, it will get the value `"no text given"`. + +The default value also jumps in if the parameter exists, but strictly equals `undefined`, like this: + +```js +showMessage("Ann", undefined); // Ann: no text given +``` Here `"no text given"` is a string, but it can be a more complex expression, which is only evaluated and assigned if the parameter is missing. So, this is also possible: @@ -205,16 +224,19 @@ function showMessage(from, text = anotherFunction()) { ``` ```smart header="Evaluation of default parameters" +In JavaScript, a default parameter is evaluated every time the function is called without the respective parameter. -In JavaScript, a default parameter is evaluated every time the function is called without the respective parameter. In the example above, `anotherFunction()` is called every time `showMessage()` is called without the `text` parameter. This is in contrast to some other languages like Python, where any default parameters are evaluated only once during the initial interpretation. +In the example above, `anotherFunction()` isn't called at all, if the `text` parameter is provided. +On the other hand, it's independently called every time when `text` is missing. ``` +````smart header="Default parameters in old JavaScript code" +Several years ago, JavaScript didn't support the syntax for default parameters. So people used other ways to specify them. -````smart header="Default parameters old-style" -Old editions of JavaScript did not support default parameters. So there are alternative ways to support them, that you can find mostly in the old scripts. +Nowadays, we can come across them in old scripts. -For instance, an explicit check for being `undefined`: +For example, an explicit check for `undefined`: ```js function showMessage(from, text) { @@ -228,19 +250,63 @@ function showMessage(from, text) { } ``` -...Or the `||` operator: +...Or using the `||` operator: ```js function showMessage(from, text) { - // if text is falsy then text gets the "default" value + // If the value of text is falsy, assign the default value + // this assumes that text == "" is the same as no text at all text = text || 'no text given'; ... } ``` +```` -```` +### Alternative default parameters +Sometimes it makes sense to assign default values for parameters at a later stage after the function declaration. + +We can check if the parameter is passed during the function execution, by comparing it with `undefined`: + +```js run +function showMessage(text) { + // ... + +*!* + if (text === undefined) { // if the parameter is missing + text = 'empty message'; + } +*/!* + + alert(text); +} + +showMessage(); // empty message +``` + +...Or we could use the `||` operator: + +```js +function showMessage(text) { + // if text is undefined or otherwise falsy, set it to 'empty' + text = text || 'empty'; + ... +} +``` + +Modern JavaScript engines support the [nullish coalescing operator](info:nullish-coalescing-operator) `??`, it's better when most falsy values, such as `0`, should be considered "normal": + +```js run +function showCount(count) { + // if count is undefined or null, show "unknown" + alert(count ?? "unknown"); +} + +showCount(0); // 0 +showCount(null); // unknown +showCount(); // unknown +``` ## Returning a value @@ -263,7 +329,7 @@ There may be many occurrences of `return` in a single function. For instance: ```js run function checkAge(age) { - if (age > 18) { + if (age >= 18) { *!* return true; */!* @@ -335,7 +401,19 @@ That doesn't work, because JavaScript assumes a semicolon after `return`. That'l return*!*;*/!* (some + long + expression + or + whatever * f(a) + f(b)) ``` -So, it effectively becomes an empty return. We should put the value on the same line instead. + +So, it effectively becomes an empty return. + +If we want the returned expression to wrap across multiple lines, we should start it at the same line as `return`. Or at least put the opening parentheses there as follows: + +```js +return ( + some + long + expression + + or + + whatever * f(a) + f(b) + ) +``` +And it will work just as we expect it to. ```` ## Naming a function [#function-naming] @@ -376,15 +454,15 @@ A few examples of breaking this rule: - `createForm` -- would be bad if it modifies the document, adding a form to it (should only create it and return). - `checkPermission` -- would be bad if it displays the `access granted/denied` message (should only perform the check and return the result). -These examples assume common meanings of prefixes. What they mean for you is determined by you and your team. Maybe it's pretty normal for your code to behave differently. But you should have a firm understanding of what a prefix means, what a prefixed function can and cannot do. All same-prefixed functions should obey the rules. And the team should share the knowledge. +These examples assume common meanings of prefixes. You and your team are free to agree on other meanings, but usually they're not much different. In any case, you should have a firm understanding of what a prefix means, what a prefixed function can and cannot do. All same-prefixed functions should obey the rules. And the team should share the knowledge. ``` ```smart header="Ultrashort function names" Functions that are used *very often* sometimes have ultrashort names. -For example, the [jQuery](http://jquery.com) framework defines a function with `$`. The [Lodash](http://lodash.com/) library has its core function named `_`. +For example, the [jQuery](https://jquery.com/) framework defines a function with `$`. The [Lodash](https://lodash.com/) library has its core function named `_`. -These are exceptions. Generally functions names should be concise and descriptive. +These are exceptions. Generally function names should be concise and descriptive. ``` ## Functions == Comments @@ -450,7 +528,7 @@ function name(parameters, delimited, by, comma) { To make the code clean and easy to understand, it's recommended to use mainly local variables and parameters in the function, not outer variables. -It is always easier to understand a function which gets parameters, works with them and returns a result than a function which gets no parameters, but modifies outer variables as a side-effect. +It is always easier to understand a function which gets parameters, works with them and returns a result than a function which gets no parameters, but modifies outer variables as a side effect. Function naming: diff --git a/1-js/02-first-steps/15-function-expressions-arrows/article.md b/1-js/02-first-steps/16-function-expressions/article.md similarity index 54% rename from 1-js/02-first-steps/15-function-expressions-arrows/article.md rename to 1-js/02-first-steps/16-function-expressions/article.md index b4ea19bac..c6dd891bd 100644 --- a/1-js/02-first-steps/15-function-expressions-arrows/article.md +++ b/1-js/02-first-steps/16-function-expressions/article.md @@ -1,4 +1,4 @@ -# Function expressions and arrows +# Function expressions In JavaScript, a function is not a "magical language structure", but a special kind of value. @@ -12,7 +12,9 @@ function sayHi() { There is another syntax for creating a function that is called a *Function Expression*. -It looks like this: +It allows us to create a new function in the middle of any expression. + +For example: ```js let sayHi = function() { @@ -20,10 +22,19 @@ let sayHi = function() { }; ``` -Here, the function is created and assigned to the variable explicitly, like any other value. No matter how the function is defined, it's just a value stored in the variable `sayHi`. +Here we can see a variable `sayHi` getting a value, the new function, created as `function() { alert("Hello"); }`. + +As the function creation happens in the context of the assignment expression (to the right side of `=`), this is a *Function Expression*. + +Please note, there's no name after the `function` keyword. Omitting a name is allowed for Function Expressions. + +Here we immediately assign it to the variable, so the meaning of these code samples is the same: "create a function and put it into the variable `sayHi`". + +In more advanced situations, that we'll come across later, a function may be created and immediately called or scheduled for a later execution, not stored anywhere, thus remaining anonymous. +## Function is a value -The meaning of these code samples is the same: "create a function and put it into the variable `sayHi`". +Let's reiterate: no matter how the function is created, a function is a value. Both examples above store a function in the `sayHi` variable. We can even print out that value using `alert`: @@ -41,7 +52,7 @@ Please note that the last line does not run the function, because there are no p In JavaScript, a function is a value, so we can deal with it as a value. The code above shows its string representation, which is the source code. -It is a special value of course, in the sense that we can call it like `sayHi()`. +Surely, a function is a special value, in the sense that we can call it like `sayHi()`. But it's still a value. So we can work with it like with other kinds of values. @@ -61,25 +72,25 @@ sayHi(); // Hello // this still works too (why wouldn't it) Here's what happens above in detail: 1. The Function Declaration `(1)` creates the function and puts it into the variable named `sayHi`. -2. Line `(2)` copies it into the variable `func`. - - Please note again: there are no parentheses after `sayHi`. If there were, then `func = sayHi()` would write *the result of the call* `sayHi()` into `func`, not *the function* `sayHi` itself. +2. Line `(2)` copies it into the variable `func`. Please note again: there are no parentheses after `sayHi`. If there were, then `func = sayHi()` would write *the result of the call* `sayHi()` into `func`, not *the function* `sayHi` itself. 3. Now the function can be called as both `sayHi()` and `func()`. -Note that we could also have used a Function Expression to declare `sayHi`, in the first line: +We could also have used a Function Expression to declare `sayHi`, in the first line: ```js -let sayHi = function() { ... }; +let sayHi = function() { // (1) create + alert( "Hello" ); +}; -let func = sayHi; +let func = sayHi; //(2) // ... ``` -Everything would work the same. Even more obvious what's going on, right? +Everything would work the same. ````smart header="Why is there a semicolon at the end?" -You might wonder, why does Function Expression have a semicolon `;` at the end, but Function Declaration does not: +You might wonder, why do Function Expressions have a semicolon `;` at the end, but Function Declarations do not: ```js function sayHi() { @@ -91,9 +102,9 @@ let sayHi = function() { }*!*;*/!* ``` -The answer is simple: -- There's no need for `;` at the end of code blocks and syntax structures that use them like `if { ... }`, `for { }`, `function f { }` etc. -- A Function Expression is used inside the statement: `let sayHi = ...;`, as a value. It's not a code block. The semicolon `;` is recommended at the end of statements, no matter what is the value. So the semicolon here is not related to the Function Expression itself in any way, it just terminates the statement. +The answer is simple: a Function Expression is created here as `function(…) {…}` inside the assignment statement: `let sayHi = …;`. The semicolon `;` is recommended at the end of the statement, it's not a part of the function syntax. + +The semicolon would be there for a simpler assignment, such as `let sayHi = 5;`, and it's also there for a function assignment. ```` ## Callback functions @@ -133,13 +144,13 @@ function showCancel() { ask("Do you agree?", showOk, showCancel); ``` -Before we explore how we can write it in a much shorter way, let's note that in the browser (and on the server-side in some cases) such functions are quite popular. The major difference between a real-life implementation and the example above is that real-life functions use more complex ways to interact with the user than a simple `confirm`. In the browser, such a function usually draws a nice-looking question window. But that's another story. +In practice, such functions are quite useful. The major difference between a real-life `ask` and the example above is that real-life functions use more complex ways to interact with the user than a simple `confirm`. In the browser, such functions usually draw a nice-looking question window. But that's another story. -**The arguments of `ask` are called *callback functions* or just *callbacks*.** +**The arguments `showOk` and `showCancel` of `ask` are called *callback functions* or just *callbacks*.** -The idea is that we pass a function and expect it to be "called back" later if necessary. In our case, `showOk` becomes the callback for the "yes" answer, and `showCancel` for the "no" answer. +The idea is that we pass a function and expect it to be "called back" later if necessary. In our case, `showOk` becomes the callback for "yes" answer, and `showCancel` for "no" answer. -We can use Function Expressions to write the same function much shorter: +We can use Function Expressions to write an equivalent, shorter function: ```js run no-beautify function ask(question, yes, no) { @@ -156,12 +167,10 @@ ask( */!* ``` - Here, functions are declared right inside the `ask(...)` call. They have no name, and so are called *anonymous*. Such functions are not accessible outside of `ask` (because they are not assigned to variables), but that's just what we want here. Such code appears in our scripts very naturally, it's in the spirit of JavaScript. - ```smart header="A function is a value representing an \"action\"" Regular values like strings or numbers represent the *data*. @@ -175,9 +184,9 @@ We can pass it between variables and run when we want. Let's formulate the key differences between Function Declarations and Expressions. -First, the syntax: how to see what is what in the code. +First, the syntax: how to differentiate between them in the code. -- *Function Declaration:* a function, declared as a separate statement, in the main code flow. +- *Function Declaration:* a function, declared as a separate statement, in the main code flow: ```js // Function Declaration @@ -185,8 +194,8 @@ First, the syntax: how to see what is what in the code. return a + b; } ``` -- *Function Expression:* a function, created inside an expression or inside another syntax construct. Here, the function is created at the right side of the "assignment expression" `=`: - +- *Function Expression:* a function, created inside an expression or inside another syntax construct. Here, the function is created on the right side of the "assignment expression" `=`: + ```js // Function Expression let sum = function(a, b) { @@ -196,19 +205,19 @@ First, the syntax: how to see what is what in the code. The more subtle difference is *when* a function is created by the JavaScript engine. -**A Function Expression is created when the execution reaches it and is usable from then on.** +**A Function Expression is created when the execution reaches it and is usable only from that moment.** Once the execution flow passes to the right side of the assignment `let sum = function…` -- here we go, the function is created and can be used (assigned, called, etc. ) from now on. Function Declarations are different. -**A Function Declaration is usable in the whole script/code block.** +**A Function Declaration can be called earlier than it is defined.** -In other words, when JavaScript *prepares* to run the script or a code block, it first looks for Function Declarations in it and creates the functions. We can think of it as an "initialization stage". +For example, a global Function Declaration is visible in the whole script, no matter where it is. -And after all of the Function Declarations are processed, the execution goes on. +That's due to internal algorithms. When JavaScript prepares to run the script, it first looks for global Function Declarations in it and creates the functions. We can think of it as an "initialization stage". -As a result, a function declared as a Function Declaration can be called earlier than it is defined. +And after all Function Declarations are processed, the code is executed. So it has access to these functions. For example, this works: @@ -224,7 +233,7 @@ function sayHi(name) { The Function Declaration `sayHi` is created when JavaScript is preparing to start the script and is visible everywhere in it. -...If it was a Function Expression, then it wouldn't work: +...If it were a Function Expression, then it wouldn't work: ```js run refresh untrusted *!* @@ -238,13 +247,13 @@ let sayHi = function(name) { // (*) no magic any more Function Expressions are created when the execution reaches them. That would happen only in the line `(*)`. Too late. -**When a Function Declaration is made within a code block, it is visible everywhere inside that block. But not outside of it.** +Another special feature of Function Declarations is their block scope. -Sometimes that's handy to declare a local function only needed in that block alone. But that feature may also cause problems. +**In strict mode, when a Function Declaration is within a code block, it's visible everywhere inside that block. But not outside of it.** For instance, let's imagine that we need to declare a function `welcome()` depending on the `age` variable that we get during runtime. And then we plan to use it some time later. -The code below doesn't work: +If we use Function Declaration, it won't work as intended: ```js run let age = prompt("What is your age?", 18); @@ -282,7 +291,7 @@ if (age < 18) { welcome(); // \ (runs) */!* // | - function welcome() { // | + function welcome() { // | alert("Hello!"); // | Function Declaration is available } // | everywhere in the block where it's declared // | @@ -292,7 +301,7 @@ if (age < 18) { } else { - function welcome() { // for age = 16, this "welcome" is never created + function welcome() { alert("Greetings!"); } } @@ -309,7 +318,7 @@ What can we do to make `welcome` visible outside of `if`? The correct approach would be to use a Function Expression and assign `welcome` to the variable that is declared outside of `if` and has the proper visibility. -Now it works as intended: +This code works as intended: ```js run let age = prompt("What is your age?", 18); @@ -350,113 +359,12 @@ welcome(); // ok now ``` -```smart header="When should you choose Function Declaration versus Function Expression?" -As a rule of thumb, when we need to declare a function, the first to consider is Function Declaration syntax, the one we used before. It gives more freedom in how to organize our code, because we can call such functions before they are declared. - -It's also a little bit easier to look up `function f(…) {…}` in the code than `let f = function(…) {…}`. Function Declarations are more "eye-catching". - -...But if a Function Declaration does not suit us for some reason (we've seen an example above), then Function Expression should be used. -``` - - -## Arrow functions [#arrow-functions] +```smart header="When to choose Function Declaration versus Function Expression?" +As a rule of thumb, when we need to declare a function, the first thing to consider is Function Declaration syntax. It gives more freedom in how to organize our code, because we can call such functions before they are declared. -There's one more very simple and concise syntax for creating functions, that's often better than Function Expressions. It's called "arrow functions", because it looks like this: +That's also better for readability, as it's easier to look up `function f(…) {…}` in the code than `let f = function(…) {…};`. Function Declarations are more "eye-catching". - -```js -let func = (arg1, arg2, ...argN) => expression -``` - -...This creates a function `func` that has arguments `arg1..argN`, evaluates the `expression` on the right side with their use and returns its result. - -In other words, it's roughly the same as: - -```js -let func = function(arg1, arg2, ...argN) { - return expression; -}; -``` - -...But much more concise. - -Let's see an example: - -```js run -let sum = (a, b) => a + b; - -/* The arrow function is a shorter form of: - -let sum = function(a, b) { - return a + b; -}; -*/ - -alert( sum(1, 2) ); // 3 - -``` - -If we have only one argument, then parentheses can be omitted, making that even shorter: - -```js run -// same as -// let double = function(n) { return n * 2 } -*!* -let double = n => n * 2; -*/!* - -alert( double(3) ); // 6 -``` - -If there are no arguments, parentheses should be empty (but they should be present): - -```js run -let sayHi = () => alert("Hello!"); - -sayHi(); -``` - -Arrow functions can be used in the same way as Function Expressions. - -For instance, here's the rewritten example with `welcome()`: - -```js run -let age = prompt("What is your age?", 18); - -let welcome = (age < 18) ? - () => alert('Hello') : - () => alert("Greetings!"); - -welcome(); // ok now -``` - -Arrow functions may appear unfamiliar and not very readable at first, but that quickly changes as the eyes get used to the structure. - -They are very convenient for simple one-line actions, when we're just too lazy to write many words. - -```smart header="Multiline arrow functions" - -The examples above took arguments from the left of `=>` and evaluated the right-side expression with them. - -Sometimes we need something a little bit more complex, like multiple expressions or statements. It is also possible, but we should enclose them in curly braces. Then use a normal `return` within them. - -Like this: - -```js run -let sum = (a, b) => { // the curly brace opens a multiline function - let result = a + b; -*!* - return result; // if we use curly braces, use return to get results -*/!* -}; - -alert( sum(1, 2) ); // 3 -``` - -```smart header="More to come" -Here we praised arrow functions for brevity. But that's not all! Arrow functions have other interesting features. We'll return to them later in the chapter . - -For now, we can already use them for one-line actions and callbacks. +...But if a Function Declaration does not suit us for some reason, or we need a conditional declaration (we've just seen an example), then Function Expression should be used. ``` ## Summary @@ -467,12 +375,6 @@ For now, we can already use them for one-line actions and callbacks. - Function Declarations are processed before the code block is executed. They are visible everywhere in the block. - Function Expressions are created when the execution flow reaches them. - In most cases when we need to declare a function, a Function Declaration is preferable, because it is visible prior to the declaration itself. That gives us more flexibility in code organization, and is usually more readable. So we should use a Function Expression only when a Function Declaration is not fit for the task. We've seen a couple of examples of that in this chapter, and will see more in the future. - -Arrow functions are handy for one-liners. They come in two flavors: - -1. Without curly braces: `(...args) => expression` -- the right side is an expression: the function evaluates it and returns the result. -2. With curly braces: `(...args) => { body }` -- brackets allow us to write multiple statements inside the function, but we need an explicit `return` to return something. diff --git a/1-js/02-first-steps/15-function-expressions-arrows/1-rewrite-arrow/solution.md b/1-js/02-first-steps/17-arrow-functions-basics/1-rewrite-arrow/solution.md similarity index 86% rename from 1-js/02-first-steps/15-function-expressions-arrows/1-rewrite-arrow/solution.md rename to 1-js/02-first-steps/17-arrow-functions-basics/1-rewrite-arrow/solution.md index 3ea112473..041db18bc 100644 --- a/1-js/02-first-steps/15-function-expressions-arrows/1-rewrite-arrow/solution.md +++ b/1-js/02-first-steps/17-arrow-functions-basics/1-rewrite-arrow/solution.md @@ -1,7 +1,7 @@ ```js run function ask(question, yes, no) { - if (confirm(question)) yes() + if (confirm(question)) yes(); else no(); } diff --git a/1-js/02-first-steps/15-function-expressions-arrows/1-rewrite-arrow/task.md b/1-js/02-first-steps/17-arrow-functions-basics/1-rewrite-arrow/task.md similarity index 68% rename from 1-js/02-first-steps/15-function-expressions-arrows/1-rewrite-arrow/task.md rename to 1-js/02-first-steps/17-arrow-functions-basics/1-rewrite-arrow/task.md index a888ac157..e18c08a83 100644 --- a/1-js/02-first-steps/15-function-expressions-arrows/1-rewrite-arrow/task.md +++ b/1-js/02-first-steps/17-arrow-functions-basics/1-rewrite-arrow/task.md @@ -1,11 +1,11 @@ # Rewrite with arrow functions -Replace Function Expressions with arrow functions in the code: +Replace Function Expressions with arrow functions in the code below: ```js run function ask(question, yes, no) { - if (confirm(question)) yes() + if (confirm(question)) yes(); else no(); } diff --git a/1-js/02-first-steps/17-arrow-functions-basics/article.md b/1-js/02-first-steps/17-arrow-functions-basics/article.md new file mode 100644 index 000000000..50c0d475d --- /dev/null +++ b/1-js/02-first-steps/17-arrow-functions-basics/article.md @@ -0,0 +1,111 @@ +# Arrow functions, the basics + +There's another very simple and concise syntax for creating functions, that's often better than Function Expressions. + +It's called "arrow functions", because it looks like this: + +```js +let func = (arg1, arg2, ..., argN) => expression; +``` + +This creates a function `func` that accepts arguments `arg1..argN`, then evaluates the `expression` on the right side with their use and returns its result. + +In other words, it's the shorter version of: + +```js +let func = function(arg1, arg2, ..., argN) { + return expression; +}; +``` + +Let's see a concrete example: + +```js run +let sum = (a, b) => a + b; + +/* This arrow function is a shorter form of: + +let sum = function(a, b) { + return a + b; +}; +*/ + +alert( sum(1, 2) ); // 3 +``` + +As you can see, `(a, b) => a + b` means a function that accepts two arguments named `a` and `b`. Upon the execution, it evaluates the expression `a + b` and returns the result. + +- If we have only one argument, then parentheses around parameters can be omitted, making that even shorter. + + For example: + + ```js run + *!* + let double = n => n * 2; + // roughly the same as: let double = function(n) { return n * 2 } + */!* + + alert( double(3) ); // 6 + ``` + +- If there are no arguments, parentheses are empty, but they must be present: + + ```js run + let sayHi = () => alert("Hello!"); + + sayHi(); + ``` + +Arrow functions can be used in the same way as Function Expressions. + +For instance, to dynamically create a function: + +```js run +let age = prompt("What is your age?", 18); + +let welcome = (age < 18) ? + () => alert('Hello!') : + () => alert("Greetings!"); + +welcome(); +``` + +Arrow functions may appear unfamiliar and not very readable at first, but that quickly changes as the eyes get used to the structure. + +They are very convenient for simple one-line actions, when we're just too lazy to write many words. + +## Multiline arrow functions + +The arrow functions that we've seen so far were very simple. They took arguments from the left of `=>`, evaluated and returned the right-side expression with them. + +Sometimes we need a more complex function, with multiple expressions and statements. In that case, we can enclose them in curly braces. The major difference is that curly braces require a `return` within them to return a value (just like a regular function does). + +Like this: + +```js run +let sum = (a, b) => { // the curly brace opens a multiline function + let result = a + b; +*!* + return result; // if we use curly braces, then we need an explicit "return" +*/!* +}; + +alert( sum(1, 2) ); // 3 +``` + +```smart header="More to come" +Here we praised arrow functions for brevity. But that's not all! + +Arrow functions have other interesting features. + +To study them in-depth, we first need to get to know some other aspects of JavaScript, so we'll return to arrow functions later in the chapter . + +For now, we can already use arrow functions for one-line actions and callbacks. +``` + +## Summary + +Arrow functions are handy for simple actions, especially for one-liners. They come in two flavors: + +1. Without curly braces: `(...args) => expression` -- the right side is an expression: the function evaluates it and returns the result. Parentheses can be omitted, if there's only a single argument, e.g. `n => n*2`. +2. With curly braces: `(...args) => { body }` -- brackets allow us to write multiple statements inside the function, but we need an explicit `return` to return something. diff --git a/1-js/02-first-steps/16-javascript-specials/article.md b/1-js/02-first-steps/18-javascript-specials/article.md similarity index 83% rename from 1-js/02-first-steps/16-javascript-specials/article.md rename to 1-js/02-first-steps/18-javascript-specials/article.md index 9de1d6251..e7ddacac4 100644 --- a/1-js/02-first-steps/16-javascript-specials/article.md +++ b/1-js/02-first-steps/18-javascript-specials/article.md @@ -53,9 +53,9 @@ To fully enable all features of modern JavaScript, we should start scripts with ... ``` -The directive must be at the top of a script or at the beginning of a function. +The directive must be at the top of a script or at the beginning of a function body. -Without `"use strict"`, everything still works, but some features behave in the old-fashion, "compatible" way. We'd generally prefer the modern behavior. +Without `"use strict"`, everything still works, but some features behave in the old-fashioned, "compatible" way. We'd generally prefer the modern behavior. Some modern features of the language (like classes that we'll study in the future) enable strict mode implicitly. @@ -81,9 +81,10 @@ let x = 5; x = "John"; ``` -There are 7 data types: +There are 8 data types: - `number` for both floating-point and integer numbers, +- `bigint` for integer numbers of arbitrary length, - `string` for strings, - `boolean` for logical values: `true/false`, - `null` -- a type with a single value `null`, meaning "empty" or "does not exist", @@ -102,13 +103,13 @@ More in: and . We're using a browser as a working environment, so basic UI functions will be: -[`prompt(question, [default])`](mdn:api/Window/prompt) +[`prompt(question, [default])`](https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt) : Ask a `question`, and return either what the visitor entered or `null` if they clicked "cancel". -[`confirm(question)`](mdn:api/Window/confirm) +[`confirm(question)`](https://developer.mozilla.org/en-US/docs/Web/API/Window/confirm) : Ask a `question` and suggest to choose between Ok and Cancel. The choice is returned as `true/false`. -[`alert(message)`](mdn:api/Window/alert) +[`alert(message)`](https://developer.mozilla.org/en-US/docs/Web/API/Window/alert) : Output a `message`. All these functions are *modal*, they pause the code execution and prevent the visitor from interacting with the page until they answer. @@ -143,13 +144,16 @@ Assignments : There is a simple assignment: `a = b` and combined ones like `a *= 2`. Bitwise -: Bitwise operators work with integers on bit-level: see the [docs](mdn:/JavaScript/Reference/Operators/Bitwise_Operators) when they are needed. +: Bitwise operators work with 32-bit integers at the lowest, bit-level: see the [docs](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#bitwise_operators) when they are needed. -Ternary +Conditional : The only operator with three parameters: `cond ? resultA : resultB`. If `cond` is truthy, returns `resultA`, otherwise `resultB`. Logical operators -: Logical AND `&&` and OR `||` perform short-circuit evaluation and then return the value where it stopped. Logical NOT `!` converts the operand to boolean type and returns the inverse value. +: Logical AND `&&` and OR `||` perform short-circuit evaluation and then return the value where it stopped (not necessary `true`/`false`). Logical NOT `!` converts the operand to boolean type and returns the inverse value. + +Nullish coalescing operator +: The `??` operator provides a way to choose a defined value from a list of variables. The result of `a ?? b` is `a` unless it's `null/undefined`, then `b`. Comparisons : Equality check `==` for values of different types converts them to a number (except `null` and `undefined` that equal each other and nothing else), so these are equal: @@ -161,7 +165,7 @@ Comparisons Other comparisons convert to a number as well. - The strict equality operator `===` doesn't do the conversion: different types always mean different values for it, so: + The strict equality operator `===` doesn't do the conversion: different types always mean different values for it. Values `null` and `undefined` are special: they equal `==` each other and don't equal anything else. @@ -170,7 +174,7 @@ Comparisons Other operators : There are few others, like a comma operator. -More in: , , . +More in: , , , . ## Loops @@ -212,6 +216,7 @@ let age = prompt('Your age?', 18); switch (age) { case 18: alert("Won't work"); // the result of prompt is a string, not a number + break; case "18": alert("This works!"); @@ -245,15 +250,13 @@ We covered three ways to create a function in JavaScript: let result = a + b; return result; - } + }; ``` - Function expressions can have a name, like `sum = function name(a, b)`, but that `name` is only visible inside that function. - 3. Arrow functions: ```js - // expression at the right side + // expression on the right side let sum = (a, b) => a + b; // or multi-line syntax with { ... }, need return here: @@ -270,17 +273,11 @@ We covered three ways to create a function in JavaScript: ``` -- Functions may have local variables: those declared inside its body. Such variables are only visible inside the function. +- Functions may have local variables: those declared inside its body or its parameter list. Such variables are only visible inside the function. - Parameters can have default values: `function sum(a = 1, b = 2) {...}`. - Functions always return something. If there's no `return` statement, then the result is `undefined`. - -| Function Declaration | Function Expression | -|----------------------|---------------------| -| visible in the whole code block | created when the execution reaches it | -| - | can have a name, visible only inside the function | - -More: see , . +Details: see , . ## More to come diff --git a/1-js/03-code-quality/01-debugging-chrome/article.md b/1-js/03-code-quality/01-debugging-chrome/article.md index 6d5bbbed3..4f50fb428 100644 --- a/1-js/03-code-quality/01-debugging-chrome/article.md +++ b/1-js/03-code-quality/01-debugging-chrome/article.md @@ -1,44 +1,44 @@ -# Debugging in Chrome +# Debugging in the browser Before writing more complex code, let's talk about debugging. -All modern browsers and most other environments support "debugging" -- a special UI in developer tools that makes finding and fixing errors much easier. +[Debugging](https://en.wikipedia.org/wiki/Debugging) is the process of finding and fixing errors within a script. All modern browsers and most other environments support debugging tools -- a special UI in developer tools that makes debugging much easier. It also allows to trace the code step by step to see what exactly is going on. -We'll be using Chrome here, because it's probably the most feature-rich in this aspect. +We'll be using Chrome here, because it has enough features, most other browsers have a similar process. -## The "sources" pane +## The "Sources" panel Your Chrome version may look a little bit different, but it still should be obvious what's there. - Open the [example page](debugging/index.html) in Chrome. - Turn on developer tools with `key:F12` (Mac: `key:Cmd+Opt+I`). -- Select the `sources` pane. +- Select the `Sources` panel. Here's what you should see if you are doing it for the first time: ![](chrome-open-sources.svg) -The toggler button opens the tab with files. +The toggler button opens the tab with files. -Let's click it and select `index.html` and then `hello.js` in the tree view. Here's what should show up: +Let's click it and select `hello.js` in the tree view. Here's what should show up: ![](chrome-tabs.svg) -Here we can see three zones: +The Sources panel has 3 parts: -1. The **Resources zone** lists HTML, JavaScript, CSS and other files, including images that are attached to the page. Chrome extensions may appear here too. -2. The **Source zone** shows the source code. -3. The **Information and control zone** is for debugging, we'll explore it soon. +1. The **File Navigator** pane lists HTML, JavaScript, CSS and other files, including images that are attached to the page. Chrome extensions may appear here too. +2. The **Code Editor** pane shows the source code. +3. The **JavaScript Debugging** pane is for debugging, we'll explore it soon. -Now you could click the same toggler again to hide the resources list and give the code some space. +Now you could click the same toggler again to hide the resources list and give the code some space. ## Console -If we press `Esc`, then a console opens below. We can type commands there and press `key:Enter` to execute. +If we press `key:Esc`, then a console opens below. We can type commands there and press `key:Enter` to execute. After a statement is executed, its result is shown below. -For example, here `1+2` results in `3`, and `hello("debugger")` returns nothing, so the result is `undefined`: +For example, here `1+2` results in `3`, while the function call `hello("debugger")` returns nothing, so the result is `undefined`: ![](chrome-sources-console.svg) @@ -56,21 +56,21 @@ A *breakpoint* is a point of code where the debugger will automatically pause th While the code is paused, we can examine current variables, execute commands in the console etc. In other words, we can debug it. -We can always find a list of breakpoints in the right pane. That's useful when we have many breakpoints in various files. It allows us to: -- Quickly jump to the breakpoint in the code (by clicking on it in the right pane). +We can always find a list of breakpoints in the right panel. That's useful when we have many breakpoints in various files. It allows us to: +- Quickly jump to the breakpoint in the code (by clicking on it in the right panel). - Temporarily disable the breakpoint by unchecking it. - Remove the breakpoint by right-clicking and selecting Remove. - ...And so on. ```smart header="Conditional breakpoints" -*Right click* on the line number allows to create a *conditional* breakpoint. It only triggers when the given expression is truthy. +*Right click* on the line number allows to create a *conditional* breakpoint. It only triggers when the given expression, that you should provide when you create it, is truthy. That's handy when we need to stop only for a certain variable value or for certain function parameters. ``` -## Debugger command +## The command "debugger" -We can also pause the code by using the `debugger` command, like this: +We can also pause the code by using the `debugger` command in it, like this: ```js function hello(name) { @@ -84,12 +84,11 @@ function hello(name) { } ``` -That's very convenient when we are in a code editor and don't want to switch to the browser and look up the script in developer tools to set the breakpoint. - +Such command works only when the development tools are open, otherwise the browser ignores it. ## Pause and look around -In our example, `hello()` is called during the page load, so the easiest way to activate the debugger is to reload the page. So let's press `key:F5` (Windows, Linux) or `key:Cmd+R` (Mac). +In our example, `hello()` is called during the page load, so the easiest way to activate the debugger (after we've set the breakpoints) is to reload the page. So let's press `key:F5` (Windows, Linux) or `key:Cmd+R` (Mac). As the breakpoint is set, the execution pauses at the 4th line: @@ -99,13 +98,13 @@ Please open the informational dropdowns to the right (labeled with arrows). They 1. **`Watch` -- shows current values for any expressions.** - You can click the plus `+` and input an expression. The debugger will show its value at any moment, automatically recalculating it in the process of execution. + You can click the plus `+` and input an expression. The debugger will show its value, automatically recalculating it in the process of execution. 2. **`Call Stack` -- shows the nested calls chain.** At the current moment the debugger is inside `hello()` call, called by a script in `index.html` (no function there, so it's called "anonymous"). - If you click on a stack item, the debugger jumps to the corresponding code, and all its variables can be examined as well. + If you click on a stack item (e.g. "anonymous"), the debugger jumps to the corresponding code, and all its variables can be examined as well. 3. **`Scope` -- current variables.** `Local` shows local function variables. You can also see their values highlighted right over the source. @@ -118,52 +117,65 @@ Please open the informational dropdowns to the right (labeled with arrows). They Now it's time to *trace* the script. -There are buttons for it at the top of the right pane. Let's engage them. - - -- continue the execution, hotkey `key:F8`. +There are buttons for it at the top of the right panel. Let's engage them. + + -- "Resume": continue the execution, hotkey `key:F8`. : Resumes the execution. If there are no additional breakpoints, then the execution just continues and the debugger loses control. Here's what we can see after a click on it: ![](chrome-sources-debugger-trace-1.svg) - The execution has resumed, reached another breakpoint inside `say()` and paused there. Take a look at the "Call stack" at the right. It has increased by one more call. We're inside `say()` now. + The execution has resumed, reached another breakpoint inside `say()` and paused there. Take a look at the "Call Stack" at the right. It has increased by one more call. We're inside `say()` now. + + -- "Step": run the next command, hotkey `key:F9`. +: Run the next statement. If we click it now, `alert` will be shown. + + Clicking this again and again will step through all script statements one by one. + + -- "Step over": run the next command, but *don't go into a function*, hotkey `key:F10`. +: Similar to the previous "Step" command, but behaves differently if the next statement is a function call (not a built-in, like `alert`, but a function of our own). + + If we compare them, the "Step" command goes into a nested function call and pauses the execution at its first line, while "Step over" executes the nested function call invisibly to us, skipping the function internals. + + The execution is then paused immediately after that function call. + + That's good if we're not interested to see what happens inside the function call. - -- make a step (run the next command), but *don't go into the function*, hotkey `key:F10`. -: If we click it now, `alert` will be shown. The important thing is that `alert` can be any function, the execution "steps over it", skipping the function internals. + -- "Step into", hotkey `key:F11`. +: That's similar to "Step", but behaves differently in case of asynchronous function calls. If you're only starting to learn JavaScript, then you can ignore the difference, as we don't have asynchronous calls yet. - -- make a step, hotkey `key:F11`. -: The same as the previous one, but "steps into" nested functions. Clicking this will step through all script actions one by one. + For the future, just note that "Step" command ignores async actions, such as `setTimeout` (scheduled function call), that execute later. The "Step into" goes into their code, waiting for them if necessary. See [DevTools manual](https://developers.google.com/web/updates/2018/01/devtools#async) for more details. - -- continue the execution till the end of the current function, hotkey `key:Shift+F11`. -: The execution would stop at the very last line of the current function. That's handy when we accidentally entered a nested call using , but it does not interest us, and we want to continue to its end as soon as possible. + -- "Step out": continue the execution till the end of the current function, hotkey `key:Shift+F11`. +: Continue the execution and stop it at the very last line of the current function. That's handy when we accidentally entered a nested call using , but it does not interest us, and we want to continue to its end as soon as possible. - -- enable/disable all breakpoints. + -- enable/disable all breakpoints. : That button does not move the execution. Just a mass on/off for breakpoints. - -- enable/disable automatic pause in case of an error. -: When enabled, and the developer tools is open, a script error automatically pauses the execution. Then we can analyze variables to see what went wrong. So if our script dies with an error, we can open debugger, enable this option and reload the page to see where it dies and what's the context at that moment. + -- enable/disable automatic pause in case of an error. +: When enabled, if the developer tools is open, an error during the script execution automatically pauses it. Then we can analyze variables in the debugger to see what went wrong. So if our script dies with an error, we can open debugger, enable this option and reload the page to see where it dies and what's the context at that moment. ```smart header="Continue to here" Right click on a line of code opens the context menu with a great option called "Continue to here". -That's handy when we want to move multiple steps forward, but we're too lazy to set a breakpoint. +That's handy when we want to move multiple steps forward to the line, but we're too lazy to set a breakpoint. ``` ## Logging -To output something to console, there's `console.log` function. +To output something to console from our code, there's `console.log` function. For instance, this outputs values from `0` to `4` to console: ```js run // open console to see for (let i = 0; i < 5; i++) { - console.log("value", i); + console.log("value,", i); } ``` -Regular users don't see that output, it is in the console. To see it, either open the Console tab of developer tools or press `key:Esc` while in another tab: that opens the console at the bottom. +Regular users don't see that output, it is in the console. To see it, either open the Console panel of developer tools or press `key:Esc` while in another panel: that opens the console at the bottom. If we have enough logging in our code, then we can see what's going on from the records, without the debugger. @@ -172,12 +184,12 @@ If we have enough logging in our code, then we can see what's going on from the As we can see, there are three main ways to pause a script: 1. A breakpoint. 2. The `debugger` statements. -3. An error (if dev tools are open and the button is "on"). +3. An error (if dev tools are open and the button is "on"). -Then we can examine variables and step on to see where the execution goes wrong. +When paused, we can debug: examine variables and trace the code to see where the execution goes wrong. There are many more options in developer tools than covered here. The full manual is at . The information from this chapter is enough to begin debugging, but later, especially if you do a lot of browser stuff, please go there and look through more advanced capabilities of developer tools. -Oh, and also you can click at various places of dev tools and just see what's showing up. That's probably the fastest route to learn dev tools. Don't forget about the right click as well! +Oh, and also you can click at various places of dev tools and just see what's showing up. That's probably the fastest route to learn dev tools. Don't forget about the right click and context menus! diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg index a3c7db6ec..a647276e8 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg @@ -1 +1,5 @@ -open sources \ No newline at end of file +<<<<<<< HEAD +open sources +======= +open sources +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg index 6e7b60f85..d7aaabf02 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg @@ -1 +1,5 @@ -here's the listbreakpoints \ No newline at end of file +<<<<<<< HEAD +here's the listbreakpoints +======= +here's the listbreakpoints +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg index d5d2a0b93..36e7a2be6 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg @@ -1 +1,5 @@ - \ No newline at end of file +<<<<<<< HEAD + +======= + +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg index 83468fddb..3720509e7 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg @@ -1 +1,5 @@ -213see the outer call detailswatch expressionscurrent variables \ No newline at end of file +<<<<<<< HEAD +213see the outer call detailswatch expressionscurrent variables +======= +213see the outer call detailswatch expressionscurrent variables +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg index 23937e0d6..757a2578b 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg @@ -1 +1,5 @@ -nested calls \ No newline at end of file +<<<<<<< HEAD +nested calls +======= +nested calls +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg index 41a3d8784..f0e9afd01 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg @@ -1 +1,5 @@ -213 \ No newline at end of file +<<<<<<< HEAD +213 +======= +213 +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/03-code-quality/01-debugging-chrome/head.html b/1-js/03-code-quality/01-debugging-chrome/head.html index f219b0af1..615326c08 100644 --- a/1-js/03-code-quality/01-debugging-chrome/head.html +++ b/1-js/03-code-quality/01-debugging-chrome/head.html @@ -1,8 +1,8 @@ diff --git a/1-js/03-code-quality/01-debugging-chrome/largeIcons.svg b/1-js/03-code-quality/01-debugging-chrome/largeIcons.svg new file mode 100644 index 000000000..83303365b --- /dev/null +++ b/1-js/03-code-quality/01-debugging-chrome/largeIcons.svg @@ -0,0 +1,1472 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + a + b + c + d + e + f + g + h + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + + + + + + + + + + + + + + + + + + + diff --git a/1-js/03-code-quality/01-debugging-chrome/toolbarButtonGlyphs.svg b/1-js/03-code-quality/01-debugging-chrome/toolbarButtonGlyphs.svg deleted file mode 100644 index 5bdf20a83..000000000 --- a/1-js/03-code-quality/01-debugging-chrome/toolbarButtonGlyphs.svg +++ /dev/null @@ -1,1035 +0,0 @@ - -image/svg+xml \ No newline at end of file diff --git a/1-js/03-code-quality/02-coding-style/1-style-errors/solution.md b/1-js/03-code-quality/02-coding-style/1-style-errors/solution.md index 764e36c63..4facc8b29 100644 --- a/1-js/03-code-quality/02-coding-style/1-style-errors/solution.md +++ b/1-js/03-code-quality/02-coding-style/1-style-errors/solution.md @@ -12,7 +12,7 @@ function pow(x,n) // <- no space between arguments let x=prompt("x?",''), n=prompt("n?",'') // <-- technically possible, // but better make it 2 lines, also there's no spaces and missing ; -if (n<0) // <- no spaces inside (n < 0), and should be extra line above it +if (n<=0) // <- no spaces inside (n <= 0), and should be extra line above it { // <- figure bracket on a separate line // below - long lines can be split into multiple lines for improved readability alert(`Power ${n} is not supported, please enter an integer number greater than zero`); @@ -39,7 +39,7 @@ function pow(x, n) { let x = prompt("x?", ""); let n = prompt("n?", ""); -if (n < 0) { +if (n <= 0) { alert(`Power ${n} is not supported, please enter an integer number greater than zero`); } else { diff --git a/1-js/03-code-quality/02-coding-style/article.md b/1-js/03-code-quality/02-coding-style/article.md index d265da434..904f0a939 100644 --- a/1-js/03-code-quality/02-coding-style/article.md +++ b/1-js/03-code-quality/02-coding-style/article.md @@ -2,11 +2,11 @@ Our code must be as clean and easy to read as possible. -That is actually the art of programming -- to take a complex task and code it in a way that is both correct and human-readable. +That is actually the art of programming -- to take a complex task and code it in a way that is both correct and human-readable. A good code style greatly assists in that. ## Syntax -Here is a cheatsheet with some suggested rules (see below for more details): +Here is a cheat sheet with some suggested rules (see below for more details): ![](code-style.svg) -![](figure-bracket-style.png) +No one likes to read a long horizontal line of code. It's best practice to split them. -In summary: -- For very short code, one line is acceptable. For example: `if (cond) return null`. -- But a separate line for each statement in brackets is usually easier to read. +For example: +```js +// backtick quotes ` allow to split the string into multiple lines +let str = ` + ECMA International's TC39 is a group of JavaScript developers, + implementers, academics, and more, collaborating with the community + to maintain and evolve the definition of JavaScript. +`; +``` -### Line Length +And, for `if` statements: -No one likes to read a long horizontal line of code. It's best practice to split them up and limit the length of your lines. +```js +if ( + id === 123 && + moonPhase === 'Waning Gibbous' && + zodiacSign === 'Libra' +) { + letTheSorceryBegin(); +} +``` The maximum line length should be agreed upon at the team-level. It's usually 80 or 120 characters. @@ -88,11 +112,11 @@ There are two types of indents: - **Horizontal indents: 2 or 4 spaces.** - A horizontal indentation is made using either 2 or 4 spaces or the "Tab" symbol. Which one to choose is an old holy war. Spaces are more common nowadays. + A horizontal indentation is made using either 2 or 4 spaces or the horizontal tab symbol (key `key:Tab`). Which one to choose is an old holy war. Spaces are more common nowadays. - One advantage of spaces over tabs is that spaces allow more flexible configurations of indents than the "Tab" symbol. + One advantage of spaces over tabs is that spaces allow more flexible configurations of indents than the tab symbol. - For instance, we can align the arguments with the opening bracket, like this: + For instance, we can align the parameters with the opening bracket, like this: ```js no-beautify show(parameters, @@ -127,15 +151,15 @@ There are two types of indents: A semicolon should be present after each statement, even if it could possibly be skipped. -There are languages where a semicolon is truly optional and it is rarely used. In JavaScript, though, there are cases where a line break is not interpreted as a semicolon, leaving the code vulnerable to errors. +There are languages where a semicolon is truly optional and it is rarely used. In JavaScript, though, there are cases where a line break is not interpreted as a semicolon, leaving the code vulnerable to errors. See more about that in the chapter . -As you become more mature as a programmer, you may choose a no-semicolon style like [StandardJS](https://standardjs.com/). Until then, it's best to use semicolons to avoid possible pitfalls. +If you're an experienced JavaScript programmer, you may choose a no-semicolon code style like [StandardJS](https://standardjs.com/). Otherwise, it's best to use semicolons to avoid possible pitfalls. The majority of developers put semicolons. ### Nesting Levels Try to avoid nesting code too many levels deep. -Sometimes it's a good idea to use the ["continue"](info:while-for#continue) directive in a loop to avoid extra nesting. +For example, in the loop, it's sometimes a good idea to use the [`continue`](info:while-for#continue) directive to avoid extra nesting. For example, instead of adding a nested `if` conditional like this: @@ -197,13 +221,13 @@ function pow(x, n) { } ``` -The second one is more readable because the "edge case" of `n < 0` is handled early on. Once the check is done we can move on to the "main" code flow without the need for additional nesting. +The second one is more readable because the "special case" of `n < 0` is handled early on. Once the check is done we can move on to the "main" code flow without the need for additional nesting. ## Function Placement If you are writing several "helper" functions and the code that uses them, there are three ways to organize the functions. -1. Functions declared above the code that uses them: +1. Declare the functions *above* the code that uses them: ```js // *!*function declarations*/!* @@ -249,39 +273,39 @@ If you are writing several "helper" functions and the code that uses them, there Most of time, the second variant is preferred. -That's because when reading code, we first want to know *what it does*. If the code goes first, then it provides that information. Then, maybe we won't need to read the functions at all, especially if their names are descriptive of what they actually do. +That's because when reading code, we first want to know *what it does*. If the code goes first, then it becomes clear from the start. Then, maybe we won't need to read the functions at all, especially if their names are descriptive of what they actually do. ## Style Guides -A style guide contains general rules about "how to write" code, e.g. which quotes to use, how many spaces to indent, where to put line breaks, etc. A lot of minor things. +A style guide contains general rules about "how to write" code, e.g. which quotes to use, how many spaces to indent, the maximal line length, etc. A lot of minor things. When all members of a team use the same style guide, the code looks uniform, regardless of which team member wrote it. -Of course, a team can always write their own style guide. Most of the time though, there's no need to. There are many existing tried and true options to choose from, so adopting one of these is usually your best bet. +Of course, a team can always write their own style guide, but usually there's no need to. There are many existing guides to choose from. Some popular choices: -- [Google JavaScript Style Guide](https://google.github.io/styleguide/javascriptguide.xml) +- [Google JavaScript Style Guide](https://google.github.io/styleguide/jsguide.html) - [Airbnb JavaScript Style Guide](https://github.com/airbnb/javascript) - [Idiomatic.JS](https://github.com/rwaldron/idiomatic.js) - [StandardJS](https://standardjs.com/) - (plus many more) -If you're a novice developer, start with the cheatsheet at the beginning of this chapter. Once you've mastered that you can browse other style guides to pick up common principles and decide which one you like best. +If you're a novice developer, start with the cheat sheet at the beginning of this chapter. Then you can browse other style guides to pick up more ideas and decide which one you like best. ## Automated Linters -Linters are tools that can automatically check the style of your code and make suggestions for refactoring. +Linters are tools that can automatically check the style of your code and make improving suggestions. -The great thing about them is that style-checking can also find some bugs, like typos in variable or function names. Because of this feature, installing a linter is recommended even if you don't want to stick to one particular "code style". +The great thing about them is that style-checking can also find some bugs, like typos in variable or function names. Because of this feature, using a linter is recommended even if you don't want to stick to one particular "code style". -Here are the most well-known linting tools: +Here are some well-known linting tools: -- [JSLint](http://www.jslint.com/) -- one of the first linters. -- [JSHint](http://www.jshint.com/) -- more settings than JSLint. -- [ESLint](http://eslint.org/) -- probably the newest one. +- [JSLint](https://www.jslint.com/) -- one of the first linters. +- [JSHint](https://jshint.com/) -- more settings than JSLint. +- [ESLint](https://eslint.org/) -- probably the newest one. -All of them can do the job. The author uses [ESLint](http://eslint.org/). +All of them can do the job. The author uses [ESLint](https://eslint.org/). Most linters are integrated with many popular editors: just enable the plugin in the editor and configure the style. @@ -304,21 +328,21 @@ Here's an example of an `.eslintrc` file: }, "rules": { "no-console": 0, - }, - "indent": 2 + "indent": 2 + } } ``` Here the directive `"extends"` denotes that the configuration is based on the "eslint:recommended" set of settings. After that, we specify our own. -It is also possible to download style rule sets from the web and extend them instead. See for more details about installation. +It is also possible to download style rule sets from the web and extend them instead. See for more details about installation. Also certain IDEs have built-in linting, which is convenient but not as customizable as ESLint. ## Summary -All syntax rules described in this chapter (and in the style guides referenced) aim to increase the readability of your code, but all of them are debatable. +All syntax rules described in this chapter (and in the style guides referenced) aim to increase the readability of your code. All of them are debatable. -When we think about writing "better" code, the questions we should ask are, "What makes the code more readable and easier to understand?" and "What can help us avoid errors?" These are the main things to keep in mind when choosing and debating code styles. +When we think about writing "better" code, the questions we should ask ourselves are: "What makes the code more readable and easier to understand?" and "What can help us avoid errors?" These are the main things to keep in mind when choosing and debating code styles. Reading popular style guides will allow you to keep up to date with the latest ideas about code style trends and best practices. diff --git a/1-js/03-code-quality/02-coding-style/code-style.svg b/1-js/03-code-quality/02-coding-style/code-style.svg index 12a755c97..0a1db56c8 100644 --- a/1-js/03-code-quality/02-coding-style/code-style.svg +++ b/1-js/03-code-quality/02-coding-style/code-style.svg @@ -1 +1,5 @@ -2No space between the function name and parentheses between the parentheses and the parameterIndentation 2 spacesA space after for/if/while…} else { without a line breakSpaces around a nested callAn empty line between logical blocksLines are not very longA semicolon ; is mandatorySpaces around operatorsCurly brace { on the same line, after a spaceA space between argumentsA space between parameters \ No newline at end of file +<<<<<<< HEAD +2No space between the function name and parentheses between the parentheses and the parameterIndentation 2 spacesA space after for/if/while…} else { without a line breakSpaces around a nested callAn empty line between logical blocksLines are not very longA semicolon ; is mandatorySpaces around operatorsCurly brace { on the same line, after a spaceA space between argumentsA space between parameters +======= +2No space between the function name and parentheses between the parentheses and the parameterIndentation 2 spacesA space after for/if/while…} else { without a line breakSpaces around a nested callAn empty line between logical blocksLines are not very longA semicolon ; is mandatorySpaces around operatorsCurly brace { on the same line, after a spaceA space between argumentsA space between parameters +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/03-code-quality/02-coding-style/figure-bracket-style.png b/1-js/03-code-quality/02-coding-style/figure-bracket-style.png deleted file mode 100644 index b04db65c6..000000000 Binary files a/1-js/03-code-quality/02-coding-style/figure-bracket-style.png and /dev/null differ diff --git a/1-js/03-code-quality/02-coding-style/figure-bracket-style@2x.png b/1-js/03-code-quality/02-coding-style/figure-bracket-style@2x.png deleted file mode 100644 index 0e994ca4b..000000000 Binary files a/1-js/03-code-quality/02-coding-style/figure-bracket-style@2x.png and /dev/null differ diff --git a/1-js/03-code-quality/03-comments/article.md b/1-js/03-code-quality/03-comments/article.md index 930ff929f..af3a06c80 100644 --- a/1-js/03-code-quality/03-comments/article.md +++ b/1-js/03-code-quality/03-comments/article.md @@ -4,7 +4,7 @@ As we know from the chapter , comments can be single-line: start We normally use them to describe how and why the code works. -From the first sight, commenting might be obvious, but novices in programming usually get it wrong. +At first sight, commenting might be obvious, but novices in programming often use them wrongly. ## Bad comments @@ -18,7 +18,7 @@ complex; code; ``` -But in good code the amount of such "explanatory" comments should be minimal. Seriously, code should be easy to understand without them. +But in good code, the amount of such "explanatory" comments should be minimal. Seriously, the code should be easy to understand without them. There's a great rule about that: "if the code is so unclear that it requires a comment, then maybe it should be rewritten instead". @@ -120,30 +120,30 @@ In reality, we can't totally avoid "explanatory" comments. There are complex alg So, explanatory comments are usually bad. Which comments are good? Describe the architecture -: Provide a high-level overview of components, how they interact, what's the control flow in various situations... In short -- the bird's eye view of the code. There's a special diagram language [UML](http://wikipedia.org/wiki/Unified_Modeling_Language) for high-level architecture diagrams. Definitely worth studying. +: Provide a high-level overview of components, how they interact, what's the control flow in various situations... In short -- the bird's eye view of the code. There's a special language [UML](http://wikipedia.org/wiki/Unified_Modeling_Language) to build high-level architecture diagrams explaining the code. Definitely worth studying. -Document a function usage +Document function parameters and usage : There's a special syntax [JSDoc](http://en.wikipedia.org/wiki/JSDoc) to document a function: usage, parameters, returned value. - For instance: - ```js - /** - * Returns x raised to the n-th power. - * - * @param {number} x The number to raise. - * @param {number} n The power, must be a natural number. - * @return {number} x raised to the n-th power. - */ - function pow(x, n) { - ... - } - ``` +For instance: +```js +/** + * Returns x raised to the n-th power. + * + * @param {number} x The number to raise. + * @param {number} n The power, must be a natural number. + * @return {number} x raised to the n-th power. + */ +function pow(x, n) { + ... +} +``` - Such comments allow us to understand the purpose of the function and use it the right way without looking in its code. +Such comments allow us to understand the purpose of the function and use it the right way without looking in its code. - By the way, many editors like [WebStorm](https://www.jetbrains.com/webstorm/) can understand them as well and use them to provide autocomplete and some automatic code-checking. +By the way, many editors like [WebStorm](https://www.jetbrains.com/webstorm/) can understand them as well and use them to provide autocomplete and some automatic code-checking. - Also, there are tools like [JSDoc 3](https://github.com/jsdoc3/jsdoc) that can generate HTML-documentation from the comments. You can read more information about JSDoc at . +Also, there are tools like [JSDoc 3](https://github.com/jsdoc/jsdoc) that can generate HTML-documentation from the comments. You can read more information about JSDoc at . Why is the task solved this way? : What's written is important. But what's *not* written may be even more important to understand what's going on. Why is the task solved exactly this way? The code gives no answer. @@ -175,6 +175,6 @@ Good comments allow us to maintain the code well, come back to it after a delay **Avoid comments:** - That tell "how code works" and "what it does". -- Put them only if it's impossible to make the code so simple and self-descriptive that it doesn't require those. +- Put them in only if it's impossible to make the code so simple and self-descriptive that it doesn't require them. Comments are also used for auto-documenting tools like JSDoc3: they read them and generate HTML-docs (or docs in another format). diff --git a/1-js/03-code-quality/04-ninja-code/article.md b/1-js/03-code-quality/04-ninja-code/article.md index 9019242f2..96fdf4143 100644 --- a/1-js/03-code-quality/04-ninja-code/article.md +++ b/1-js/03-code-quality/04-ninja-code/article.md @@ -1,7 +1,7 @@ # Ninja code -```quote author="Confucius" +```quote author="Confucius (Analects)" Learning without thought is labor lost; thought without learning is perilous. ``` @@ -43,7 +43,7 @@ The Dao hides in wordlessness. Only the Dao is well begun and well completed. ``` -Another way to code faster is to use single-letter variable names everywhere. Like `a`, `b` or `c`. +Another way to code shorter is to use single-letter variable names everywhere. Like `a`, `b` or `c`. A short variable disappears in the code like a real ninja in the forest. No one will be able to find it using "search" of the editor. And even if someone does, they won't be able to "decipher" what the name `a` or `b` means. @@ -104,8 +104,8 @@ A quick read of such code becomes impossible. And when there's a typo... Ummm... ## Smart synonyms -```quote author="Confucius" -The hardest thing of all is to find a black cat in a dark room, especially if there is no cat. +```quote author="Laozi (Tao Te Ching)" +The Tao that can be told is not the eternal Tao. The name that can be named is not the eternal name. ``` Using *similar* names for *same* things makes life more interesting and shows your creativity to the public. @@ -137,7 +137,7 @@ Instead, reuse existing names. Just write new values into them. In a function try to use only variables passed as parameters. -That would make it really hard to identify what's exactly in the variable *now*. And also where it comes from. A person with weak intuition would have to analyze the code line-by-line and track the changes through every code branch. +That would make it really hard to identify what's exactly in the variable *now*. And also where it comes from. The purpose is to develop the intuition and memory of a person reading the code. A person with weak intuition would have to analyze the code line-by-line and track the changes through every code branch. **An advanced variant of the approach is to covertly (!) replace the value with something alike in the middle of a loop or a function.** @@ -155,7 +155,7 @@ function ninjaFunction(elem) { A fellow programmer who wants to work with `elem` in the second half of the function will be surprised... Only during the debugging, after examining the code they will find out that they're working with a clone! -Seen in code regularly. Deadly effective even against an experienced ninja. +Seen in code regularly. Deadly effective even against an experienced ninja. ## Underscores for fun @@ -169,8 +169,7 @@ A smart ninja puts underscores at one spot of code and evades them at other plac Let everyone see how magnificent your entities are! Names like `superElement`, `megaFrame` and `niceItem` will definitely enlighten a reader. -Indeed, from one hand, something is written: `super..`, `mega..`, `nice..` But from the other hand -- that brings no details. A reader may decide to look for a hidden meaning and meditate for an hour or two. - +Indeed, from one hand, something is written: `super..`, `mega..`, `nice..` But from the other hand -- that brings no details. A reader may decide to look for a hidden meaning and meditate for an hour or two of their paid working time. ## Overlap outer variables @@ -180,7 +179,7 @@ When in the light, can't see anything in the darkness.
When in the darkness, can see everything in the light. ``` -Use same names for variables inside and outside a function. As simple. No efforts required. +Use same names for variables inside and outside a function. As simple. No efforts to invent new names. ```js let *!*user*/!* = authenticateUser(); diff --git a/1-js/03-code-quality/05-testing-mocha/3-pow-test-wrong/solution.md b/1-js/03-code-quality/05-testing-mocha/3-pow-test-wrong/solution.md index 7b58f0bf1..4d0571b9d 100644 --- a/1-js/03-code-quality/05-testing-mocha/3-pow-test-wrong/solution.md +++ b/1-js/03-code-quality/05-testing-mocha/3-pow-test-wrong/solution.md @@ -4,7 +4,7 @@ What we have here is actually 3 tests, but layed out as a single function with 3 Sometimes it's easier to write this way, but if an error occurs, it's much less obvious what went wrong. -If an error happens inside a complex execution flow, then we'll have to figure out the data at that point. We'll actually have to *debug the test*. +If an error happens in the middle of a complex execution flow, then we'll have to figure out the data at that point. We'll actually have to *debug the test*. It would be much better to break the test into multiple `it` blocks with clearly written inputs and outputs. diff --git a/1-js/03-code-quality/05-testing-mocha/article.md b/1-js/03-code-quality/05-testing-mocha/article.md index c7b164b15..4c2b1aa5e 100644 --- a/1-js/03-code-quality/05-testing-mocha/article.md +++ b/1-js/03-code-quality/05-testing-mocha/article.md @@ -1,10 +1,8 @@ -# Automated testing with mocha +# Automated testing with Mocha -Automated testing will be used in further tasks. +Automated testing will be used in further tasks, and it's also widely used in real projects. -It's actually a part of the "educational minimum" of a developer. - -## Why we need tests? +## Why do we need tests? When we write a function, we can usually imagine what it should do: which parameters give which results. @@ -20,15 +18,15 @@ For instance, we're creating a function `f`. Wrote some code, testing: `f(1)` wo That's very typical. When we develop something, we keep a lot of possible use cases in mind. But it's hard to expect a programmer to check all of them manually after every change. So it becomes easy to fix one thing and break another one. -**Automated testing means that tests are written separately, in addition to the code. They can be executed easily and check all the main use cases.** +**Automated testing means that tests are written separately, in addition to the code. They run our functions in various ways and compare results with the expected.** ## Behavior Driven Development (BDD) -Let's use a technique named [Behavior Driven Development](http://en.wikipedia.org/wiki/Behavior-driven_development) or, in short, BDD. That approach is used among many projects. BDD is not just about testing. That's more. +Let's start with a technique named [Behavior Driven Development](http://en.wikipedia.org/wiki/Behavior-driven_development) or, in short, BDD. **BDD is three things in one: tests AND documentation AND examples.** -Enough words. Let's see the example. +To understand BDD, we'll examine a practical case of development. ## Development of "pow": the spec @@ -38,7 +36,7 @@ That task is just an example: there's the `**` operator in JavaScript that can d Before creating the code of `pow`, we can imagine what the function should do and describe it. -Such description is called a *specification* or, in short, a spec, and looks like this: +Such description is called a *specification* or, in short, a spec, and contains descriptions of use cases together with tests for them, like this: ```js describe("pow", function() { @@ -53,17 +51,17 @@ describe("pow", function() { A spec has three main building blocks that you can see above: `describe("title", function() { ... })` -: What functionality we're describing. Uses to group "workers" -- the `it` blocks. In our case we're describing the function `pow`. +: What functionality we're describing? In our case we're describing the function `pow`. Used to group "workers" -- the `it` blocks. -`it("title", function() { ... })` +`it("use case description", function() { ... })` : In the title of `it` we *in a human-readable way* describe the particular use case, and the second argument is a function that tests it. `assert.equal(value1, value2)` : The code inside `it` block, if the implementation is correct, should execute without errors. - Functions `assert.*` are used to check whether `pow` works as expected. Right here we're using one of them -- `assert.equal`, it compares arguments and yields an error if they are not equal. Here it checks that the result of `pow(2, 3)` equals `8`. + Functions `assert.*` are used to check whether `pow` works as expected. Right here we're using one of them -- `assert.equal`, it compares arguments and yields an error if they are not equal. Here it checks that the result of `pow(2, 3)` equals `8`. There are other types of comparisons and checks, that we'll add later. - There are other types of comparisons and checks that we'll see further. +The specification can be executed, and it will run the test specified in `it` block. We'll see that later. ## The development flow @@ -71,7 +69,7 @@ The flow of development usually looks like this: 1. An initial spec is written, with tests for the most basic functionality. 2. An initial implementation is created. -3. To check whether it works, we run the testing framework [Mocha](http://mochajs.org/) (more details soon) that runs the spec. Errors are displayed. We make corrections until everything works. +3. To check whether it works, we run the testing framework [Mocha](https://mochajs.org/) (more details soon) that runs the spec. While the functionality is not complete, errors are displayed. We make corrections until everything works. 4. Now we have a working initial implementation with tests. 5. We add more use cases to the spec, probably not yet supported by the implementations. Tests start to fail. 6. Go to 3, update the implementation till tests give no errors. @@ -79,15 +77,17 @@ The flow of development usually looks like this: So, the development is *iterative*. We write the spec, implement it, make sure tests pass, then write more tests, make sure they work etc. At the end we have both a working implementation and tests for it. -In our case, the first step is complete: we have an initial spec for `pow`. So let's make an implementation. But before that let's make a "zero" run of the spec, just to see that tests are working (they will all fail). +Let's see this development flow in our practical case. + +The first step is already complete: we have an initial spec for `pow`. Now, before making the implementation, let's use a few JavaScript libraries to run the tests, just to see that they are working (they will all fail). ## The spec in action Here in the tutorial we'll be using the following JavaScript libraries for tests: -- [Mocha](http://mochajs.org/) -- the core framework: it provides common testing functions including `describe` and `it` and the main function that runs tests. -- [Chai](http://chaijs.com) -- the library with many assertions. It allows to use a lot of different assertions, for now we need only `assert.equal`. -- [Sinon](http://sinonjs.org/) -- a library to spy over functions, emulate built-in functions and more, we'll need it much later. +- [Mocha](https://mochajs.org/) -- the core framework: it provides common testing functions including `describe` and `it` and the main function that runs tests. +- [Chai](https://www.chaijs.com/) -- the library with many assertions. It allows to use a lot of different assertions, for now we need only `assert.equal`. +- [Sinon](https://sinonjs.org/) -- a library to spy over functions, emulate built-in functions and more, we'll need it much later. These libraries are suitable for both in-browser and server-side testing. Here we'll consider the browser variant. @@ -110,7 +110,7 @@ The result: As of now, the test fails, there's an error. That's logical: we have an empty function code in `pow`, so `pow(2,3)` returns `undefined` instead of `8`. -For the future, let's note that there are advanced test-runners, like [karma](https://karma-runner.github.io/) and others. So it's generally not a problem to setup many different tests. +For the future, let's note that there are more high-level test-runners, like [karma](https://karma-runner.github.io/) and others, that make it easy to autorun many different tests. ## Initial implementation @@ -132,7 +132,7 @@ What we've done is definitely a cheat. The function does not work: an attempt to ...But the situation is quite typical, it happens in practice. Tests pass, but the function works wrong. Our spec is imperfect. We need to add more use cases to it. -Let's add one more test to see if `pow(3, 4) = 81`. +Let's add one more test to check that `pow(3, 4) = 81`. We can select one of two ways to organize the test here: @@ -159,8 +159,8 @@ We can select one of two ways to organize the test here: assert.equal(pow(2, 3), 8); }); - it("3 raised to power 3 is 27", function() { - assert.equal(pow(3, 3), 27); + it("3 raised to power 4 is 81", function() { + assert.equal(pow(3, 4), 81); }); }); @@ -182,7 +182,7 @@ The result: [iframe height=250 src="pow-2" edit border="1"] -As we could expect, the second test failed. Sure, our function always returns `8`, while the `assert` expects `27`. +As we could expect, the second test failed. Sure, our function always returns `8`, while the `assert` expects `81`. ## Improving the implementation @@ -296,7 +296,7 @@ Testing finished – after all tests (after) [edit src="beforeafter" title="Open the example in the sandbox."] -Usually, `beforeEach/afterEach` (`before/after`) are used to perform initialization, zero out counters or do something else between the tests (or test groups). +Usually, `beforeEach/afterEach` and `before/after` are used to perform initialization, zero out counters or do something else between the tests (or test groups). ```` ## Extending the spec @@ -336,17 +336,16 @@ The result with new tests: The newly added tests fail, because our implementation does not support them. That's how BDD is done: first we write failing tests, and then make an implementation for them. ```smart header="Other assertions" - Please note the assertion `assert.isNaN`: it checks for `NaN`. -There are other assertions in Chai as well, for instance: +There are other assertions in [Chai](https://www.chaijs.com/) as well, for instance: - `assert.equal(value1, value2)` -- checks the equality `value1 == value2`. - `assert.strictEqual(value1, value2)` -- checks the strict equality `value1 === value2`. - `assert.notEqual`, `assert.notStrictEqual` -- inverse checks to the ones above. - `assert.isTrue(value)` -- checks that `value === true` - `assert.isFalse(value)` -- checks that `value === false` -- ...the full list is in the [docs](http://chaijs.com/api/assert/) +- ...the full list is in the [docs](https://www.chaijs.com/api/assert/) ``` So we should add a couple of lines to `pow`: @@ -380,9 +379,9 @@ In BDD, the spec goes first, followed by implementation. At the end we have both The spec can be used in three ways: -1. **Tests** guarantee that the code works correctly. -2. **Docs** -- the titles of `describe` and `it` tell what the function does. -3. **Examples** -- the tests are actually working examples showing how a function can be used. +1. As **Tests** - they guarantee that the code works correctly. +2. As **Docs** -- the titles of `describe` and `it` tell what the function does. +3. As **Examples** -- the tests are actually working examples showing how a function can be used. With the spec, we can safely improve, change, even rewrite the function from scratch and make sure it still works right. @@ -390,23 +389,21 @@ That's especially important in large projects when a function is used in many pl Without tests, people have two ways: -1. To perform the change, no matter what. And then our users meet bugs and report them. If we can afford that. -2. Or people become afraid to modify such functions, if the punishment for errors is harsh. Then it becomes old, overgrown with cobwebs, no one wants to get into it, and that's not good. +1. To perform the change, no matter what. And then our users meet bugs, as we probably fail to check something manually. +2. Or, if the punishment for errors is harsh, as there are no tests, people become afraid to modify such functions, and then the code becomes outdated, no one wants to get into it. Not good for development. -**Automatically tested code is contrary to that!** +**Automatic testing helps to avoid these problems!** -If the project is covered with tests, there's just no such problem. We can run tests and see a lot of checks made in a matter of seconds. +If the project is covered with tests, there's just no such problem. After any changes, we can run tests and see a lot of checks made in a matter of seconds. **Besides, a well-tested code has better architecture.** -Naturally, that's because it's easier to change and improve it. But not only that. +Naturally, that's because auto-tested code is easier to modify and improve. But there's also another reason. To write tests, the code should be organized in such a way that every function has a clearly described task, well-defined input and output. That means a good architecture from the beginning. In real life that's sometimes not that easy. Sometimes it's difficult to write a spec before the actual code, because it's not yet clear how it should behave. But in general writing tests makes development faster and more stable. -## What now? - Later in the tutorial you will meet many tasks with tests baked-in. So you'll see more practical examples. Writing tests requires good JavaScript knowledge. But we're just starting to learn it. So, to settle down everything, as of now you're not required to write tests, but you should already be able to read them even if they are a little bit more complex than in this chapter. diff --git a/1-js/03-code-quality/05-testing-mocha/beforeafter.view/test.js b/1-js/03-code-quality/05-testing-mocha/beforeafter.view/test.js index cad51d3ee..d3de82546 100644 --- a/1-js/03-code-quality/05-testing-mocha/beforeafter.view/test.js +++ b/1-js/03-code-quality/05-testing-mocha/beforeafter.view/test.js @@ -1,5 +1,11 @@ describe("test", function() { + + // Mocha usually waits for the tests for 2 seconds before considering them wrong + + this.timeout(200000); // With this code we increase this - in this case to 200,000 milliseconds + // This is because of the "alert" function, because if you delay pressing the "OK" button the tests will not pass! + before(() => alert("Testing started – before all tests")); after(() => alert("Testing finished – after all tests")); diff --git a/1-js/03-code-quality/05-testing-mocha/pow-2.view/test.js b/1-js/03-code-quality/05-testing-mocha/pow-2.view/test.js index 9a2f8fde7..c803f0e61 100644 --- a/1-js/03-code-quality/05-testing-mocha/pow-2.view/test.js +++ b/1-js/03-code-quality/05-testing-mocha/pow-2.view/test.js @@ -4,8 +4,8 @@ describe("pow", function() { assert.equal(pow(2, 3), 8); }); - it("3 raised to power 3 is 27", function() { - assert.equal(pow(3, 3), 27); + it("3 raised to power 4 is 81", function() { + assert.equal(pow(3, 4), 81); }); }); diff --git a/1-js/03-code-quality/06-polyfills/article.md b/1-js/03-code-quality/06-polyfills/article.md index 907730fdc..5ca123908 100644 --- a/1-js/03-code-quality/06-polyfills/article.md +++ b/1-js/03-code-quality/06-polyfills/article.md @@ -1,57 +1,89 @@ -# Polyfills +# Polyfills and transpilers -The JavaScript language steadily evolves. New proposals to the language appear regularly, they are analyzed and, if considered worthy, are appended to the list at and then progress to the [specification](http://www.ecma-international.org/publications/standards/Ecma-262.htm). +The JavaScript language steadily evolves. New proposals to the language appear regularly, they are analyzed and, if considered worthy, are appended to the list at and then progress to the [specification](https://www.ecma-international.org/publications-and-standards/standards/ecma-262/). Teams behind JavaScript engines have their own ideas about what to implement first. They may decide to implement proposals that are in draft and postpone things that are already in the spec, because they are less interesting or just harder to do. -So it's quite common for an engine to implement only the part of the standard. +So it's quite common for an engine to implement only part of the standard. -A good page to see the current state of support for language features is (it's big, we have a lot to study yet). +A good page to see the current state of support for language features is (it's big, we have a lot to study yet). -## Babel +As programmers, we'd like to use most recent features. The more good stuff - the better! -When we use modern features of the language, some engines may fail to support such code. Just as said, not all features are implemented everywhere. +On the other hand, how to make our modern code work on older engines that don't understand recent features yet? -Here Babel comes to the rescue. +There are two tools for that: -[Babel](https://babeljs.io) is a [transpiler](https://en.wikipedia.org/wiki/Source-to-source_compiler). It rewrites modern JavaScript code into the previous standard. +1. Transpilers. +2. Polyfills. -Actually, there are two parts in Babel: +Here, in this chapter, our purpose is to get the gist of how they work, and their place in web development. -1. First, the transpiler program, which rewrites the code. The developer runs it on their own computer. It rewrites the code into the older standard. And then the code is delivered to the website for users. Modern project build system like [webpack](http://webpack.github.io/) or [brunch](http://brunch.io/) provide means to run transpiler automatically on every code change, so that doesn't involve any time loss from our side. +## Transpilers -2. Second, the polyfill. +A [transpiler](https://en.wikipedia.org/wiki/Source-to-source_compiler) is a special piece of software that translates source code to another source code. It can parse ("read and understand") modern code and rewrite it using older syntax constructs, so that it'll also work in outdated engines. - The transpiler rewrites the code, so syntax features are covered. But for new functions we need to write a special script that implements them. JavaScript is a highly dynamic language, scripts may not just add new functions, but also modify built-in ones, so that they behave according to the modern standard. +E.g. JavaScript before year 2020 didn't have the "nullish coalescing operator" `??`. So, if a visitor uses an outdated browser, it may fail to understand the code like `height = height ?? 100`. - There's a term "polyfill" for scripts that "fill in" the gap and add missing implementations. +A transpiler would analyze our code and rewrite `height ?? 100` into `(height !== undefined && height !== null) ? height : 100`. - Two interesting polyfills are: - - [babel polyfill](https://babeljs.io/docs/usage/polyfill/) that supports a lot, but is big. - - [polyfill.io](http://polyfill.io) service that allows to load/construct polyfills on-demand, depending on the features we need. +```js +// before running the transpiler +height = height ?? 100; -So, we need to setup the transpiler and add the polyfill for old engines to support modern features. +// after running the transpiler +height = (height !== undefined && height !== null) ? height : 100; +``` -If we orient towards modern engines and do not use features except those supported everywhere, then we don't need to use Babel. +Now the rewritten code is suitable for older JavaScript engines. -## Examples in the tutorial +Usually, a developer runs the transpiler on their own computer, and then deploys the transpiled code to the server. +Speaking of names, [Babel](https://babeljs.io) is one of the most prominent transpilers out there. -````online -Most examples are runnable at-place, like this: +Modern project build systems, such as [webpack](https://webpack.js.org/), provide a means to run a transpiler automatically on every code change, so it's very easy to integrate into the development process. -```js run -alert('Press the "Play" button in the upper-right corner to run'); -``` +## Polyfills + +New language features may include not only syntax constructs and operators, but also built-in functions. + +For example, `Math.trunc(n)` is a function that "cuts off" the decimal part of a number, e.g `Math.trunc(1.23)` returns `1`. + +In some (very outdated) JavaScript engines, there's no `Math.trunc`, so such code will fail. + +As we're talking about new functions, not syntax changes, there's no need to transpile anything here. We just need to declare the missing function. + +A script that updates/adds new functions is called "polyfill". It "fills in" the gap and adds missing implementations. -Examples that use modern JS will work only if your browser supports it. -```` +For this particular case, the polyfill for `Math.trunc` is a script that implements it, like this: -```offline -As you're reading the offline version, examples are not runnable. But they usually work :) +```js +if (!Math.trunc) { // if no such function + // implement it + Math.trunc = function(number) { + // Math.ceil and Math.floor exist even in ancient JavaScript engines + // they are covered later in the tutorial + return number < 0 ? Math.ceil(number) : Math.floor(number); + }; +} ``` -[Chrome Canary](https://www.google.com/chrome/browser/canary.html) is good for all examples, but other modern browsers are mostly fine too. +JavaScript is a highly dynamic language. Scripts may add/modify any function, even built-in ones. + +One interesting polyfill library is [core-js](https://github.com/zloirock/core-js), which supports a wide range of features and allows you to include only the ones you need. + +## Summary + +In this chapter we'd like to motivate you to study modern and even "bleeding-edge" language features, even if they aren't yet well-supported by JavaScript engines. + +Just don't forget to use a transpiler (if using modern syntax or operators) and polyfills (to add functions that may be missing). They'll ensure that the code works. + +For example, later when you're familiar with JavaScript, you can setup a code build system based on [webpack](https://webpack.js.org/) with the [babel-loader](https://github.com/babel/babel-loader) plugin. + +Good resources that show the current state of support for various features: +- - for pure JavaScript. +- - for browser-related functions. + +P.S. Google Chrome is usually the most up-to-date with language features, try it if a tutorial demo fails. Most tutorial demos work with any modern browser though. -Note that on production we can use Babel to translate the code into suitable for less recent browsers, so there will be no such limitation, the code will run everywhere. diff --git a/1-js/04-object-basics/01-object/4-const-object/solution.md b/1-js/04-object-basics/01-object/4-const-object/solution.md deleted file mode 100644 index f73c2f92b..000000000 --- a/1-js/04-object-basics/01-object/4-const-object/solution.md +++ /dev/null @@ -1,19 +0,0 @@ -Sure, it works, no problem. - -The `const` only protects the variable itself from changing. - -In other words, `user` stores a reference to the object. And it can't be changed. But the content of the object can. - -```js run -const user = { - name: "John" -}; - -*!* -// works -user.name = "Pete"; -*/!* - -// error -user = 123; -``` diff --git a/1-js/04-object-basics/01-object/4-const-object/task.md b/1-js/04-object-basics/01-object/4-const-object/task.md deleted file mode 100644 index a9aada631..000000000 --- a/1-js/04-object-basics/01-object/4-const-object/task.md +++ /dev/null @@ -1,18 +0,0 @@ -importance: 5 - ---- - -# Constant objects? - -Is it possible to change an object declared with `const`? What do you think? - -```js -const user = { - name: "John" -}; - -*!* -// does it work? -user.name = "Pete"; -*/!* -``` diff --git a/1-js/04-object-basics/01-object/8-multiply-numeric/task.md b/1-js/04-object-basics/01-object/8-multiply-numeric/task.md index 33eb89220..6878ca088 100644 --- a/1-js/04-object-basics/01-object/8-multiply-numeric/task.md +++ b/1-js/04-object-basics/01-object/8-multiply-numeric/task.md @@ -2,9 +2,9 @@ importance: 3 --- -# Multiply numeric properties by 2 +# Multiply numeric property values by 2 -Create a function `multiplyNumeric(obj)` that multiplies all numeric properties of `obj` by `2`. +Create a function `multiplyNumeric(obj)` that multiplies all numeric property values of `obj` by `2`. For instance: diff --git a/1-js/04-object-basics/01-object/article.md b/1-js/04-object-basics/01-object/article.md index f59ec0292..f044e0563 100644 --- a/1-js/04-object-basics/01-object/article.md +++ b/1-js/04-object-basics/01-object/article.md @@ -1,7 +1,7 @@ # Objects -As we know from the chapter , there are seven data types in JavaScript. Six of them are called "primitive", because their values contain only a single thing (be it a string or a number or whatever). +As we know from the chapter , there are eight data types in JavaScript. Seven of them are called "primitive", because their values contain only a single thing (be it a string or a number or whatever). In contrast, objects are used to store keyed collections of various data and more complex entities. In JavaScript, objects penetrate almost every aspect of the language. So we must understand them first before going in-depth anywhere else. @@ -44,12 +44,12 @@ The resulting `user` object can be imagined as a cabinet with two signed files l ![user object](object-user.svg) -We can add, remove and read files from it any time. +We can add, remove and read files from it at any time. Property values are accessible using the dot notation: ```js -// get fields of the object: +// get property values of the object: alert( user.name ); // John alert( user.age ); // 30 ``` @@ -62,7 +62,7 @@ user.isAdmin = true; ![user object 2](object-user-isadmin.svg) -To remove a property, we can use `delete` operator: +To remove a property, we can use the `delete` operator: ```js delete user.age; @@ -101,10 +101,11 @@ For multiword properties, the dot access doesn't work: user.likes birds = true ``` -That's because the dot requires the key to be a valid variable identifier. That is: no spaces and other limitations. +JavaScript doesn't understand that. It thinks that we address `user.likes`, and then gives a syntax error when comes across unexpected `birds`. -There's an alternative "square bracket notation" that works with any string: +The dot requires the key to be a valid variable identifier. That implies: contains no spaces, doesn't start with a digit and doesn't include special characters (`$` and `_` are allowed). +There's an alternative "square bracket notation" that works with any string: ```js run let user = {}; @@ -130,7 +131,7 @@ let key = "likes birds"; user[key] = true; ``` -Here, the variable `key` may be calculated at run-time or depend on the user input. And then we use it to access the property. That gives us a great deal of flexibility. The dot notation cannot be used in a similar way. +Here, the variable `key` may be calculated at run-time or depend on the user input. And then we use it to access the property. That gives us a great deal of flexibility. For instance: @@ -146,10 +147,21 @@ let key = prompt("What do you want to know about the user?", "name"); alert( user[key] ); // John (if enter "name") ``` +The dot notation cannot be used in a similar way: + +```js run +let user = { + name: "John", + age: 30 +}; + +let key = "name"; +alert( user.key ) // undefined +``` ### Computed properties -We can use square brackets in an object literal. That's called *computed properties*. +We can use square brackets in an object literal, when creating an object. That's called *computed properties*. For instance: @@ -189,49 +201,13 @@ let bag = { }; ``` -Square brackets are much more powerful than the dot notation. They allow any property names and variables. But they are also more cumbersome to write. +Square brackets are much more powerful than dot notation. They allow any property names and variables. But they are also more cumbersome to write. So most of the time, when property names are known and simple, the dot is used. And if we need something more complex, then we switch to square brackets. - - -````smart header="Reserved words are allowed as property names" -A variable cannot have a name equal to one of language-reserved words like "for", "let", "return" etc. - -But for an object property, there's no such restriction. Any name is fine: - -```js run -let obj = { - for: 1, - let: 2, - return: 3 -}; - -alert( obj.for + obj.let + obj.return ); // 6 -``` - -Basically, any name is allowed, but there's a special one: `"__proto__"` that gets special treatment for historical reasons. For instance, we can't set it to a non-object value: - -```js run -let obj = {}; -obj.__proto__ = 5; -alert(obj.__proto__); // [object Object], didn't work as intended -``` - -As we see from the code, the assignment to a primitive `5` is ignored. - -That can become a source of bugs and even vulnerabilities if we intend to store arbitrary key-value pairs in an object, and allow a visitor to specify the keys. - -In that case the visitor may choose "__proto__" as the key, and the assignment logic will be ruined (as shown above). - -There is a way to make objects treat `__proto__` as a regular property, which we'll cover later, but first we need to know more about objects. -There's also another data structure [Map](info:map-set-weakmap-weakset), that we'll learn in the chapter , which supports arbitrary keys. -```` - - ## Property value shorthand -In real code we often use existing variables as values for property names. +In real code, we often use existing variables as values for property names. For instance: @@ -239,7 +215,7 @@ For instance: function makeUser(name, age) { return { name: name, - age: age + age: age, // ...other properties }; } @@ -257,7 +233,7 @@ function makeUser(name, age) { *!* return { name, // same as name: name - age // same as age: age + age, // same as age: age // ... }; */!* @@ -273,9 +249,57 @@ let user = { }; ``` -## Existence check -A notable objects feature is that it's possible to access any property. There will be no error if the property doesn't exist! Accessing a non-existing property just returns `undefined`. It provides a very common way to test whether the property exists -- to get it and compare vs undefined: +## Property names limitations + +As we already know, a variable cannot have a name equal to one of the language-reserved words like "for", "let", "return" etc. + +But for an object property, there's no such restriction: + +```js run +// these properties are all right +let obj = { + for: 1, + let: 2, + return: 3 +}; + +alert( obj.for + obj.let + obj.return ); // 6 +``` + +In short, there are no limitations on property names. They can be any strings or symbols (a special type for identifiers, to be covered later). + +Other types are automatically converted to strings. + +For instance, a number `0` becomes a string `"0"` when used as a property key: + +```js run +let obj = { + 0: "test" // same as "0": "test" +}; + +// both alerts access the same property (the number 0 is converted to string "0") +alert( obj["0"] ); // test +alert( obj[0] ); // test (same property) +``` + +There's a minor gotcha with a special property named `__proto__`. We can't set it to a non-object value: + +```js run +let obj = {}; +obj.__proto__ = 5; // assign a number +alert(obj.__proto__); // [object Object] - the value is an object, didn't work as intended +``` + +As we see from the code, the assignment to a primitive `5` is ignored. + +We'll cover the special nature of `__proto__` in [subsequent chapters](info:prototype-inheritance), and suggest the [ways to fix](info:prototype-methods) such behavior. + +## Property existence test, "in" operator + +A notable feature of objects in JavaScript, compared to many other languages, is that it's possible to access any property. There will be no error if the property doesn't exist! + +Reading a non-existing property just returns `undefined`. So we can easily test whether the property exists: ```js run let user = {}; @@ -283,7 +307,7 @@ let user = {}; alert( user.noSuchProperty === undefined ); // true means "no such property" ``` -There also exists a special operator `"in"` to check for the existence of a property. +There's also a special operator `"in"` for that. The syntax is: ```js @@ -301,17 +325,18 @@ alert( "blabla" in user ); // false, user.blabla doesn't exist Please note that on the left side of `in` there must be a *property name*. That's usually a quoted string. -If we omit quotes, that would mean a variable containing the actual name will be tested. For instance: +If we omit quotes, that means a variable should contain the actual name to be tested. For instance: ```js run let user = { age: 30 }; let key = "age"; -alert( *!*key*/!* in user ); // true, takes the name from key and checks for such property +alert( *!*key*/!* in user ); // true, property "age" exists ``` -````smart header="Using \"in\" for properties that store `undefined`" -Usually, the strict comparison `"=== undefined"` check works fine. But there's a special case when it fails, but `"in"` works correctly. +Why does the `in` operator exist? Isn't it enough to compare against `undefined`? + +Well, most of the time the comparison with `undefined` works fine. But there's a special case when it fails, but `"in"` works correctly. It's when an object property exists, but stores `undefined`: @@ -325,14 +350,12 @@ alert( obj.test ); // it's undefined, so - no such property? alert( "test" in obj ); // true, the property does exist! ``` - In the code above, the property `obj.test` technically exists. So the `in` operator works right. -Situations like this happen very rarely, because `undefined` is usually not assigned. We mostly use `null` for "unknown" or "empty" values. So the `in` operator is an exotic guest in the code. -```` +Situations like this happen very rarely, because `undefined` should not be explicitly assigned. We mostly use `null` for "unknown" or "empty" values. So the `in` operator is an exotic guest in the code. -## The "for..in" loop +## The "for..in" loop [#forin] To walk over all keys of an object, there exists a special form of the loop: `for..in`. This is a completely different thing from the `for(;;)` construct that we studied before. @@ -365,7 +388,6 @@ Note that all "for" constructs allow us to declare the looping variable inside t Also, we could use another variable name here instead of `key`. For instance, `"for (let prop in obj)"` is also widely used. - ### Ordered like an object Are objects ordered? In other words, if we loop over an object, do we get all properties in the same order they were added? Can we rely on this? @@ -390,7 +412,7 @@ for (let code in codes) { */!* ``` -The object may be used to suggest a list of options to the user. If we're making a site mainly for German audience then we probably want `49` to be the first. +The object may be used to suggest a list of options to the user. If we're making a site mainly for a German audience then we probably want `49` to be the first. But if we run the code, we see a totally different picture: @@ -402,9 +424,10 @@ The phone codes go in the ascending sorted order, because they are integers. So ````smart header="Integer properties? What's that?" The "integer property" term here means a string that can be converted to-and-from an integer without a change. -So, "49" is an integer property name, because when it's transformed to an integer number and back, it's still the same. But "+49" and "1.2" are not: +So, `"49"` is an integer property name, because when it's transformed to an integer number and back, it's still the same. But `"+49"` and `"1.2"` are not: ```js run +// Number(...) explicitly converts to a number // Math.trunc is a built-in function that removes the decimal part alert( String(Math.trunc(Number("49"))) ); // "49", same, integer property alert( String(Math.trunc(Number("+49"))) ); // "49", not same "+49" ⇒ not integer property @@ -449,6 +472,7 @@ for (let code in codes) { Now it works as intended. +<<<<<<< HEAD ## Copying by reference One of the fundamental differences of objects vs primitives is that they are stored and copied "by reference". @@ -705,6 +729,8 @@ There's a standard algorithm for deep cloning that handles the case above and mo +======= +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ## Summary Objects are associative arrays with several special features. @@ -715,17 +741,13 @@ They store properties (key-value pairs), where: To access a property, we can use: - The dot notation: `obj.property`. -- Square brackets notation `obj["property"]`. Square brackets allow to take the key from a variable, like `obj[varWithKey]`. +- Square brackets notation `obj["property"]`. Square brackets allow taking the key from a variable, like `obj[varWithKey]`. Additional operators: - To delete a property: `delete obj.prop`. - To check if a property with the given key exists: `"key" in obj`. - To iterate over an object: `for (let key in obj)` loop. -Objects are assigned and copied by reference. In other words, a variable stores not the "object value", but a "reference" (address in memory) for the value. So copying such a variable or passing it as a function argument copies that reference, not the object. All operations via copied references (like adding/removing properties) are performed on the same single object. - -To make a "real copy" (a clone) we can use `Object.assign` or [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep). - What we've studied in this chapter is called a "plain object", or just `Object`. There are many other kinds of objects in JavaScript: diff --git a/1-js/04-object-basics/02-garbage-collection/memory-user-john.svg b/1-js/04-object-basics/02-garbage-collection/memory-user-john.svg deleted file mode 100644 index 45ce86ed2..000000000 --- a/1-js/04-object-basics/02-garbage-collection/memory-user-john.svg +++ /dev/null @@ -1,25 +0,0 @@ - - - - memory-user-john.svg - Created with sketchtool. - - - - user - - - - name: "John" - - - Object - - - - - <global> - - - - \ No newline at end of file diff --git a/1-js/04-object-basics/02-object-copy/article.md b/1-js/04-object-basics/02-object-copy/article.md new file mode 100644 index 000000000..e80f748ab --- /dev/null +++ b/1-js/04-object-basics/02-object-copy/article.md @@ -0,0 +1,325 @@ +# Object references and copying + +One of the fundamental differences of objects versus primitives is that objects are stored and copied "by reference", whereas primitive values: strings, numbers, booleans, etc -- are always copied "as a whole value". + +That's easy to understand if we look a bit under the hood of what happens when we copy a value. + +Let's start with a primitive, such as a string. + +Here we put a copy of `message` into `phrase`: + +```js +let message = "Hello!"; +let phrase = message; +``` + +As a result we have two independent variables, each one storing the string `"Hello!"`. + +![](variable-copy-value.svg) + +Quite an obvious result, right? + +Objects are not like that. + +**A variable assigned to an object stores not the object itself, but its "address in memory" -- in other words "a reference" to it.** + +Let's look at an example of such a variable: + +```js +let user = { + name: "John" +}; +``` + +And here's how it's actually stored in memory: + +![](variable-contains-reference.svg) + +The object is stored somewhere in memory (at the right of the picture), while the `user` variable (at the left) has a "reference" to it. + +We may think of an object variable, such as `user`, like a sheet of paper with the address of the object on it. + +When we perform actions with the object, e.g. take a property `user.name`, the JavaScript engine looks at what's at that address and performs the operation on the actual object. + +Now here's why it's important. + +**When an object variable is copied, the reference is copied, but the object itself is not duplicated.** + +For instance: + +```js no-beautify +let user = { name: "John" }; + +let admin = user; // copy the reference +``` + +Now we have two variables, each storing a reference to the same object: + +![](variable-copy-reference.svg) + +As you can see, there's still one object, but now with two variables that reference it. + +We can use either variable to access the object and modify its contents: + +```js run +let user = { name: 'John' }; + +let admin = user; + +*!* +admin.name = 'Pete'; // changed by the "admin" reference +*/!* + +alert(*!*user.name*/!*); // 'Pete', changes are seen from the "user" reference +``` + +It's as if we had a cabinet with two keys and used one of them (`admin`) to get into it and make changes. Then, if we later use another key (`user`), we are still opening the same cabinet and can access the changed contents. + +## Comparison by reference + +Two objects are equal only if they are the same object. + +For instance, here `a` and `b` reference the same object, thus they are equal: + +```js run +let a = {}; +let b = a; // copy the reference + +alert( a == b ); // true, both variables reference the same object +alert( a === b ); // true +``` + +And here two independent objects are not equal, even though they look alike (both are empty): + +```js run +let a = {}; +let b = {}; // two independent objects + +alert( a == b ); // false +``` + +For comparisons like `obj1 > obj2` or for a comparison against a primitive `obj == 5`, objects are converted to primitives. We'll study how object conversions work very soon, but to tell the truth, such comparisons are needed very rarely -- usually they appear as a result of a programming mistake. + +````smart header="Const objects can be modified" +An important side effect of storing objects as references is that an object declared as `const` *can* be modified. + +For instance: + +```js run +const user = { + name: "John" +}; + +*!* +user.name = "Pete"; // (*) +*/!* + +alert(user.name); // Pete +``` + +It might seem that the line `(*)` would cause an error, but it does not. The value of `user` is constant, it must always reference the same object, but properties of that object are free to change. + +In other words, the `const user` gives an error only if we try to set `user=...` as a whole. + +That said, if we really need to make constant object properties, it's also possible, but using totally different methods. We'll mention that in the chapter . +```` + +## Cloning and merging, Object.assign [#cloning-and-merging-object-assign] + +So, copying an object variable creates one more reference to the same object. + +But what if we need to duplicate an object? + +We can create a new object and replicate the structure of the existing one, by iterating over its properties and copying them on the primitive level. + +Like this: + +```js run +let user = { + name: "John", + age: 30 +}; + +*!* +let clone = {}; // the new empty object + +// let's copy all user properties into it +for (let key in user) { + clone[key] = user[key]; +} +*/!* + +// now clone is a fully independent object with the same content +clone.name = "Pete"; // changed the data in it + +alert( user.name ); // still John in the original object +``` + +We can also use the method [Object.assign](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign). + +The syntax is: + +```js +Object.assign(dest, ...sources) +``` + +- The first argument `dest` is a target object. +- Further arguments is a list of source objects. + +It copies the properties of all source objects into the target `dest`, and then returns it as the result. + +For example, we have `user` object, let's add a couple of permissions to it: + +```js run +let user = { name: "John" }; + +let permissions1 = { canView: true }; +let permissions2 = { canEdit: true }; + +*!* +// copies all properties from permissions1 and permissions2 into user +Object.assign(user, permissions1, permissions2); +*/!* + +// now user = { name: "John", canView: true, canEdit: true } +alert(user.name); // John +alert(user.canView); // true +alert(user.canEdit); // true +``` + +If the copied property name already exists, it gets overwritten: + +```js run +let user = { name: "John" }; + +Object.assign(user, { name: "Pete" }); + +alert(user.name); // now user = { name: "Pete" } +``` + +We also can use `Object.assign` to perform a simple object cloning: + +```js run +let user = { + name: "John", + age: 30 +}; + +*!* +let clone = Object.assign({}, user); +*/!* + +alert(clone.name); // John +alert(clone.age); // 30 +``` + +Here it copies all properties of `user` into the empty object and returns it. + +There are also other methods of cloning an object, e.g. using the [spread syntax](info:rest-parameters-spread) `clone = {...user}`, covered later in the tutorial. + +## Nested cloning + +Until now we assumed that all properties of `user` are primitive. But properties can be references to other objects. + +Like this: +```js run +let user = { + name: "John", + sizes: { + height: 182, + width: 50 + } +}; + +alert( user.sizes.height ); // 182 +``` + +Now it's not enough to copy `clone.sizes = user.sizes`, because `user.sizes` is an object, and will be copied by reference, so `clone` and `user` will share the same sizes: + +```js run +let user = { + name: "John", + sizes: { + height: 182, + width: 50 + } +}; + +let clone = Object.assign({}, user); + +alert( user.sizes === clone.sizes ); // true, same object + +// user and clone share sizes +user.sizes.width = 60; // change a property from one place +alert(clone.sizes.width); // 60, get the result from the other one +``` + +To fix that and make `user` and `clone` truly separate objects, we should use a cloning loop that examines each value of `user[key]` and, if it's an object, then replicate its structure as well. That is called a "deep cloning" or "structured cloning". There's [structuredClone](https://developer.mozilla.org/en-US/docs/Web/API/structuredClone) method that implements deep cloning. + + +### structuredClone + +The call `structuredClone(object)` clones the `object` with all nested properties. + +Here's how we can use it in our example: + +```js run +let user = { + name: "John", + sizes: { + height: 182, + width: 50 + } +}; + +*!* +let clone = structuredClone(user); +*/!* + +alert( user.sizes === clone.sizes ); // false, different objects + +// user and clone are totally unrelated now +user.sizes.width = 60; // change a property from one place +alert(clone.sizes.width); // 50, not related +``` + +The `structuredClone` method can clone most data types, such as objects, arrays, primitive values. + +It also supports circular references, when an object property references the object itself (directly or via a chain or references). + +For instance: + +```js run +let user = {}; +// let's create a circular reference: +// user.me references the user itself +user.me = user; + +let clone = structuredClone(user); +alert(clone.me === clone); // true +``` + +As you can see, `clone.me` references the `clone`, not the `user`! So the circular reference was cloned correctly as well. + +Although, there are cases when `structuredClone` fails. + +For instance, when an object has a function property: + +```js run +// error +structuredClone({ + f: function() {} +}); +``` + +Function properties aren't supported. + +To handle such complex cases we may need to use a combination of cloning methods, write custom code or, to not reinvent the wheel, take an existing implementation, for instance [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep) from the JavaScript library [lodash](https://lodash.com). + +## Summary + +Objects are assigned and copied by reference. In other words, a variable stores not the "object value", but a "reference" (address in memory) for the value. So copying such a variable or passing it as a function argument copies that reference, not the object itself. + +All operations via copied references (like adding/removing properties) are performed on the same single object. + +To make a "real copy" (a clone) we can use `Object.assign` for the so-called "shallow copy" (nested objects are copied by reference) or a "deep cloning" function `structuredClone` or use a custom cloning implementation, such as [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep). diff --git a/1-js/04-object-basics/02-object-copy/variable-contains-reference.svg b/1-js/04-object-basics/02-object-copy/variable-contains-reference.svg new file mode 100644 index 000000000..267f04578 --- /dev/null +++ b/1-js/04-object-basics/02-object-copy/variable-contains-reference.svg @@ -0,0 +1 @@ +username \ No newline at end of file diff --git a/1-js/04-object-basics/02-object-copy/variable-copy-reference.svg b/1-js/04-object-basics/02-object-copy/variable-copy-reference.svg new file mode 100644 index 000000000..a847fb200 --- /dev/null +++ b/1-js/04-object-basics/02-object-copy/variable-copy-reference.svg @@ -0,0 +1 @@ +useradminname \ No newline at end of file diff --git a/1-js/04-object-basics/02-object-copy/variable-copy-value.svg b/1-js/04-object-basics/02-object-copy/variable-copy-value.svg new file mode 100644 index 000000000..0d6ca67bc --- /dev/null +++ b/1-js/04-object-basics/02-object-copy/variable-copy-value.svg @@ -0,0 +1 @@ +"Hello!"message"Hello!"phrase \ No newline at end of file diff --git a/1-js/04-object-basics/02-garbage-collection/article.md b/1-js/04-object-basics/03-garbage-collection/article.md similarity index 66% rename from 1-js/04-object-basics/02-garbage-collection/article.md rename to 1-js/04-object-basics/03-garbage-collection/article.md index 3b385afd2..1b576d629 100644 --- a/1-js/04-object-basics/02-garbage-collection/article.md +++ b/1-js/04-object-basics/03-garbage-collection/article.md @@ -14,8 +14,8 @@ Simply put, "reachable" values are those that are accessible or usable somehow. For instance: - - Local variables and parameters of the current function. - - Variables and parameters for other functions on the current chain of nested calls. + - The currently executing function, its local variables and parameters. + - Other functions on the current chain of nested calls, their local variables and parameters. - Global variables. - (there are some other, internal ones as well) @@ -23,7 +23,7 @@ Simply put, "reachable" values are those that are accessible or usable somehow. 2. Any other value is considered reachable if it's reachable from a root by a reference or by a chain of references. - For instance, if there's an object in a local variable, and that object has a property referencing another object, that object is considered reachable. And those that it references are also reachable. Detailed examples to follow. + For instance, if there's an object in a global variable, and that object has a property referencing another object, *that* object is considered reachable. And those that it references are also reachable. Detailed examples to follow. There's a background process in the JavaScript engine that is called [garbage collector](https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)). It monitors all objects and removes those that have become unreachable. @@ -74,7 +74,7 @@ Now if we do the same: user = null; ``` -...Then the object is still reachable via `admin` global variable, so it's in memory. If we overwrite `admin` too, then it can be removed. +...Then the object is still reachable via `admin` global variable, so it must stay in memory. If we overwrite `admin` too, then it can be removed. ## Interlinked objects @@ -156,7 +156,7 @@ The following "garbage collection" steps are regularly performed: - The garbage collector takes roots and "marks" (remembers) them. - Then it visits and "marks" all references from them. - Then it visits marked objects and marks *their* references. All visited objects are remembered, so as not to visit the same object twice in the future. -- ...And so on until there are unvisited references (reachable from the roots). +- ...And so on until every reachable (from the roots) references are visited. - All objects except marked ones are removed. For instance, let our object structure look like this: @@ -169,11 +169,11 @@ The first step marks the roots: ![](garbage-collection-2.svg) -Then their references are marked: +Then we follow their references and mark referenced objects: ![](garbage-collection-3.svg) -...And their references, while possible: +...And continue to follow further references, while possible: ![](garbage-collection-4.svg) @@ -181,17 +181,17 @@ Now the objects that could not be visited in the process are considered unreacha ![](garbage-collection-5.svg) -That's the concept of how garbage collection works. +We can also imagine the process as spilling a huge bucket of paint from the roots, that flows through all references and marks all reachable objects. The unmarked ones are then removed. -JavaScript engines apply many optimizations to make it run faster and not affect the execution. +That's the concept of how garbage collection works. JavaScript engines apply many optimizations to make it run faster and not introduce any delays into the code execution. Some of the optimizations: -- **Generational collection** -- objects are split into two sets: "new ones" and "old ones". Many objects appear, do their job and die fast, they can be cleaned up aggressively. Those that survive for long enough, become "old" and are examined less often. -- **Incremental collection** -- if there are many objects, and we try to walk and mark the whole object set at once, it may take some time and introduce visible delays in the execution. So the engine tries to split the garbage collection into pieces. Then the pieces are executed one by one, separately. That requires some extra bookkeeping between them to track changes, but we have many tiny delays instead of a big one. +- **Generational collection** -- objects are split into two sets: "new ones" and "old ones". In typical code, many objects have a short life span: they appear, do their job and die fast, so it makes sense to track new objects and clear the memory from them if that's the case. Those that survive for long enough, become "old" and are examined less often. +- **Incremental collection** -- if there are many objects, and we try to walk and mark the whole object set at once, it may take some time and introduce visible delays in the execution. So the engine splits the whole set of existing objects into multiple parts. And then clear these parts one after another. There are many small garbage collections instead of a total one. That requires some extra bookkeeping between them to track changes, but we get many tiny delays instead of a big one. - **Idle-time collection** -- the garbage collector tries to run only while the CPU is idle, to reduce the possible effect on the execution. -There are other optimizations and flavours of garbage collection algorithms. As much as I'd like to describe them here, I have to hold off, because different engines implement different tweaks and techniques. And, what's even more important, things change as engines develop, so going deeper "in advance", without a real need is probably not worth that. Unless, of course, it is a matter of pure interest, then there will be some links for you below. +There exist other optimizations and flavours of garbage collection algorithms. As much as I'd like to describe them here, I have to hold off, because different engines implement different tweaks and techniques. And, what's even more important, things change as engines develop, so studying deeper "in advance", without a real need is probably not worth that. Unless, of course, it is a matter of pure interest, then there will be some links for you below. ## Summary @@ -199,14 +199,14 @@ The main things to know: - Garbage collection is performed automatically. We cannot force or prevent it. - Objects are retained in memory while they are reachable. -- Being referenced is not the same as being reachable (from a root): a pack of interlinked objects can become unreachable as a whole. +- Being referenced is not the same as being reachable (from a root): a pack of interlinked objects can become unreachable as a whole, as we've seen in the example above. Modern engines implement advanced algorithms of garbage collection. A general book "The Garbage Collection Handbook: The Art of Automatic Memory Management" (R. Jones et al) covers some of them. -If you are familiar with low-level programming, the more detailed information about V8 garbage collector is in the article [A tour of V8: Garbage Collection](http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection). +If you are familiar with low-level programming, more detailed information about V8's garbage collector is in the article [A tour of V8: Garbage Collection](https://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection). -[V8 blog](http://v8project.blogspot.com/) also publishes articles about changes in memory management from time to time. Naturally, to learn the garbage collection, you'd better prepare by learning about V8 internals in general and read the blog of [Vyacheslav Egorov](http://mrale.ph) who worked as one of V8 engineers. I'm saying: "V8", because it is best covered with articles in the internet. For other engines, many approaches are similar, but garbage collection differs in many aspects. +The [V8 blog](https://v8.dev/) also publishes articles about changes in memory management from time to time. Naturally, to learn more about garbage collection, you'd better prepare by learning about V8 internals in general and read the blog of [Vyacheslav Egorov](https://mrale.ph) who worked as one of the V8 engineers. I'm saying: "V8", because it is best covered by articles on the internet. For other engines, many approaches are similar, but garbage collection differs in many aspects. -In-depth knowledge of engines is good when you need low-level optimizations. It would be wise to plan that as the next step after you're familiar with the language. +In-depth knowledge of engines is good when you need low-level optimizations. It would be wise to plan that as the next step after you're familiar with the language. diff --git a/1-js/04-object-basics/02-garbage-collection/family-delete-refs.svg b/1-js/04-object-basics/03-garbage-collection/family-delete-refs.svg similarity index 55% rename from 1-js/04-object-basics/02-garbage-collection/family-delete-refs.svg rename to 1-js/04-object-basics/03-garbage-collection/family-delete-refs.svg index a67ffc3cc..1a98116e3 100644 --- a/1-js/04-object-basics/02-garbage-collection/family-delete-refs.svg +++ b/1-js/04-object-basics/03-garbage-collection/family-delete-refs.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/family-delete-refs.svg @@ -53,4 +54,7 @@ - \ No newline at end of file + +======= +<global variable>ObjectObjectwifefamilyname: "John"name: "Ann"motherObjectfatherhusband +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/family-delete-refs.svg diff --git a/1-js/04-object-basics/02-garbage-collection/family-no-family.svg b/1-js/04-object-basics/03-garbage-collection/family-no-family.svg similarity index 60% rename from 1-js/04-object-basics/02-garbage-collection/family-no-family.svg rename to 1-js/04-object-basics/03-garbage-collection/family-no-family.svg index df8601215..eb023f4ee 100644 --- a/1-js/04-object-basics/02-garbage-collection/family-no-family.svg +++ b/1-js/04-object-basics/03-garbage-collection/family-no-family.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/family-no-family.svg @@ -54,4 +55,7 @@ - \ No newline at end of file + +======= +<global>ObjectObjectfatherwifename: "John"name: "Ann"motherObjecthusbandfamily: null +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/family-no-family.svg diff --git a/1-js/04-object-basics/02-garbage-collection/family-no-father-2.svg b/1-js/04-object-basics/03-garbage-collection/family-no-father-2.svg similarity index 52% rename from 1-js/04-object-basics/02-garbage-collection/family-no-father-2.svg rename to 1-js/04-object-basics/03-garbage-collection/family-no-father-2.svg index 502785902..742509d30 100644 --- a/1-js/04-object-basics/02-garbage-collection/family-no-father-2.svg +++ b/1-js/04-object-basics/03-garbage-collection/family-no-father-2.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/family-no-father-2.svg @@ -30,4 +31,7 @@ - \ No newline at end of file + +======= +Objectfamilyname: "Ann"motherObject<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/family-no-father-2.svg diff --git a/1-js/04-object-basics/02-garbage-collection/family-no-father.svg b/1-js/04-object-basics/03-garbage-collection/family-no-father.svg similarity index 61% rename from 1-js/04-object-basics/02-garbage-collection/family-no-father.svg rename to 1-js/04-object-basics/03-garbage-collection/family-no-father.svg index 9837ced82..ada595880 100644 --- a/1-js/04-object-basics/02-garbage-collection/family-no-father.svg +++ b/1-js/04-object-basics/03-garbage-collection/family-no-father.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/family-no-father.svg @@ -47,4 +48,7 @@ - \ No newline at end of file + +======= +ObjectObjectwifefamilyname: "John"name: "Ann"motherObject<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/family-no-father.svg diff --git a/1-js/04-object-basics/02-garbage-collection/family.svg b/1-js/04-object-basics/03-garbage-collection/family.svg similarity index 54% rename from 1-js/04-object-basics/02-garbage-collection/family.svg rename to 1-js/04-object-basics/03-garbage-collection/family.svg index 6c66e8569..8ac961be5 100644 --- a/1-js/04-object-basics/02-garbage-collection/family.svg +++ b/1-js/04-object-basics/03-garbage-collection/family.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/family.svg @@ -49,4 +50,7 @@ - \ No newline at end of file + +======= +ObjectObjectfatherwifefamilyname: "John"name: "Ann"motherObjecthusband<global variable> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/family.svg diff --git a/1-js/04-object-basics/02-garbage-collection/garbage-collection-1.svg b/1-js/04-object-basics/03-garbage-collection/garbage-collection-1.svg similarity index 59% rename from 1-js/04-object-basics/02-garbage-collection/garbage-collection-1.svg rename to 1-js/04-object-basics/03-garbage-collection/garbage-collection-1.svg index d3bc5ce94..68e20df3b 100644 --- a/1-js/04-object-basics/02-garbage-collection/garbage-collection-1.svg +++ b/1-js/04-object-basics/03-garbage-collection/garbage-collection-1.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/garbage-collection-1.svg @@ -159,4 +160,7 @@ - \ No newline at end of file + +======= +<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/garbage-collection-1.svg diff --git a/1-js/04-object-basics/02-garbage-collection/garbage-collection-2.svg b/1-js/04-object-basics/03-garbage-collection/garbage-collection-2.svg similarity index 62% rename from 1-js/04-object-basics/02-garbage-collection/garbage-collection-2.svg rename to 1-js/04-object-basics/03-garbage-collection/garbage-collection-2.svg index c7311022a..aaac31b9e 100644 --- a/1-js/04-object-basics/02-garbage-collection/garbage-collection-2.svg +++ b/1-js/04-object-basics/03-garbage-collection/garbage-collection-2.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/garbage-collection-2.svg @@ -175,4 +176,7 @@ - \ No newline at end of file + +======= +<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/garbage-collection-2.svg diff --git a/1-js/04-object-basics/02-garbage-collection/garbage-collection-3.svg b/1-js/04-object-basics/03-garbage-collection/garbage-collection-3.svg similarity index 63% rename from 1-js/04-object-basics/02-garbage-collection/garbage-collection-3.svg rename to 1-js/04-object-basics/03-garbage-collection/garbage-collection-3.svg index a0ce257e3..523043c83 100644 --- a/1-js/04-object-basics/02-garbage-collection/garbage-collection-3.svg +++ b/1-js/04-object-basics/03-garbage-collection/garbage-collection-3.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/garbage-collection-3.svg @@ -187,4 +188,7 @@ - \ No newline at end of file + +======= +<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/garbage-collection-3.svg diff --git a/1-js/04-object-basics/02-garbage-collection/garbage-collection-4.svg b/1-js/04-object-basics/03-garbage-collection/garbage-collection-4.svg similarity index 63% rename from 1-js/04-object-basics/02-garbage-collection/garbage-collection-4.svg rename to 1-js/04-object-basics/03-garbage-collection/garbage-collection-4.svg index bc5a035c7..201576082 100644 --- a/1-js/04-object-basics/02-garbage-collection/garbage-collection-4.svg +++ b/1-js/04-object-basics/03-garbage-collection/garbage-collection-4.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/garbage-collection-4.svg @@ -191,4 +192,7 @@ - \ No newline at end of file + +======= +<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/garbage-collection-4.svg diff --git a/1-js/04-object-basics/02-garbage-collection/garbage-collection-5.svg b/1-js/04-object-basics/03-garbage-collection/garbage-collection-5.svg similarity index 64% rename from 1-js/04-object-basics/02-garbage-collection/garbage-collection-5.svg rename to 1-js/04-object-basics/03-garbage-collection/garbage-collection-5.svg index 150aa9265..906235438 100644 --- a/1-js/04-object-basics/02-garbage-collection/garbage-collection-5.svg +++ b/1-js/04-object-basics/03-garbage-collection/garbage-collection-5.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/garbage-collection-5.svg @@ -209,4 +210,7 @@ - \ No newline at end of file + +======= +<global>unreachables +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/garbage-collection-5.svg diff --git a/1-js/04-object-basics/02-garbage-collection/memory-user-john-admin.svg b/1-js/04-object-basics/03-garbage-collection/memory-user-john-admin.svg similarity index 51% rename from 1-js/04-object-basics/02-garbage-collection/memory-user-john-admin.svg rename to 1-js/04-object-basics/03-garbage-collection/memory-user-john-admin.svg index bc7a23d33..948f55005 100644 --- a/1-js/04-object-basics/02-garbage-collection/memory-user-john-admin.svg +++ b/1-js/04-object-basics/03-garbage-collection/memory-user-john-admin.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/memory-user-john-admin.svg @@ -26,4 +27,7 @@ - \ No newline at end of file + +======= +username: "John"Objectadmin<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/memory-user-john-admin.svg diff --git a/1-js/04-object-basics/02-garbage-collection/memory-user-john-lost.svg b/1-js/04-object-basics/03-garbage-collection/memory-user-john-lost.svg similarity index 61% rename from 1-js/04-object-basics/02-garbage-collection/memory-user-john-lost.svg rename to 1-js/04-object-basics/03-garbage-collection/memory-user-john-lost.svg index 78009e310..d4b301fcc 100644 --- a/1-js/04-object-basics/02-garbage-collection/memory-user-john-lost.svg +++ b/1-js/04-object-basics/03-garbage-collection/memory-user-john-lost.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/memory-user-john-lost.svg @@ -27,4 +28,7 @@ - \ No newline at end of file + +======= +name: "John"Objectuser: null<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/memory-user-john-lost.svg diff --git a/1-js/04-object-basics/03-garbage-collection/memory-user-john.svg b/1-js/04-object-basics/03-garbage-collection/memory-user-john.svg new file mode 100644 index 000000000..ef75846a7 --- /dev/null +++ b/1-js/04-object-basics/03-garbage-collection/memory-user-john.svg @@ -0,0 +1,29 @@ +<<<<<<< HEAD:1-js/04-object-basics/02-garbage-collection/memory-user-john.svg + + + + memory-user-john.svg + Created with sketchtool. + + + + user + + + + name: "John" + + + Object + + + + + <global> + + + + +======= +username: "John"Object<global> +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/04-object-basics/03-garbage-collection/memory-user-john.svg diff --git a/1-js/04-object-basics/04-object-methods/4-object-property-this/solution.md b/1-js/04-object-basics/04-object-methods/4-object-property-this/solution.md index f5773ec2c..f33c9310e 100644 --- a/1-js/04-object-basics/04-object-methods/4-object-property-this/solution.md +++ b/1-js/04-object-basics/04-object-methods/4-object-property-this/solution.md @@ -7,21 +7,32 @@ function makeUser() { name: "John", ref: this }; -}; +} let user = makeUser(); alert( user.ref.name ); // Error: Cannot read property 'name' of undefined ``` -That's because rules that set `this` do not look at object literals. +That's because rules that set `this` do not look at object definition. Only the moment of call matters. -Here the value of `this` inside `makeUser()` is `undefined`, because it is called as a function, not as a method. +Here the value of `this` inside `makeUser()` is `undefined`, because it is called as a function, not as a method with "dot" syntax. -And the object literal itself has no effect on `this`. The value of `this` is one for the whole function, code blocks and object literals do not affect it. +The value of `this` is one for the whole function, code blocks and object literals do not affect it. So `ref: this` actually takes current `this` of the function. +We can rewrite the function and return the same `this` with `undefined` value: + +```js run +function makeUser(){ + return this; // this time there's no object literal +} + +alert( makeUser().name ); // Error: Cannot read property 'name' of undefined +``` +As you can see the result of `alert( makeUser().name )` is the same as the result of `alert( user.ref.name )` from the previous example. + Here's the opposite case: ```js run @@ -34,7 +45,7 @@ function makeUser() { } */!* }; -}; +} let user = makeUser(); @@ -42,5 +53,3 @@ alert( user.ref().name ); // John ``` Now it works, because `user.ref()` is a method. And the value of `this` is set to the object before dot `.`. - - diff --git a/1-js/04-object-basics/04-object-methods/4-object-property-this/task.md b/1-js/04-object-basics/04-object-methods/4-object-property-this/task.md index 4784b082c..c6f8f9658 100644 --- a/1-js/04-object-basics/04-object-methods/4-object-property-this/task.md +++ b/1-js/04-object-basics/04-object-methods/4-object-property-this/task.md @@ -14,7 +14,7 @@ function makeUser() { name: "John", ref: this }; -}; +} let user = makeUser(); diff --git a/1-js/04-object-basics/04-object-methods/7-calculator/_js.view/test.js b/1-js/04-object-basics/04-object-methods/7-calculator/_js.view/test.js index 1f71eda4c..4decb76dc 100644 --- a/1-js/04-object-basics/04-object-methods/7-calculator/_js.view/test.js +++ b/1-js/04-object-basics/04-object-methods/7-calculator/_js.view/test.js @@ -15,6 +15,11 @@ describe("calculator", function() { afterEach(function() { prompt.restore(); }); + + it('the read get two values and saves them as object properties', function () { + assert.equal(calculator.a, 2); + assert.equal(calculator.b, 3); + }); it("the sum is 5", function() { assert.equal(calculator.sum(), 5); diff --git a/1-js/04-object-basics/04-object-methods/7-calculator/task.md b/1-js/04-object-basics/04-object-methods/7-calculator/task.md index aa22608ec..82d0da030 100644 --- a/1-js/04-object-basics/04-object-methods/7-calculator/task.md +++ b/1-js/04-object-basics/04-object-methods/7-calculator/task.md @@ -6,7 +6,7 @@ importance: 5 Create an object `calculator` with three methods: -- `read()` prompts for two values and saves them as object properties. +- `read()` prompts for two values and saves them as object properties with names `a` and `b` respectively. - `sum()` returns the sum of saved values. - `mul()` multiplies saved values and returns the result. @@ -21,4 +21,3 @@ alert( calculator.mul() ); ``` [demo] - diff --git a/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/solution.js b/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/solution.js index e98fe6410..a35c009cc 100644 --- a/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/solution.js +++ b/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/solution.js @@ -11,5 +11,6 @@ let ladder = { }, showStep: function() { alert(this.step); + return this; } }; \ No newline at end of file diff --git a/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/test.js b/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/test.js index a2b17fcc4..b4f2459b7 100644 --- a/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/test.js +++ b/1-js/04-object-basics/04-object-methods/8-chain-calls/_js.view/test.js @@ -32,6 +32,14 @@ describe('Ladder', function() { it('down().up().up().up() ', function() { assert.equal(ladder.down().up().up().up().step, 2); }); + + it('showStep() should return this', function() { + assert.equal(ladder.showStep(), ladder); + }); + + it('up().up().down().showStep().down().showStep()', function () { + assert.equal(ladder.up().up().down().showStep().down().showStep().step, 0) + }); after(function() { ladder.step = 0; diff --git a/1-js/04-object-basics/04-object-methods/8-chain-calls/solution.md b/1-js/04-object-basics/04-object-methods/8-chain-calls/solution.md index 2b47873fc..f215461dd 100644 --- a/1-js/04-object-basics/04-object-methods/8-chain-calls/solution.md +++ b/1-js/04-object-basics/04-object-methods/8-chain-calls/solution.md @@ -21,9 +21,9 @@ let ladder = { return this; */!* } -} +}; -ladder.up().up().down().up().down().showStep(); // 1 +ladder.up().up().down().showStep().down().showStep(); // shows 1 then 0 ``` We also can write a single call per line. For long chains it's more readable: @@ -33,7 +33,7 @@ ladder .up() .up() .down() - .up() + .showStep() // 1 .down() - .showStep(); // 1 + .showStep(); // 0 ``` diff --git a/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md b/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md index eca9f4e92..7d2ef8c15 100644 --- a/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md +++ b/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md @@ -4,7 +4,7 @@ importance: 2 # Chaining -There's a `ladder` object that allows to go up and down: +There's a `ladder` object that allows you to go up and down: ```js let ladder = { @@ -21,19 +21,21 @@ let ladder = { }; ``` -Now, if we need to make several calls in sequence, can do it like this: +Now, if we need to make several calls in sequence, we can do it like this: ```js ladder.up(); ladder.up(); ladder.down(); ladder.showStep(); // 1 +ladder.down(); +ladder.showStep(); // 0 ``` -Modify the code of `up`, `down` and `showStep` to make the calls chainable, like this: +Modify the code of `up`, `down`, and `showStep` to make the calls chainable, like this: ```js -ladder.up().up().down().showStep(); // 1 +ladder.up().up().down().showStep().down().showStep(); // shows 1 then 0 ``` -Such approach is widely used across JavaScript libraries. +Such an approach is widely used across JavaScript libraries. diff --git a/1-js/04-object-basics/04-object-methods/article.md b/1-js/04-object-basics/04-object-methods/article.md index 0418adee0..cea2b6a70 100644 --- a/1-js/04-object-basics/04-object-methods/article.md +++ b/1-js/04-object-basics/04-object-methods/article.md @@ -15,7 +15,7 @@ Actions are represented in JavaScript by functions in properties. ## Method examples -For the start, let's teach the `user` to say hello: +For a start, let's teach the `user` to say hello: ```js run let user = { @@ -32,11 +32,11 @@ user.sayHi = function() { user.sayHi(); // Hello! ``` -Here we've just used a Function Expression to create the function and assign it to the property `user.sayHi` of the object. +Here we've just used a Function Expression to create a function and assign it to the property `user.sayHi` of the object. -Then we can call it. The user can now speak! +Then we can call it as `user.sayHi()`. The user can now speak! -A function that is the property of an object is called its *method*. +A function that is a property of an object is called its *method*. So, here we've got a method `sayHi` of the object `user`. @@ -51,7 +51,7 @@ let user = { // first, declare function sayHi() { alert("Hello!"); -}; +} // then add as a method user.sayHi = sayHi; @@ -61,9 +61,9 @@ user.sayHi(); // Hello! ``` ```smart header="Object-oriented programming" -When we write our code using objects to represent entities, that's called an [object-oriented programming](https://en.wikipedia.org/wiki/Object-oriented_programming), in short: "OOP". +When we write our code using objects to represent entities, that's called [object-oriented programming](https://en.wikipedia.org/wiki/Object-oriented_programming), in short: "OOP". -OOP is a big thing, an interesting science of its own. How to choose the right entities? How to organize the interaction between them? That's architecture, and there are great books on that topic, like "Design Patterns: Elements of Reusable Object-Oriented Software" by E.Gamma, R.Helm, R.Johnson, J.Vissides or "Object-Oriented Analysis and Design with Applications" by G.Booch, and more. +OOP is a big thing, an interesting science of its own. How to choose the right entities? How to organize the interaction between them? That's architecture, and there are great books on that topic, like "Design Patterns: Elements of Reusable Object-Oriented Software" by E. Gamma, R. Helm, R. Johnson, J. Vissides or "Object-Oriented Analysis and Design with Applications" by G. Booch, and more. ``` ### Method shorthand @@ -72,16 +72,16 @@ There exists a shorter syntax for methods in an object literal: ```js // these objects do the same -let user = { +user = { sayHi: function() { alert("Hello"); } }; // method shorthand looks better, right? -let user = { +user = { *!* - sayHi() { // same as "sayHi: function()" + sayHi() { // same as "sayHi: function(){...}" */!* alert("Hello"); } @@ -90,7 +90,7 @@ let user = { As demonstrated, we can omit `"function"` and just write `sayHi()`. -To tell the truth, the notations are not fully identical. There are subtle differences related to object inheritance (to be covered later), but for now they do not matter. In almost all cases the shorter syntax is preferred. +To tell the truth, the notations are not fully identical. There are subtle differences related to object inheritance (to be covered later), but for now they do not matter. In almost all cases, the shorter syntax is preferred. ## "this" in methods @@ -111,6 +111,7 @@ let user = { sayHi() { *!* + // "this" is the "current object" alert(this.name); */!* } @@ -159,16 +160,18 @@ let user = { let admin = user; user = null; // overwrite to make things obvious -admin.sayHi(); // Whoops! inside sayHi(), the old name is used! error! +*!* +admin.sayHi(); // TypeError: Cannot read property 'name' of null +*/!* ``` If we used `this.name` instead of `user.name` inside the `alert`, then the code would work. ## "this" is not bound -In JavaScript, "this" keyword behaves unlike most other programming languages. First, it can be used in any function. +In JavaScript, keyword `this` behaves unlike most other programming languages. It can be used in any function, even if it's not a method of an object. -There's no syntax error in the code like that: +There's no syntax error in the following example: ```js function sayHi() { @@ -176,9 +179,9 @@ function sayHi() { } ``` -The value of `this` is evaluated during the run-time. And it can be anything. +The value of `this` is evaluated during the run-time, depending on the context. -For instance, the same function may have different "this" when called from different objects: +For instance, here the same function is assigned to two different objects and has different "this" in the calls: ```js run let user = { name: "John" }; @@ -189,7 +192,7 @@ function sayHi() { } *!* -// use the same functions in two objects +// use the same function in two objects user.f = sayHi; admin.f = sayHi; */!* @@ -202,7 +205,10 @@ admin.f(); // Admin (this == admin) admin['f'](); // Admin (dot or square brackets access the method – doesn't matter) ``` -Actually, we can call the function without an object at all: +The rule is simple: if `obj.f()` is called, then `this` is `obj` during the call of `f`. So it's either `user` or `admin` in the example above. + +````smart header="Calling without an object: `this == undefined`" +We can even call the function without an object at all: ```js run function sayHi() { @@ -216,108 +222,19 @@ In this case `this` is `undefined` in strict mode. If we try to access `this.nam In non-strict mode the value of `this` in such case will be the *global object* (`window` in a browser, we'll get to it later in the chapter [](info:global-object)). This is a historical behavior that `"use strict"` fixes. -Please note that usually a call of a function that uses `this` without an object is not normal, but rather a programming mistake. If a function has `this`, then it is usually meant to be called in the context of an object. +Usually such call is a programming error. If there's `this` inside a function, it expects to be called in an object context. +```` ```smart header="The consequences of unbound `this`" If you come from another programming language, then you are probably used to the idea of a "bound `this`", where methods defined in an object always have `this` referencing that object. -In JavaScript `this` is "free", its value is evaluated at call-time and does not depend on where the method was declared, but rather on what's the object "before the dot". +In JavaScript `this` is "free", its value is evaluated at call-time and does not depend on where the method was declared, but rather on what object is "before the dot". -The concept of run-time evaluated `this` has both pluses and minuses. On the one hand, a function can be reused for different objects. On the other hand, greater flexibility opens a place for mistakes. +The concept of run-time evaluated `this` has both pluses and minuses. On the one hand, a function can be reused for different objects. On the other hand, the greater flexibility creates more possibilities for mistakes. -Here our position is not to judge whether this language design decision is good or bad. We'll understand how to work with it, how to get benefits and evade problems. +Here our position is not to judge whether this language design decision is good or bad. We'll understand how to work with it, how to get benefits and avoid problems. ``` -## Internals: Reference Type - -```warn header="In-depth language feature" -This section covers an advanced topic, to understand certain edge-cases better. - -If you want to go on faster, it can be skipped or postponed. -``` - -An intricate method call can lose `this`, for instance: - -```js run -let user = { - name: "John", - hi() { alert(this.name); }, - bye() { alert("Bye"); } -}; - -user.hi(); // John (the simple call works) - -*!* -// now let's call user.hi or user.bye depending on the name -(user.name == "John" ? user.hi : user.bye)(); // Error! -*/!* -``` - -On the last line there is a ternary operator that chooses either `user.hi` or `user.bye`. In this case the result is `user.hi`. - -The method is immediately called with parentheses `()`. But it doesn't work right! - -You can see that the call results in an error, because the value of `"this"` inside the call becomes `undefined`. - -This works (object dot method): -```js -user.hi(); -``` - -This doesn't (evaluated method): -```js -(user.name == "John" ? user.hi : user.bye)(); // Error! -``` - -Why? If we want to understand why it happens, let's get under the hood of how `obj.method()` call works. - -Looking closely, we may notice two operations in `obj.method()` statement: - -1. First, the dot `'.'` retrieves the property `obj.method`. -2. Then parentheses `()` execute it. - -So, how does the information about `this` get passed from the first part to the second one? - -If we put these operations on separate lines, then `this` will be lost for sure: - -```js run -let user = { - name: "John", - hi() { alert(this.name); } -} - -*!* -// split getting and calling the method in two lines -let hi = user.hi; -hi(); // Error, because this is undefined -*/!* -``` - -Here `hi = user.hi` puts the function into the variable, and then on the last line it is completely standalone, and so there's no `this`. - -**To make `user.hi()` calls work, JavaScript uses a trick -- the dot `'.'` returns not a function, but a value of the special [Reference Type](https://tc39.github.io/ecma262/#sec-reference-specification-type).** - -The Reference Type is a "specification type". We can't explicitly use it, but it is used internally by the language. - -The value of Reference Type is a three-value combination `(base, name, strict)`, where: - -- `base` is the object. -- `name` is the property. -- `strict` is true if `use strict` is in effect. - -The result of a property access `user.hi` is not a function, but a value of Reference Type. For `user.hi` in strict mode it is: - -```js -// Reference Type value -(user, "hi", true) -``` - -When parentheses `()` are called on the Reference Type, they receive the full information about the object and its method, and can set the right `this` (`=user` in this case). - -Any other operation like assignment `hi = user.hi` discards the reference type as a whole, takes the value of `user.hi` (a function) and passes it on. So any further operation "loses" `this`. - -So, as the result, the value of `this` is only passed the right way if the function is called directly using a dot `obj.method()` or square brackets `obj['method']()` syntax (they do the same here). Later in this tutorial, we will learn various ways to solve this problem such as [func.bind()](/bind#solution-2-bind). - ## Arrow functions have no "this" Arrow functions are special: they don't have their "own" `this`. If we reference `this` from such a function, it's taken from the outer "normal" function. @@ -347,7 +264,7 @@ That's a special feature of arrow functions, it's useful when we actually do not The value of `this` is defined at run-time. - When a function is declared, it may use `this`, but that `this` has no value until the function is called. -- That function can be copied between objects. +- A function can be copied between objects. - When a function is called in the "method" syntax: `object.method()`, the value of `this` during the call is `object`. Please note that arrow functions are special: they have no `this`. When `this` is accessed inside an arrow function, it is taken from outside. diff --git a/1-js/04-object-basics/05-object-toprimitive/article.md b/1-js/04-object-basics/05-object-toprimitive/article.md deleted file mode 100644 index a44cf4f4d..000000000 --- a/1-js/04-object-basics/05-object-toprimitive/article.md +++ /dev/null @@ -1,236 +0,0 @@ - -# Object to primitive conversion - -What happens when objects are added `obj1 + obj2`, subtracted `obj1 - obj2` or printed using `alert(obj)`? - -There are special methods in objects that do the conversion. - -In the chapter we've seen the rules for numeric, string and boolean conversions of primitives. But we left a gap for objects. Now, as we know about methods and symbols it becomes possible to close it. - -For objects, there's no to-boolean conversion, because all objects are `true` in a boolean context. So there are only string and numeric conversions. - -The numeric conversion happens when we subtract objects or apply mathematical functions. For instance, `Date` objects (to be covered in the chapter ) can be subtracted, and the result of `date1 - date2` is the time difference between two dates. - -As for the string conversion -- it usually happens when we output an object like `alert(obj)` and in similar contexts. - -## ToPrimitive - -When an object is used in the context where a primitive is required, for instance, in an `alert` or mathematical operations, it's converted to a primitive value using the `ToPrimitive` algorithm ([specification](https://tc39.github.io/ecma262/#sec-toprimitive)). - -That algorithm allows us to customize the conversion using a special object method. - -Depending on the context, the conversion has a so-called "hint". - -There are three variants: - -`"string"` -: When an operation expects a string, for object-to-string conversions, like `alert`: - - ```js - // output - alert(obj); - - // using object as a property key - anotherObj[obj] = 123; - ``` - -`"number"` -: When an operation expects a number, for object-to-number conversions, like maths: - - ```js - // explicit conversion - let num = Number(obj); - - // maths (except binary plus) - let n = +obj; // unary plus - let delta = date1 - date2; - - // less/greater comparison - let greater = user1 > user2; - ``` - -`"default"` -: Occurs in rare cases when the operator is "not sure" what type to expect. - - For instance, binary plus `+` can work both with strings (concatenates them) and numbers (adds them), so both strings and numbers would do. Or when an object is compared using `==` with a string, number or a symbol. - - ```js - // binary plus - let total = car1 + car2; - - // obj == string/number/symbol - if (user == 1) { ... }; - ``` - - The greater/less operator `<>` can work with both strings and numbers too. Still, it uses "number" hint, not "default". That's for historical reasons. - - In practice, all built-in objects except for one case (`Date` object, we'll learn it later) implement `"default"` conversion the same way as `"number"`. And probably we should do the same. - -Please note -- there are only three hints. It's that simple. There is no "boolean" hint (all objects are `true` in boolean context) or anything else. And if we treat `"default"` and `"number"` the same, like most built-ins do, then there are only two conversions. - -**To do the conversion, JavaScript tries to find and call three object methods:** - -1. Call `obj[Symbol.toPrimitive](hint)` if the method exists, -2. Otherwise if hint is `"string"` - - try `obj.toString()` and `obj.valueOf()`, whatever exists. -3. Otherwise if hint is `"number"` or `"default"` - - try `obj.valueOf()` and `obj.toString()`, whatever exists. - -## Symbol.toPrimitive - -Let's start from the first method. There's a built-in symbol named `Symbol.toPrimitive` that should be used to name the conversion method, like this: - -```js -obj[Symbol.toPrimitive] = function(hint) { - // return a primitive value - // hint = one of "string", "number", "default" -} -``` - -For instance, here `user` object implements it: - -```js run -let user = { - name: "John", - money: 1000, - - [Symbol.toPrimitive](hint) { - alert(`hint: ${hint}`); - return hint == "string" ? `{name: "${this.name}"}` : this.money; - } -}; - -// conversions demo: -alert(user); // hint: string -> {name: "John"} -alert(+user); // hint: number -> 1000 -alert(user + 500); // hint: default -> 1500 -``` - -As we can see from the code, `user` becomes a self-descriptive string or a money amount depending on the conversion. The single method `user[Symbol.toPrimitive]` handles all conversion cases. - - -## toString/valueOf - -Methods `toString` and `valueOf` come from ancient times. They are not symbols (symbols did not exist that long ago), but rather "regular" string-named methods. They provide an alternative "old-style" way to implement the conversion. - -If there's no `Symbol.toPrimitive` then JavaScript tries to find them and try in the order: - -- `toString -> valueOf` for "string" hint. -- `valueOf -> toString` otherwise. - -For instance, here `user` does the same as above using a combination of `toString` and `valueOf`: - -```js run -let user = { - name: "John", - money: 1000, - - // for hint="string" - toString() { - return `{name: "${this.name}"}`; - }, - - // for hint="number" or "default" - valueOf() { - return this.money; - } - -}; - -alert(user); // toString -> {name: "John"} -alert(+user); // valueOf -> 1000 -alert(user + 500); // valueOf -> 1500 -``` - -Often we want a single "catch-all" place to handle all primitive conversions. In this case we can implement `toString` only, like this: - -```js run -let user = { - name: "John", - - toString() { - return this.name; - } -}; - -alert(user); // toString -> John -alert(user + 500); // toString -> John500 -``` - -In the absence of `Symbol.toPrimitive` and `valueOf`, `toString` will handle all primitive conversions. - - -## ToPrimitive and ToString/ToNumber - -The important thing to know about all primitive-conversion methods is that they do not necessarily return the "hinted" primitive. - -There is no control whether `toString()` returns exactly a string, or whether `Symbol.toPrimitive` method returns a number for a hint "number". - -**The only mandatory thing: these methods must return a primitive.** - -An operation that initiated the conversion gets that primitive, and then continues to work with it, applying further conversions if necessary. - -For instance: - -- Mathematical operations (except binary plus) perform `ToNumber` conversion: - - ```js run - let obj = { - toString() { // toString handles all conversions in the absence of other methods - return "2"; - } - }; - - alert(obj * 2); // 4, ToPrimitive gives "2", then it becomes 2 - ``` - -- Binary plus checks the primitive -- if it's a string, then it does concatenation, otherwise it performs `ToNumber` and works with numbers. - - String example: - ```js run - let obj = { - toString() { - return "2"; - } - }; - - alert(obj + 2); // 22 (ToPrimitive returned string => concatenation) - ``` - - Number example: - ```js run - let obj = { - toString() { - return true; - } - }; - - alert(obj + 2); // 3 (ToPrimitive returned boolean, not string => ToNumber) - ``` - -```smart header="Historical notes" -For historical reasons, methods `toString` or `valueOf` *should* return a primitive: if any of them returns an object, then there's no error, but that object is ignored (like if the method didn't exist). - -In contrast, `Symbol.toPrimitive` *must* return a primitive, otherwise, there will be an error. -``` - -## Summary - -The object-to-primitive conversion is called automatically by many built-in functions and operators that expect a primitive as a value. - -There are 3 types (hints) of it: -- `"string"` (for `alert` and other string conversions) -- `"number"` (for maths) -- `"default"` (few operators) - -The specification describes explicitly which operator uses which hint. There are very few operators that "don't know what to expect" and use the `"default"` hint. Usually for built-in objects `"default"` hint is handled the same way as `"number"`, so in practice the last two are often merged together. - -The conversion algorithm is: - -1. Call `obj[Symbol.toPrimitive](hint)` if the method exists, -2. Otherwise if hint is `"string"` - - try `obj.toString()` and `obj.valueOf()`, whatever exists. -3. Otherwise if hint is `"number"` or `"default"` - - try `obj.valueOf()` and `obj.toString()`, whatever exists. - -In practice, it's often enough to implement only `obj.toString()` as a "catch-all" method for all conversions that return a "human-readable" representation of an object, for logging or debugging purposes. diff --git a/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md b/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md index 8c1fea8eb..e932a201a 100644 --- a/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md +++ b/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md @@ -4,14 +4,14 @@ importance: 2 # Two functions – one object -Is it possible to create functions `A` and `B` such as `new A()==new B()`? +Is it possible to create functions `A` and `B` so that `new A() == new B()`? ```js no-beautify function A() { ... } function B() { ... } -let a = new A; -let b = new B; +let a = new A(); +let b = new B(); alert( a == b ); // true ``` diff --git a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/_js.view/test.js b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/_js.view/test.js index 036053927..bba80e5c2 100644 --- a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/_js.view/test.js +++ b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/_js.view/test.js @@ -10,6 +10,11 @@ describe("calculator", function() { calculator = new Calculator(); calculator.read(); }); + + it("the read method asks for two values using prompt and remembers them in object properties", function() { + assert.equal(calculator.a, 2); + assert.equal(calculator.b, 3); + }); it("when 2 and 3 are entered, the sum is 5", function() { assert.equal(calculator.sum(), 5); diff --git a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md index 60e7c373e..c862bec40 100644 --- a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md +++ b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md @@ -6,7 +6,7 @@ importance: 5 Create a constructor function `Calculator` that creates objects with 3 methods: -- `read()` asks for two values using `prompt` and remembers them in object properties. +- `read()` prompts for two values and saves them as object properties with names `a` and `b` respectively. - `sum()` returns the sum of these properties. - `mul()` returns the multiplication product of these properties. diff --git a/1-js/04-object-basics/06-constructor-new/3-accumulator/task.md b/1-js/04-object-basics/06-constructor-new/3-accumulator/task.md index 3362b5b4b..c2c44881e 100644 --- a/1-js/04-object-basics/06-constructor-new/3-accumulator/task.md +++ b/1-js/04-object-basics/06-constructor-new/3-accumulator/task.md @@ -17,8 +17,10 @@ Here's the demo of the code: ```js let accumulator = new Accumulator(1); // initial value 1 + accumulator.read(); // adds the user-entered value accumulator.read(); // adds the user-entered value + alert(accumulator.value); // shows the sum of these values ``` diff --git a/1-js/04-object-basics/06-constructor-new/article.md b/1-js/04-object-basics/06-constructor-new/article.md index eb452f2f3..a335464f1 100644 --- a/1-js/04-object-basics/06-constructor-new/article.md +++ b/1-js/04-object-basics/06-constructor-new/article.md @@ -1,6 +1,6 @@ # Constructor, operator "new" -The regular `{...}` syntax allows to create one object. But often we need to create many similar objects, like multiple users or menu items and so on. +The regular `{...}` syntax allows us to create one object. But often we need to create many similar objects, like multiple users or menu items and so on. That can be done using constructor functions and the `"new"` operator. @@ -27,7 +27,7 @@ alert(user.name); // Jack alert(user.isAdmin); // false ``` -When a function is executed as `new User(...)`, it does the following steps: +When a function is executed with `new`, it does the following steps: 1. A new empty object is created and assigned to `this`. 2. The function body executes. Usually it modifies `this`, adds new properties to it. @@ -51,7 +51,7 @@ function User(name) { } ``` -So the result of `new User("Jack")` is the same object as: +So `let user = new User("Jack")` gives the same result as: ```js let user = { @@ -64,13 +64,14 @@ Now if we want to create other users, we can call `new User("Ann")`, `new User(" That's the main purpose of constructors -- to implement reusable object creation code. -Let's note once again -- technically, any function can be used as a constructor. That is: any function can be run with `new`, and it will execute the algorithm above. The "capital letter first" is a common agreement, to make it clear that a function is to be run with `new`. +Let's note once again -- technically, any function (except arrow functions, as they don't have `this`) can be used as a constructor. It can be run with `new`, and it will execute the algorithm above. The "capital letter first" is a common agreement, to make it clear that a function is to be run with `new`. ````smart header="new function() { ... }" -If we have many lines of code all about creation of a single complex object, we can wrap them in constructor function, like this: +If we have many lines of code all about creation of a single complex object, we can wrap them in an immediately called constructor function, like this: ```js -let user = new function() { +// create a function and immediately call it with new +let user = new function() { this.name = "John"; this.isAdmin = false; @@ -80,10 +81,10 @@ let user = new function() { }; ``` -The constructor can't be called again, because it is not saved anywhere, just created and called. So this trick aims to encapsulate the code that constructs the single object, without future reuse. +This constructor can't be called again, because it is not saved anywhere, just created and called. So this trick aims to encapsulate the code that constructs the single object, without future reuse. ```` -## Dual-syntax constructors: new.target +## Constructor mode test: new.target ```smart header="Advanced stuff" The syntax from this section is rarely used, skip it unless you want to know everything. @@ -91,7 +92,7 @@ The syntax from this section is rarely used, skip it unless you want to know eve Inside a function, we can check whether it was called with `new` or without it, using a special `new.target` property. -It is empty for regular calls and equals the function if called with `new`: +It is undefined for regular calls and equals the function if called with `new`: ```js run function User() { @@ -109,7 +110,9 @@ new User(); // function User { ... } */!* ``` -That can be used to allow both `new` and regular calls to work the same. That is, create the same object: +That can be used inside the function to know whether it was called with `new`, "in constructor mode", or without it, "in regular mode". + +We can also make both `new` and regular calls to do the same, like this: ```js run function User(name) { @@ -134,7 +137,7 @@ Usually, constructors do not have a `return` statement. Their task is to write a But if there is a `return` statement, then the rule is simple: -- If `return` is called with object, then it is returned instead of `this`. +- If `return` is called with an object, then the object is returned instead of `this`. - If `return` is called with a primitive, it's ignored. In other words, `return` with an object returns that object, in all other cases `this` is returned. @@ -146,10 +149,10 @@ function BigUser() { this.name = "John"; - return { name: "Godzilla" }; // <-- returns an object + return { name: "Godzilla" }; // <-- returns this object } -alert( new BigUser().name ); // Godzilla, got that object ^^ +alert( new BigUser().name ); // Godzilla, got that object ``` And here's an example with an empty `return` (or we could place a primitive after it, doesn't matter): @@ -159,10 +162,7 @@ function SmallUser() { this.name = "John"; - return; // finishes the execution, returns this - - // ... - + return; // <-- returns this } alert( new SmallUser().name ); // John @@ -171,7 +171,7 @@ alert( new SmallUser().name ); // John Usually constructors don't have a `return` statement. Here we mention the special behavior with returning objects mainly for the sake of completeness. ````smart header="Omitting parentheses" -By the way, we can omit parentheses after `new`, if it has no arguments: +By the way, we can omit parentheses after `new`: ```js let user = new User; // <-- no parentheses @@ -213,6 +213,8 @@ john = { */ ``` +To create complex objects, there's a more advanced syntax, [classes](info:classes), that we'll cover later. + ## Summary - Constructor functions or, briefly, constructors, are regular functions, but there's a common agreement to name them with capital letter first. diff --git a/1-js/04-object-basics/07-optional-chaining/article.md b/1-js/04-object-basics/07-optional-chaining/article.md new file mode 100644 index 000000000..4c6029423 --- /dev/null +++ b/1-js/04-object-basics/07-optional-chaining/article.md @@ -0,0 +1,233 @@ + +# Optional chaining '?.' + +[recent browser="new"] + +The optional chaining `?.` is a safe way to access nested object properties, even if an intermediate property doesn't exist. + +## The "non-existing property" problem + +If you've just started to read the tutorial and learn JavaScript, maybe the problem hasn't touched you yet, but it's quite common. + +As an example, let's say we have `user` objects that hold the information about our users. + +Most of our users have addresses in `user.address` property, with the street `user.address.street`, but some did not provide them. + +In such case, when we attempt to get `user.address.street`, and the user happens to be without an address, we get an error: + +```js run +let user = {}; // a user without "address" property + +alert(user.address.street); // Error! +``` + +That's the expected result. JavaScript works like this. As `user.address` is `undefined`, an attempt to get `user.address.street` fails with an error. + +In many practical cases we'd prefer to get `undefined` instead of an error here (meaning "no street"). + +...and another example. In Web development, we can get an object that corresponds to a web page element using a special method call, such as `document.querySelector('.elem')`, and it returns `null` when there's no such element. + +```js run +// document.querySelector('.elem') is null if there's no element +let html = document.querySelector('.elem').innerHTML; // error if it's null +``` + +Once again, if the element doesn't exist, we'll get an error accessing `.innerHTML` property of `null`. And in some cases, when the absence of the element is normal, we'd like to avoid the error and just accept `html = null` as the result. + +How can we do this? + +The obvious solution would be to check the value using `if` or the conditional operator `?`, before accessing its property, like this: + +```js +let user = {}; + +alert(user.address ? user.address.street : undefined); +``` + +It works, there's no error... But it's quite inelegant. As you can see, the `"user.address"` appears twice in the code. + +Here's how the same would look for `document.querySelector`: + +```js run +let html = document.querySelector('.elem') ? document.querySelector('.elem').innerHTML : null; +``` + +We can see that the element search `document.querySelector('.elem')` is actually called twice here. Not good. + +For more deeply nested properties, it becomes even uglier, as more repetitions are required. + +E.g. let's get `user.address.street.name` in a similar fashion. + +```js +let user = {}; // user has no address + +alert(user.address ? user.address.street ? user.address.street.name : null : null); +``` + +That's just awful, one may even have problems understanding such code. + +There's a little better way to write it, using the `&&` operator: + +```js run +let user = {}; // user has no address + +alert( user.address && user.address.street && user.address.street.name ); // undefined (no error) +``` + +AND'ing the whole path to the property ensures that all components exist (if not, the evaluation stops), but also isn't ideal. + +As you can see, property names are still duplicated in the code. E.g. in the code above, `user.address` appears three times. + +That's why the optional chaining `?.` was added to the language. To solve this problem once and for all! + +## Optional chaining + +The optional chaining `?.` stops the evaluation if the value before `?.` is `undefined` or `null` and returns `undefined`. + +**Further in this article, for brevity, we'll be saying that something "exists" if it's not `null` and not `undefined`.** + +In other words, `value?.prop`: +- works as `value.prop`, if `value` exists, +- otherwise (when `value` is `undefined/null`) it returns `undefined`. + +Here's the safe way to access `user.address.street` using `?.`: + +```js run +let user = {}; // user has no address + +alert( user?.address?.street ); // undefined (no error) +``` + +The code is short and clean, there's no duplication at all. + +Here's an example with `document.querySelector`: + +```js run +let html = document.querySelector('.elem')?.innerHTML; // will be undefined, if there's no element +``` + +Reading the address with `user?.address` works even if `user` object doesn't exist: + +```js run +let user = null; + +alert( user?.address ); // undefined +alert( user?.address.street ); // undefined +``` + +Please note: the `?.` syntax makes optional the value before it, but not any further. + +E.g. in `user?.address.street.name` the `?.` allows `user` to safely be `null/undefined` (and returns `undefined` in that case), but that's only for `user`. Further properties are accessed in a regular way. If we want some of them to be optional, then we'll need to replace more `.` with `?.`. + +```warn header="Don't overuse the optional chaining" +We should use `?.` only where it's ok that something doesn't exist. + +For example, if according to our code logic `user` object must exist, but `address` is optional, then we should write `user.address?.street`, but not `user?.address?.street`. + +Then, if `user` happens to be undefined, we'll see a programming error about it and fix it. Otherwise, if we overuse `?.`, coding errors can be silenced where not appropriate, and become more difficult to debug. +``` + +````warn header="The variable before `?.` must be declared" +If there's no variable `user` at all, then `user?.anything` triggers an error: + +```js run +// ReferenceError: user is not defined +user?.address; +``` +The variable must be declared (e.g. `let/const/var user` or as a function parameter). The optional chaining works only for declared variables. +```` + +## Short-circuiting + +As it was said before, the `?.` immediately stops ("short-circuits") the evaluation if the left part doesn't exist. + +So, if there are any further function calls or operations to the right of `?.`, they won't be made. + +For instance: + +```js run +let user = null; +let x = 0; + +user?.sayHi(x++); // no "user", so the execution doesn't reach sayHi call and x++ + +alert(x); // 0, value not incremented +``` + +## Other variants: ?.(), ?.[] + +The optional chaining `?.` is not an operator, but a special syntax construct, that also works with functions and square brackets. + +For example, `?.()` is used to call a function that may not exist. + +In the code below, some of our users have `admin` method, and some don't: + +```js run +let userAdmin = { + admin() { + alert("I am admin"); + } +}; + +let userGuest = {}; + +*!* +userAdmin.admin?.(); // I am admin +*/!* + +*!* +userGuest.admin?.(); // nothing happens (no such method) +*/!* +``` + +Here, in both lines we first use the dot (`userAdmin.admin`) to get `admin` property, because we assume that the `user` object exists, so it's safe read from it. + +Then `?.()` checks the left part: if the `admin` function exists, then it runs (that's so for `userAdmin`). Otherwise (for `userGuest`) the evaluation stops without errors. + +The `?.[]` syntax also works, if we'd like to use brackets `[]` to access properties instead of dot `.`. Similar to previous cases, it allows to safely read a property from an object that may not exist. + +```js run +let key = "firstName"; + +let user1 = { + firstName: "John" +}; + +let user2 = null; + +alert( user1?.[key] ); // John +alert( user2?.[key] ); // undefined +``` + +Also we can use `?.` with `delete`: + +```js run +delete user?.name; // delete user.name if user exists +``` + +````warn header="We can use `?.` for safe reading and deleting, but not writing" +The optional chaining `?.` has no use on the left side of an assignment. + +For example: +```js run +let user = null; + +user?.name = "John"; // Error, doesn't work +// because it evaluates to: undefined = "John" +``` + +```` + +## Summary + +The optional chaining `?.` syntax has three forms: + +1. `obj?.prop` -- returns `obj.prop` if `obj` exists, otherwise `undefined`. +2. `obj?.[prop]` -- returns `obj[prop]` if `obj` exists, otherwise `undefined`. +3. `obj.method?.()` -- calls `obj.method()` if `obj.method` exists, otherwise returns `undefined`. + +As we can see, all of them are straightforward and simple to use. The `?.` checks the left part for `null/undefined` and allows the evaluation to proceed if it's not so. + +A chain of `?.` allows to safely access nested properties. + +Still, we should apply `?.` carefully, only where it's acceptable, according to our code logic, that the left part doesn't exist. So that it won't hide programming errors from us, if they occur. diff --git a/1-js/04-object-basics/03-symbol/article.md b/1-js/04-object-basics/08-symbol/article.md similarity index 59% rename from 1-js/04-object-basics/03-symbol/article.md rename to 1-js/04-object-basics/08-symbol/article.md index 8323d6643..10a98af0a 100644 --- a/1-js/04-object-basics/03-symbol/article.md +++ b/1-js/04-object-basics/08-symbol/article.md @@ -1,29 +1,35 @@ # Symbol type -By specification, object property keys may be either of string type, or of symbol type. Not numbers, not booleans, only strings or symbols, these two types. +By specification, only two primitive types may serve as object property keys: -Till now we've only seen strings. Now let's see the advantages that symbols can give us. +- string type, or +- symbol type. + +Otherwise, if one uses another type, such as number, it's autoconverted to string. So that `obj[1]` is the same as `obj["1"]`, and `obj[true]` is the same as `obj["true"]`. + +Until now we've been using only strings. + +Now let's explore symbols, see what they can do for us. ## Symbols -"Symbol" value represents a unique identifier. +A "symbol" represents a unique identifier. A value of this type can be created using `Symbol()`: ```js -// id is a new symbol let id = Symbol(); ``` -We can also give symbol a description (also called a symbol name), mostly useful for debugging purposes: +Upon creation, we can give symbols a description (also called a symbol name), mostly useful for debugging purposes: -```js run +```js // id is a symbol with the description "id" let id = Symbol("id"); ``` -Symbols are guaranteed to be unique. Even if we create many symbols with the same description, they are different values. The description is just a label that doesn't affect anything. +Symbols are guaranteed to be unique. Even if we create many symbols with exactly the same description, they are different values. The description is just a label that doesn't affect anything. For instance, here are two symbols with the same description -- they are not equal: @@ -38,6 +44,8 @@ alert(id1 == id2); // false If you are familiar with Ruby or another language that also has some sort of "symbols" -- please don't be misguided. JavaScript symbols are different. +So, to summarize, a symbol is a "primitive unique value" with an optional description. Let's see where we can use them. + ````warn header="Symbols don't auto-convert to a string" Most values in JavaScript support implicit conversion to a string. For instance, we can `alert` almost any value, and it will work. Symbols are special. They don't auto-convert. @@ -50,9 +58,10 @@ alert(id); // TypeError: Cannot convert a Symbol value to a string */!* ``` -That's a "language guard" against messing up, because strings and symbols are fundamentally different and should not occasionally convert one into another. +That's a "language guard" against messing up, because strings and symbols are fundamentally different and should not accidentally convert one into another. + +If we really want to show a symbol, we need to explicitly call `.toString()` on it, like here: -If we really want to show a symbol, we need to call `.toString()` on it, like here: ```js run let id = Symbol("id"); *!* @@ -60,7 +69,8 @@ alert(id.toString()); // Symbol(id), now it works */!* ``` -Or get `symbol.description` property to get the description only: +Or get `symbol.description` property to show the description only: + ```js run let id = Symbol("id"); *!* @@ -72,23 +82,30 @@ alert(id.description); // id ## "Hidden" properties -Symbols allow us to create "hidden" properties of an object, that no other part of code can occasionally access or overwrite. -For instance, if we want to store an "identifier" for the object `user`, we can use a symbol as a key for it: +Symbols allow us to create "hidden" properties of an object, that no other part of code can accidentally access or overwrite. + +For instance, if we're working with `user` objects, that belong to a third-party code. We'd like to add identifiers to them. + +Let's use a symbol key for it: ```js run -let user = { name: "John" }; +let user = { // belongs to another code + name: "John" +}; + let id = Symbol("id"); -user[id] = "ID Value"; +user[id] = 1; + alert( user[id] ); // we can access the data using the symbol as the key ``` What's the benefit of using `Symbol("id")` over a string `"id"`? -Let's make the example a bit deeper to see that. +As `user` objects belong to another codebase, it's unsafe to add fields to them, since we might affect pre-defined behavior in that other codebase. However, symbols cannot be accessed accidentally. The third-party code won't be aware of newly defined symbols, so it's safe to add symbols to the `user` objects. -Imagine that another script wants to have its own "id" property inside `user`, for its own purposes. That may be another JavaScript library, so the scripts are completely unaware of each other. +Also, imagine that another script wants to have its own identifier inside `user`, for its own purposes. Then that script can create its own `Symbol("id")`, like this: @@ -99,25 +116,25 @@ let id = Symbol("id"); user[id] = "Their id value"; ``` -There will be no conflict, because symbols are always different, even if they have the same name. +There will be no conflict between our and their identifiers, because symbols are always different, even if they have the same name. -Now note that if we used a string `"id"` instead of a symbol for the same purpose, then there *would* be a conflict: +...But if we used a string `"id"` instead of a symbol for the same purpose, then there *would* be a conflict: -```js run +```js let user = { name: "John" }; -// our script uses "id" property -user.id = "ID Value"; +// Our script uses "id" property +user.id = "Our id value"; -// ...if later another script the uses "id" for its purposes... +// ...Another script also wants "id" for its purposes... user.id = "Their id value" -// boom! overwritten! it did not mean to harm the colleague, but did it! +// Boom! overwritten by another script! ``` -### Symbols in a literal +### Symbols in an object literal -If we want to use a symbol in an object literal, we need square brackets. +If we want to use a symbol in an object literal `{...}`, we need square brackets around it. Like this: @@ -127,7 +144,7 @@ let id = Symbol("id"); let user = { name: "John", *!* - [id]: 123 // not just "id: 123" + [id]: 123 // not "id": 123 */!* }; ``` @@ -152,10 +169,10 @@ for (let key in user) alert(key); // name, age (no symbols) */!* // the direct access by the symbol works -alert( "Direct: " + user[id] ); +alert( "Direct: " + user[id] ); // Direct: 123 ``` -That's a part of the general "hiding" concept. If another script or a library loops over our object, it won't unexpectedly access a symbolic property. +[Object.keys(user)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys) also ignores them. That's a part of the general "hiding symbolic properties" principle. If another script or a library loops over our object, it won't unexpectedly access a symbolic property. In contrast, [Object.assign](mdn:js/Object/assign) copies both string and symbol properties: @@ -172,31 +189,13 @@ alert( clone[id] ); // 123 There's no paradox here. That's by design. The idea is that when we clone an object or merge objects, we usually want *all* properties to be copied (including symbols like `id`). -````smart header="Property keys of other types are coerced to strings" -We can only use strings or symbols as keys in objects. Other types are converted to strings. - -For instance, a number `0` becomes a string `"0"` when used as a property key: - -```js run -let obj = { - 0: "test" // same as "0": "test" -}; - -// both alerts access the same property (the number 0 is converted to string "0") -alert( obj["0"] ); // test -alert( obj[0] ); // test (same property) -``` -```` - ## Global symbols -As we've seen, usually all symbols are different, even if they have the same names. But sometimes we want same-named symbols to be same entities. - -For instance, different parts of our application want to access symbol `"id"` meaning exactly the same property. +As we've seen, usually all symbols are different, even if they have the same name. But sometimes we want same-named symbols to be same entities. For instance, different parts of our application want to access symbol `"id"` meaning exactly the same property. To achieve that, there exists a *global symbol registry*. We can create symbols in it and access them later, and it guarantees that repeated accesses by the same name return exactly the same symbol. -In order to create or read a symbol in the registry, use `Symbol.for(key)`. +In order to read (create if absent) a symbol from the registry, use `Symbol.for(key)`. That call checks the global registry, and if there's a symbol described as `key`, then returns it, otherwise creates a new symbol `Symbol(key)` and stores it in the registry by the given `key`. @@ -206,7 +205,7 @@ For instance: // read from the global registry let id = Symbol.for("id"); // if the symbol did not exist, it is created -// read it again +// read it again (maybe from another part of the code) let idAgain = Symbol.for("id"); // the same symbol @@ -218,32 +217,39 @@ Symbols inside the registry are called *global symbols*. If we want an applicati ```smart header="That sounds like Ruby" In some programming languages, like Ruby, there's a single symbol per name. -In JavaScript, as we can see, that's right for global symbols. +In JavaScript, as we can see, that's true for global symbols. ``` ### Symbol.keyFor -For global symbols, not only `Symbol.for(key)` returns a symbol by name, but there's a reverse call: `Symbol.keyFor(sym)`, that does the reverse: returns a name by a global symbol. +We have seen that for global symbols, `Symbol.for(key)` returns a symbol by name. To do the opposite -- return a name by global symbol -- we can use: `Symbol.keyFor(sym)`: For instance: ```js run +// get symbol by name let sym = Symbol.for("name"); let sym2 = Symbol.for("id"); -// get name from symbol +// get name by symbol alert( Symbol.keyFor(sym) ); // name alert( Symbol.keyFor(sym2) ); // id ``` -The `Symbol.keyFor` internally uses the global symbol registry to look up the key for the symbol. So it doesn't work for non-global symbols. If the symbol is not global, it won't be able to find it and return `undefined`. +The `Symbol.keyFor` internally uses the global symbol registry to look up the key for the symbol. So it doesn't work for non-global symbols. If the symbol is not global, it won't be able to find it and returns `undefined`. + +That said, all symbols have the `description` property. For instance: ```js run -alert( Symbol.keyFor(Symbol.for("name")) ); // name, global symbol +let globalSymbol = Symbol.for("name"); +let localSymbol = Symbol("name"); + +alert( Symbol.keyFor(globalSymbol) ); // name, global symbol +alert( Symbol.keyFor(localSymbol) ); // undefined, not global -alert( Symbol.keyFor(Symbol("name2")) ); // undefined, the argument isn't a global symbol +alert( localSymbol.description ); // name ``` ## System symbols @@ -266,17 +272,18 @@ Other symbols will also become familiar when we study the corresponding language `Symbol` is a primitive type for unique identifiers. -Symbols are created with `Symbol()` call with an optional description. +Symbols are created with `Symbol()` call with an optional description (name). -Symbols are always different values, even if they have the same name. If we want same-named symbols to be equal, then we should use the global registry: `Symbol.for(key)` returns (creates if needed) a global symbol with `key` as the name. Multiple calls of `Symbol.for` return exactly the same symbol. +Symbols are always different values, even if they have the same name. If we want same-named symbols to be equal, then we should use the global registry: `Symbol.for(key)` returns (creates if needed) a global symbol with `key` as the name. Multiple calls of `Symbol.for` with the same `key` return exactly the same symbol. Symbols have two main use cases: 1. "Hidden" object properties. - If we want to add a property into an object that "belongs" to another script or a library, we can create a symbol and use it as a property key. A symbolic property does not appear in `for..in`, so it won't be occasionally listed. Also it won't be accessed directly, because another script does not have our symbol, so it will not occasionally intervene into its actions. + + If we want to add a property into an object that "belongs" to another script or a library, we can create a symbol and use it as a property key. A symbolic property does not appear in `for..in`, so it won't be accidentally processed together with other properties. Also it won't be accessed directly, because another script does not have our symbol. So the property will be protected from accidental use or overwrite. So we can "covertly" hide something into objects that we need, but others should not see, using symbolic properties. 2. There are many system symbols used by JavaScript which are accessible as `Symbol.*`. We can use them to alter some built-in behaviors. For instance, later in the tutorial we'll use `Symbol.iterator` for [iterables](info:iterable), `Symbol.toPrimitive` to setup [object-to-primitive conversion](info:object-toprimitive) and so on. -Technically, symbols are not 100% hidden. There is a built-in method [Object.getOwnPropertySymbols(obj)](mdn:js/Object/getOwnPropertySymbols) that allows us to get all symbols. Also there is a method named [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) that returns *all* keys of an object including symbolic ones. So they are not really hidden. But most libraries, built-in methods and syntax constructs adhere to a common agreement that they are. And the one who explicitly calls the aforementioned methods probably understands well what he's doing. +Technically, symbols are not 100% hidden. There is a built-in method [Object.getOwnPropertySymbols(obj)](mdn:js/Object/getOwnPropertySymbols) that allows us to get all symbols. Also there is a method named [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) that returns *all* keys of an object including symbolic ones. But most libraries, built-in functions and syntax constructs don't use these methods. diff --git a/1-js/04-object-basics/09-object-toprimitive/article.md b/1-js/04-object-basics/09-object-toprimitive/article.md new file mode 100644 index 000000000..fa68da583 --- /dev/null +++ b/1-js/04-object-basics/09-object-toprimitive/article.md @@ -0,0 +1,280 @@ + +# Object to primitive conversion + +What happens when objects are added `obj1 + obj2`, subtracted `obj1 - obj2` or printed using `alert(obj)`? + +JavaScript doesn't allow you to customize how operators work on objects. Unlike some other programming languages, such as Ruby or C++, we can't implement a special object method to handle addition (or other operators). + +In case of such operations, objects are auto-converted to primitives, and then the operation is carried out over these primitives and results in a primitive value. + +That's an important limitation: the result of `obj1 + obj2` (or another math operation) can't be another object! + +E.g. we can't make objects representing vectors or matrices (or achievements or whatever), add them and expect a "summed" object as the result. Such architectural feats are automatically "off the board". + +So, because we can't technically do much here, there's no maths with objects in real projects. When it happens, with rare exceptions, it's because of a coding mistake. + +In this chapter we'll cover how an object converts to primitive and how to customize it. + +We have two purposes: + +1. It will allow us to understand what's going on in case of coding mistakes, when such an operation happened accidentally. +2. There are exceptions, where such operations are possible and look good. E.g. subtracting or comparing dates (`Date` objects). We'll come across them later. + +## Conversion rules + +In the chapter we've seen the rules for numeric, string and boolean conversions of primitives. But we left a gap for objects. Now, as we know about methods and symbols it becomes possible to fill it. + +1. There's no conversion to boolean. All objects are `true` in a boolean context, as simple as that. There exist only numeric and string conversions. +2. The numeric conversion happens when we subtract objects or apply mathematical functions. For instance, `Date` objects (to be covered in the chapter ) can be subtracted, and the result of `date1 - date2` is the time difference between two dates. +3. As for the string conversion -- it usually happens when we output an object with `alert(obj)` and in similar contexts. + +We can implement string and numeric conversion by ourselves, using special object methods. + +Now let's get into technical details, because it's the only way to cover the topic in-depth. + +## Hints + +How does JavaScript decide which conversion to apply? + +There are three variants of type conversion, that happen in various situations. They're called "hints", as described in the [specification](https://tc39.github.io/ecma262/#sec-toprimitive): + +`"string"` +: For an object-to-string conversion, when we're doing an operation on an object that expects a string, like `alert`: + + ```js + // output + alert(obj); + + // using object as a property key + anotherObj[obj] = 123; + ``` + +`"number"` +: For an object-to-number conversion, like when we're doing maths: + + ```js + // explicit conversion + let num = Number(obj); + + // maths (except binary plus) + let n = +obj; // unary plus + let delta = date1 - date2; + + // less/greater comparison + let greater = user1 > user2; + ``` + + Most built-in mathematical functions also include such conversion. + +`"default"` +: Occurs in rare cases when the operator is "not sure" what type to expect. + + For instance, binary plus `+` can work both with strings (concatenates them) and numbers (adds them). So if a binary plus gets an object as an argument, it uses the `"default"` hint to convert it. + + Also, if an object is compared using `==` with a string, number or a symbol, it's also unclear which conversion should be done, so the `"default"` hint is used. + + ```js + // binary plus uses the "default" hint + let total = obj1 + obj2; + + // obj == number uses the "default" hint + if (user == 1) { ... }; + ``` + + The greater and less comparison operators, such as `<` `>`, can work with both strings and numbers too. Still, they use the `"number"` hint, not `"default"`. That's for historical reasons. + +In practice though, things are a bit simpler. + +All built-in objects except for one case (`Date` object, we'll learn it later) implement `"default"` conversion the same way as `"number"`. And we probably should do the same. + +Still, it's important to know about all 3 hints, soon we'll see why. + +**To do the conversion, JavaScript tries to find and call three object methods:** + +1. Call `obj[Symbol.toPrimitive](hint)` - the method with the symbolic key `Symbol.toPrimitive` (system symbol), if such method exists, +2. Otherwise if hint is `"string"` + - try calling `obj.toString()` or `obj.valueOf()`, whatever exists. +3. Otherwise if hint is `"number"` or `"default"` + - try calling `obj.valueOf()` or `obj.toString()`, whatever exists. + +## Symbol.toPrimitive + +Let's start from the first method. There's a built-in symbol named `Symbol.toPrimitive` that should be used to name the conversion method, like this: + +```js +obj[Symbol.toPrimitive] = function(hint) { + // here goes the code to convert this object to a primitive + // it must return a primitive value + // hint = one of "string", "number", "default" +}; +``` + +If the method `Symbol.toPrimitive` exists, it's used for all hints, and no more methods are needed. + +For instance, here `user` object implements it: + +```js run +let user = { + name: "John", + money: 1000, + + [Symbol.toPrimitive](hint) { + alert(`hint: ${hint}`); + return hint == "string" ? `{name: "${this.name}"}` : this.money; + } +}; + +// conversions demo: +alert(user); // hint: string -> {name: "John"} +alert(+user); // hint: number -> 1000 +alert(user + 500); // hint: default -> 1500 +``` + +As we can see from the code, `user` becomes a self-descriptive string or a money amount, depending on the conversion. The single method `user[Symbol.toPrimitive]` handles all conversion cases. + +## toString/valueOf + +If there's no `Symbol.toPrimitive` then JavaScript tries to find methods `toString` and `valueOf`: + +- For the `"string"` hint: call `toString` method, and if it doesn't exist or if it returns an object instead of a primitive value, then call `valueOf` (so `toString` has the priority for string conversions). +- For other hints: call `valueOf`, and if it doesn't exist or if it returns an object instead of a primitive value, then call `toString` (so `valueOf` has the priority for maths). + +Methods `toString` and `valueOf` come from ancient times. They are not symbols (symbols did not exist that long ago), but rather "regular" string-named methods. They provide an alternative "old-style" way to implement the conversion. + +These methods must return a primitive value. If `toString` or `valueOf` returns an object, then it's ignored (same as if there were no method). + +By default, a plain object has following `toString` and `valueOf` methods: + +- The `toString` method returns a string `"[object Object]"`. +- The `valueOf` method returns the object itself. + +Here's the demo: + +```js run +let user = {name: "John"}; + +alert(user); // [object Object] +alert(user.valueOf() === user); // true +``` + +So if we try to use an object as a string, like in an `alert` or so, then by default we see `[object Object]`. + +The default `valueOf` is mentioned here only for the sake of completeness, to avoid any confusion. As you can see, it returns the object itself, and so is ignored. Don't ask me why, that's for historical reasons. So we can assume it doesn't exist. + +Let's implement these methods to customize the conversion. + +For instance, here `user` does the same as above using a combination of `toString` and `valueOf` instead of `Symbol.toPrimitive`: + +```js run +let user = { + name: "John", + money: 1000, + + // for hint="string" + toString() { + return `{name: "${this.name}"}`; + }, + + // for hint="number" or "default" + valueOf() { + return this.money; + } + +}; + +alert(user); // toString -> {name: "John"} +alert(+user); // valueOf -> 1000 +alert(user + 500); // valueOf -> 1500 +``` + +As we can see, the behavior is the same as the previous example with `Symbol.toPrimitive`. + +Often we want a single "catch-all" place to handle all primitive conversions. In this case, we can implement `toString` only, like this: + +```js run +let user = { + name: "John", + + toString() { + return this.name; + } +}; + +alert(user); // toString -> John +alert(user + 500); // toString -> John500 +``` + +In the absence of `Symbol.toPrimitive` and `valueOf`, `toString` will handle all primitive conversions. + +### A conversion can return any primitive type + +The important thing to know about all primitive-conversion methods is that they do not necessarily return the "hinted" primitive. + +There is no control whether `toString` returns exactly a string, or whether `Symbol.toPrimitive` method returns a number for the hint `"number"`. + +The only mandatory thing: these methods must return a primitive, not an object. + +```smart header="Historical notes" +For historical reasons, if `toString` or `valueOf` returns an object, there's no error, but such value is ignored (like if the method didn't exist). That's because in ancient times there was no good "error" concept in JavaScript. + +In contrast, `Symbol.toPrimitive` is stricter, it *must* return a primitive, otherwise there will be an error. +``` + +## Further conversions + +As we know already, many operators and functions perform type conversions, e.g. multiplication `*` converts operands to numbers. + +If we pass an object as an argument, then there are two stages of calculations: +1. The object is converted to a primitive (using the rules described above). +2. If necessary for further calculations, the resulting primitive is also converted. + +For instance: + +```js run +let obj = { + // toString handles all conversions in the absence of other methods + toString() { + return "2"; + } +}; + +alert(obj * 2); // 4, object converted to primitive "2", then multiplication made it a number +``` + +1. The multiplication `obj * 2` first converts the object to primitive (that's a string `"2"`). +2. Then `"2" * 2` becomes `2 * 2` (the string is converted to number). + +Binary plus will concatenate strings in the same situation, as it gladly accepts a string: + +```js run +let obj = { + toString() { + return "2"; + } +}; + +alert(obj + 2); // "22" ("2" + 2), conversion to primitive returned a string => concatenation +``` + +## Summary + +The object-to-primitive conversion is called automatically by many built-in functions and operators that expect a primitive as a value. + +There are 3 types (hints) of it: +- `"string"` (for `alert` and other operations that need a string) +- `"number"` (for maths) +- `"default"` (few operators, usually objects implement it the same way as `"number"`) + +The specification describes explicitly which operator uses which hint. + +The conversion algorithm is: + +1. Call `obj[Symbol.toPrimitive](hint)` if the method exists, +2. Otherwise if hint is `"string"` + - try calling `obj.toString()` or `obj.valueOf()`, whatever exists. +3. Otherwise if hint is `"number"` or `"default"` + - try calling `obj.valueOf()` or `obj.toString()`, whatever exists. + +All these methods must return a primitive to work (if defined). + +In practice, it's often enough to implement only `obj.toString()` as a "catch-all" method for string conversions that should return a "human-readable" representation of an object, for logging or debugging purposes. diff --git a/1-js/05-data-types/01-primitives-methods/1-string-new-property/solution.md b/1-js/05-data-types/01-primitives-methods/1-string-new-property/solution.md index a169f7769..fd22a4653 100644 --- a/1-js/05-data-types/01-primitives-methods/1-string-new-property/solution.md +++ b/1-js/05-data-types/01-primitives-methods/1-string-new-property/solution.md @@ -6,26 +6,19 @@ let str = "Hello"; str.test = 5; // (*) -alert(str.test); +alert(str.test); ``` -There may be two kinds of result: -1. `undefined` -2. An error. +Depending on whether you have `use strict` or not, the result may be: +1. `undefined` (no strict mode) +2. An error (strict mode). Why? Let's replay what's happening at line `(*)`: 1. When a property of `str` is accessed, a "wrapper object" is created. -2. The operation with the property is carried out on it. So, the object gets the `test` property. -3. The operation finishes and the "wrapper object" disappears. - -So, on the last line, `str` has no trace of the property. A new wrapper object for every object operation on a string. - -Some browsers though may decide to further limit the programmer and disallow to assign properties to primitives at all. That's why in practice we can also see errors at line `(*)`. It's a little bit farther from the specification though. +2. In strict mode, writing into it is an error. +3. Otherwise, the operation with the property is carried on, the object gets the `test` property, but after that the "wrapper object" disappears, so in the last line `str` has no trace of the property. **This example clearly shows that primitives are not objects.** -They just can not store data. - -All property/method operations are performed with the help of temporary objects. - +They can't store additional data. diff --git a/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md b/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md index 50c781ea5..208f84cc7 100644 --- a/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md +++ b/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md @@ -15,4 +15,4 @@ str.test = 5; alert(str.test); ``` -How do you think, will it work? What will be shown? +What do you think, will it work? What will be shown? diff --git a/1-js/05-data-types/01-primitives-methods/article.md b/1-js/05-data-types/01-primitives-methods/article.md index a2dcceb19..69e7196e9 100644 --- a/1-js/05-data-types/01-primitives-methods/article.md +++ b/1-js/05-data-types/01-primitives-methods/article.md @@ -1,20 +1,18 @@ # Methods of primitives -JavaScript allows us to work with primitives (strings, numbers, etc.) as if they were objects. - -They also provide methods to call as such. We will study those soon, but first we'll see how it works because, of course, primitives are not objects (and here we will make it even clearer). +JavaScript allows us to work with primitives (strings, numbers, etc.) as if they were objects. They also provide methods to call as such. We will study those soon, but first we'll see how it works because, of course, primitives are not objects (and here we will make it even clearer). Let's look at the key distinctions between primitives and objects. A primitive - Is a value of a primitive type. -- There are 6 primitive types: `string`, `number`, `boolean`, `symbol`, `null` and `undefined`. +- There are 7 primitive types: `string`, `number`, `bigint`, `boolean`, `symbol`, `null` and `undefined`. An object - Is capable of storing multiple values as properties. -- Can be created with `{}`, for instance: `{name: "John", age: 30}`. There are other kinds of objects in JavaScript; functions, for example, are objects. +- Can be created with `{}`, for instance: `{name: "John", age: 30}`. There are other kinds of objects in JavaScript: functions, for example, are objects. One of the best things about objects is that we can store a function as one of its properties. @@ -35,24 +33,24 @@ Many built-in objects already exist, such as those that work with dates, errors, But, these features come with a cost! -Objects are "heavier" than primitives. They require additional resources to support the internal machinery. But as properties and methods are very useful in programming, JavaScript engines try to optimize them to reduce the additional burden. +Objects are "heavier" than primitives. They require additional resources to support the internal machinery. ## A primitive as an object Here's the paradox faced by the creator of JavaScript: -- There are many things one would want to do with a primitive like a string or a number. It would be great to access them as methods. +- There are many things one would want to do with a primitive, like a string or a number. It would be great to access them using methods. - Primitives must be as fast and lightweight as possible. The solution looks a little bit awkward, but here it is: 1. Primitives are still primitive. A single value, as desired. 2. The language allows access to methods and properties of strings, numbers, booleans and symbols. -3. When this happens, a special "object wrapper" that provides the extra functionality is created, and then is destroyed. +3. In order for that to work, a special "object wrapper" that provides the extra functionality is created, and then is destroyed. -The "object wrappers" are different for each primitive type and are called: `String`, `Number`, `Boolean` and `Symbol`. Thus, they provide different sets of methods. +The "object wrappers" are different for each primitive type and are called: `String`, `Number`, `Boolean`, `Symbol` and `BigInt`. Thus, they provide different sets of methods. -For instance, there exists a method [str.toUpperCase()](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/toUpperCase) that returns a capitalized string. +For instance, there exists a string method [str.toUpperCase()](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/toUpperCase) that returns a capitalized `str`. Here's how it works: @@ -84,31 +82,32 @@ We'll see more specific methods in chapters and . ````warn header="Constructors `String/Number/Boolean` are for internal use only" -Some languages like Java allow us to create "wrapper objects" for primitives explicitly using a syntax like `new Number(1)` or `new Boolean(false)`. +Some languages like Java allow us to explicitly create "wrapper objects" for primitives using a syntax like `new Number(1)` or `new Boolean(false)`. In JavaScript, that's also possible for historical reasons, but highly **unrecommended**. Things will go crazy in several places. For instance: ```js run -alert( typeof 1 ); // "number" +alert( typeof 0 ); // "number" -alert( typeof new Number(1) ); // "object"! +alert( typeof new Number(0) ); // "object"! ``` -And because what follows, `zero`, is an object, the alert will show up: +Objects are always truthy in `if`, so here the alert will show up: ```js run let zero = new Number(0); if (zero) { // zero is true, because it's an object - alert( "zero is truthy?!?" ); + alert( "zero is truthy!?!" ); } ``` -On the other hand, using the same functions `String/Number/Boolean` without `new` is a totally sane and useful thing. They convert a value to the corresponding type: to a string, a number, or a boolean (primitive). +On the other hand, using the same functions `String/Number/Boolean` without `new` is totally fine and useful thing. They convert a value to the corresponding type: to a string, a number, or a boolean (primitive). For example, this is entirely valid: + ```js let num = Number("123"); // convert a string to number ``` diff --git a/1-js/05-data-types/02-number/2-why-rounded-down/solution.md b/1-js/05-data-types/02-number/2-why-rounded-down/solution.md index a17a4671a..4bcd74512 100644 --- a/1-js/05-data-types/02-number/2-why-rounded-down/solution.md +++ b/1-js/05-data-types/02-number/2-why-rounded-down/solution.md @@ -28,6 +28,6 @@ Note that `63.5` has no precision loss at all. That's because the decimal part ` ```js run -alert( Math.round(6.35 * 10) / 10); // 6.35 -> 63.5 -> 64(rounded) -> 6.4 +alert( Math.round(6.35 * 10) / 10 ); // 6.35 -> 63.5 -> 64(rounded) -> 6.4 ``` diff --git a/1-js/05-data-types/02-number/3-repeat-until-number/_js.view/test.js b/1-js/05-data-types/02-number/3-repeat-until-number/_js.view/test.js index 219fa8068..6bd0123db 100644 --- a/1-js/05-data-types/02-number/3-repeat-until-number/_js.view/test.js +++ b/1-js/05-data-types/02-number/3-repeat-until-number/_js.view/test.js @@ -18,7 +18,7 @@ describe("readNumber", function() { assert.strictEqual(readNumber(), 0); }); - it("continues the loop unti meets a number", function() { + it("continues the loop until meets a number", function() { prompt.onCall(0).returns("not a number"); prompt.onCall(1).returns("not a number again"); prompt.onCall(2).returns("1"); @@ -35,4 +35,4 @@ describe("readNumber", function() { assert.isNull(readNumber()); }); -}); \ No newline at end of file +}); diff --git a/1-js/05-data-types/02-number/article.md b/1-js/05-data-types/02-number/article.md index af06706cd..8e41f673d 100644 --- a/1-js/05-data-types/02-number/article.md +++ b/1-js/05-data-types/02-number/article.md @@ -1,8 +1,12 @@ # Numbers -All numbers in JavaScript are stored in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754-2008_revision), also known as "double precision floating point numbers". +In modern JavaScript, there are two types of numbers: -Let's recap and expand upon what we currently know about them. +1. Regular numbers in JavaScript are stored in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754), also known as "double precision floating point numbers". These are numbers that we're using most of the time, and we'll talk about them in this chapter. + +2. BigInt numbers represent integers of arbitrary length. They are sometimes needed because a regular integer number can't safely exceed (253-1) or be less than -(253-1), as we mentioned earlier in the chapter . As bigints are used in a few special areas, we devote them to a special chapter . + +So here we'll talk about regular numbers. Let's expand our knowledge of them. ## More ways to write a number @@ -12,46 +16,56 @@ Imagine we need to write 1 billion. The obvious way is: let billion = 1000000000; ``` -But in real life we usually avoid writing a long string of zeroes as it's easy to mistype. Also, we are lazy. We will usually write something like `"1bn"` for a billion or `"7.3bn"` for 7 billion 300 million. The same is true for most large numbers. +We also can use underscore `_` as the separator: + +```js +let billion = 1_000_000_000; +``` + +Here the underscore `_` plays the role of the "[syntactic sugar](https://en.wikipedia.org/wiki/Syntactic_sugar)", it makes the number more readable. The JavaScript engine simply ignores `_` between digits, so it's exactly the same one billion as above. -In JavaScript, we shorten a number by appending the letter `"e"` to the number and specifying the zeroes count: +In real life though, we try to avoid writing long sequences of zeroes. We're too lazy for that. We'll try to write something like `"1bn"` for a billion or `"7.3bn"` for 7 billion 300 million. The same is true for most large numbers. + +In JavaScript, we can shorten a number by appending the letter `"e"` to it and specifying the zeroes count: ```js run let billion = 1e9; // 1 billion, literally: 1 and 9 zeroes -alert( 7.3e9 ); // 7.3 billions (7,300,000,000) +alert( 7.3e9 ); // 7.3 billions (same as 7300000000 or 7_300_000_000) ``` -In other words, `"e"` multiplies the number by `1` with the given zeroes count. +In other words, `e` multiplies the number by `1` with the given zeroes count. ```js -1e3 = 1 * 1000 -1.23e6 = 1.23 * 1000000 +1e3 === 1 * 1000; // e3 means *1000 +1.23e6 === 1.23 * 1000000; // e6 means *1000000 ``` - -Now let's write something very small. Say, 1 microsecond (one millionth of a second): +Now let's write something very small. Say, 1 microsecond (one-millionth of a second): ```js -let ms = 0.000001; +let mсs = 0.000001; ``` -Just like before, using `"e"` can help. If we'd like to avoid writing the zeroes explicitly, we could say: +Just like before, using `"e"` can help. If we'd like to avoid writing the zeroes explicitly, we could write the same as: ```js -let ms = 1e-6; // six zeroes to the left from 1 +let mcs = 1e-6; // five zeroes to the left from 1 ``` -If we count the zeroes in `0.000001`, there are 6 of them. So naturally it's `1e-6`. +If we count the zeroes in `0.000001`, there are 6 of them. So naturally it's `1e-6`. In other words, a negative number after `"e"` means a division by 1 with the given number of zeroes: ```js // -3 divides by 1 with 3 zeroes -1e-3 = 1 / 1000 (=0.001) +1e-3 === 1 / 1000; // 0.001 // -6 divides by 1 with 6 zeroes -1.23e-6 = 1.23 / 1000000 (=0.00000123) +1.23e-6 === 1.23 / 1000000; // 0.00000123 + +// an example with a bigger number +1234e-2 === 1234 / 100; // 12.34, decimal point moves 2 times ``` ### Hex, binary and octal numbers @@ -89,13 +103,13 @@ alert( num.toString(16) ); // ff alert( num.toString(2) ); // 11111111 ``` -The `base` can vary from `2` to `36`. By default it's `10`. +The `base` can vary from `2` to `36`. By default, it's `10`. Common use cases for this are: - **base=16** is used for hex colors, character encodings etc, digits can be `0..9` or `A..F`. - **base=2** is mostly for debugging bitwise operations, digits can be `0` or `1`. -- **base=36** is the maximum, digits can be `0..9` or `A..Z`. The whole latin alphabet is used to represent a number. A funny, but useful case for `36` is when we need to turn a long numeric identifier into something shorter, for example to make a short url. Can simply represent it in the numeral system with base `36`: +- **base=36** is the maximum, digits can be `0..9` or `A..Z`. The whole Latin alphabet is used to represent a number. A funny, but useful case for `36` is when we need to turn a long numeric identifier into something shorter, for example, to make a short url. Can simply represent it in the numeral system with base `36`: ```js run alert( 123456..toString(36) ); // 2n9c @@ -104,9 +118,10 @@ Common use cases for this are: ```warn header="Two dots to call a method" Please note that two dots in `123456..toString(36)` is not a typo. If we want to call a method directly on a number, like `toString` in the example above, then we need to place two dots `..` after it. -If we placed a single dot: `123456.toString(36)`, then there would be an error, because JavaScript syntax implies the decimal part after the first dot. And if we place one more dot, then JavaScript knows that the decimal part is empty and now goes the method. +If we placed a single dot: `123456.toString(36)`, then there would be an error, because JavaScript syntax implies the decimal part after the first dot. And if we place one more dot, then JavaScript knows that the decimal part is empty and now uses the method. Also could write `(123456).toString(36)`. + ``` ## Rounding @@ -122,7 +137,7 @@ There are several built-in functions for rounding: : Rounds up: `3.1` becomes `4`, and `-1.1` becomes `-1`. `Math.round` -: Rounds to the nearest integer: `3.1` becomes `3`, `3.6` becomes `4` and `-1.1` becomes `-1`. +: Rounds to the nearest integer: `3.1` becomes `3`, `3.6` becomes `4`. In the middle cases `3.5` rounds up to `4`, and `-3.5` rounds up to `-3`. `Math.trunc` (not supported by Internet Explorer) : Removes anything after the decimal point without rounding: `3.1` becomes `3`, `-1.1` becomes `-1`. @@ -132,8 +147,10 @@ Here's the table to summarize the differences between them: | | `Math.floor` | `Math.ceil` | `Math.round` | `Math.trunc` | |---|---------|--------|---------|---------| |`3.1`| `3` | `4` | `3` | `3` | +|`3.5`| `3` | `4` | `4` | `3` | |`3.6`| `3` | `4` | `4` | `3` | |`-1.1`| `-2` | `-1` | `-1` | `-1` | +|`-1.5`| `-2` | `-1` | `-1` | `-1` | |`-1.6`| `-2` | `-1` | `-2` | `-1` | @@ -149,7 +166,7 @@ There are two ways to do so: ```js run let num = 1.23456; - alert( Math.floor(num * 100) / 100 ); // 1.23456 -> 123.456 -> 123 -> 1.23 + alert( Math.round(num * 100) / 100 ); // 1.23456 -> 123.456 -> 123 -> 1.23 ``` 2. The method [toFixed(n)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toFixed) rounds the number to `n` digits after the point and returns a string representation of the result. @@ -166,20 +183,20 @@ There are two ways to do so: alert( num.toFixed(1) ); // "12.4" ``` - Please note that result of `toFixed` is a string. If the decimal part is shorter than required, zeroes are appended to the end: + Please note that the result of `toFixed` is a string. If the decimal part is shorter than required, zeroes are appended to the end: ```js run let num = 12.34; alert( num.toFixed(5) ); // "12.34000", added zeroes to make exactly 5 digits ``` - We can convert it to a number using the unary plus or a `Number()` call: `+num.toFixed(5)`. + We can convert it to a number using the unary plus or a `Number()` call, e.g. write `+num.toFixed(5)`. ## Imprecise calculations -Internally, a number is represented in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754-2008_revision), so there are exactly 64 bits to store a number: 52 of them are used to store the digits, 11 of them store the position of the decimal point (they are zero for integer numbers), and 1 bit is for the sign. +Internally, a number is represented in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754), so there are exactly 64 bits to store a number: 52 of them are used to store the digits, 11 of them store the position of the decimal point, and 1 bit is for the sign. -If a number is too big, it would overflow the 64-bit storage, potentially giving an infinity: +If a number is really huge, it may overflow the 64-bit storage and become a special numeric value `Infinity`: ```js run alert( 1e500 ); // Infinity @@ -187,7 +204,7 @@ alert( 1e500 ); // Infinity What may be a little less obvious, but happens quite often, is the loss of precision. -Consider this (falsy!) test: +Consider this (falsy!) equality test: ```js run alert( 0.1 + 0.2 == 0.3 ); // *!*false*/!* @@ -201,19 +218,25 @@ Strange! What is it then if not `0.3`? alert( 0.1 + 0.2 ); // 0.30000000000000004 ``` -Ouch! There are more consequences than an incorrect comparison here. Imagine you're making an e-shopping site and the visitor puts `$0.10` and `$0.20` goods into their chart. The order total will be `$0.30000000000000004`. That would surprise anyone. +Ouch! Imagine you're making an e-shopping site and the visitor puts `$0.10` and `$0.20` goods into their cart. The order total will be `$0.30000000000000004`. That would surprise anyone. But why does this happen? -A number is stored in memory in its binary form, a sequence of ones and zeroes. But fractions like `0.1`, `0.2` that look simple in the decimal numeric system are actually unending fractions in their binary form. +A number is stored in memory in its binary form, a sequence of bits - ones and zeroes. But fractions like `0.1`, `0.2` that look simple in the decimal numeric system are actually unending fractions in their binary form. -In other words, what is `0.1`? It is one divided by ten `1/10`, one-tenth. In decimal numeral system such numbers are easily representable. Compare it to one-third: `1/3`. It becomes an endless fraction `0.33333(3)`. +```js run +alert(0.1.toString(2)); // 0.0001100110011001100110011001100110011001100110011001101 +alert(0.2.toString(2)); // 0.001100110011001100110011001100110011001100110011001101 +alert((0.1 + 0.2).toString(2)); // 0.0100110011001100110011001100110011001100110011001101 +``` + +What is `0.1`? It is one divided by ten `1/10`, one-tenth. In the decimal numeral system, such numbers are easily representable. Compare it to one-third: `1/3`. It becomes an endless fraction `0.33333(3)`. So, division by powers `10` is guaranteed to work well in the decimal system, but division by `3` is not. For the same reason, in the binary numeral system, the division by powers of `2` is guaranteed to work, but `1/10` becomes an endless binary fraction. There's just no way to store *exactly 0.1* or *exactly 0.2* using the binary system, just like there is no way to store one-third as a decimal fraction. -The numeric format IEEE-754 solves this by rounding to the nearest possible number. These rounding rules normally don't allow us to see that "tiny precision loss", so the number shows up as `0.3`. But beware, the loss still exists. +The numeric format IEEE-754 solves this by rounding to the nearest possible number. These rounding rules normally don't allow us to see that "tiny precision loss", but it exists. We can see this in action: ```js run @@ -227,14 +250,14 @@ That's why `0.1 + 0.2` is not exactly `0.3`. ```smart header="Not only JavaScript" The same issue exists in many other programming languages. -PHP, Java, C, Perl, Ruby give exactly the same result, because they are based on the same numeric format. +PHP, Java, C, Perl, and Ruby give exactly the same result, because they are based on the same numeric format. ``` Can we work around the problem? Sure, the most reliable method is to round the result with the help of a method [toFixed(n)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toFixed): ```js run let sum = 0.1 + 0.2; -alert( sum.toFixed(2) ); // 0.30 +alert( sum.toFixed(2) ); // "0.30" ``` Please note that `toFixed` always returns a string. It ensures that it has 2 digits after the decimal point. That's actually convenient if we have an e-shopping and need to show `$0.30`. For other cases, we can use the unary plus to coerce it into a number: @@ -251,7 +274,7 @@ alert( (0.1 * 10 + 0.2 * 10) / 10 ); // 0.3 alert( (0.28 * 100 + 0.14 * 100) / 100); // 0.4200000000000001 ``` -So, multiply/divide approach reduces the error, but doesn't remove it totally. +So, the multiply/divide approach reduces the error, but doesn't remove it totally. Sometimes we could try to evade fractions at all. Like if we're dealing with a shop, then we can store prices in cents instead of dollars. But what if we apply a discount of 30%? In practice, totally evading fractions is rarely possible. Just round them to cut "tails" when needed. @@ -271,13 +294,11 @@ JavaScript doesn't trigger an error in such events. It does its best to fit the ```smart header="Two zeroes" Another funny consequence of the internal representation of numbers is the existence of two zeroes: `0` and `-0`. -That's because a sign is represented by a single bit, so every number can be positive or negative, including a zero. +That's because a sign is represented by a single bit, so it can be set or not set for any number including a zero. -In most cases the distinction is unnoticeable, because operators are suited to treat them as the same. +In most cases, the distinction is unnoticeable, because operators are suited to treat them as the same. ``` - - ## Tests: isFinite and isNaN Remember these two special numeric values? @@ -295,7 +316,7 @@ They belong to the type `number`, but are not "normal" numbers, so there are spe alert( isNaN("str") ); // true ``` - But do we need this function? Can't we just use the comparison `=== NaN`? Sorry, but the answer is no. The value `NaN` is unique in that it does not equal anything, including itself: + But do we need this function? Can't we just use the comparison `=== NaN`? Unfortunately not. The value `NaN` is unique in that it does not equal anything, including itself: ```js run alert( NaN === NaN ); // false @@ -319,18 +340,46 @@ let num = +prompt("Enter a number", ''); alert( isFinite(num) ); ``` -Please note that an empty or a space-only string is treated as `0` in all numeric functions including `isFinite`. +Please note that an empty or a space-only string is treated as `0` in all numeric functions including `isFinite`. -```smart header="Compare with `Object.is`" +````smart header="`Number.isNaN` and `Number.isFinite`" +[Number.isNaN](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isNaN) and [Number.isFinite](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isFinite) methods are the more "strict" versions of `isNaN` and `isFinite` functions. They do not autoconvert their argument into a number, but check if it belongs to the `number` type instead. -There is a special built-in method [Object.is](mdn:js/Object/is) that compares values like `===`, but is more reliable for two edge cases: +- `Number.isNaN(value)` returns `true` if the argument belongs to the `number` type and it is `NaN`. In any other case, it returns `false`. + + ```js run + alert( Number.isNaN(NaN) ); // true + alert( Number.isNaN("str" / 2) ); // true + + // Note the difference: + alert( Number.isNaN("str") ); // false, because "str" belongs to the string type, not the number type + alert( isNaN("str") ); // true, because isNaN converts string "str" into a number and gets NaN as a result of this conversion + ``` + +- `Number.isFinite(value)` returns `true` if the argument belongs to the `number` type and it is not `NaN/Infinity/-Infinity`. In any other case, it returns `false`. + + ```js run + alert( Number.isFinite(123) ); // true + alert( Number.isFinite(Infinity) ); // false + alert( Number.isFinite(2 / 0) ); // false + + // Note the difference: + alert( Number.isFinite("123") ); // false, because "123" belongs to the string type, not the number type + alert( isFinite("123") ); // true, because isFinite converts string "123" into a number 123 + ``` + +In a way, `Number.isNaN` and `Number.isFinite` are simpler and more straightforward than `isNaN` and `isFinite` functions. In practice though, `isNaN` and `isFinite` are mostly used, as they're shorter to write. +```` + +```smart header="Comparison with `Object.is`" +There is a special built-in method `Object.is` that compares values like `===`, but is more reliable for two edge cases: 1. It works with `NaN`: `Object.is(NaN, NaN) === true`, that's a good thing. -2. Values `0` and `-0` are different: `Object.is(0, -0) === false`, it rarely matters, but these values technically are different. +2. Values `0` and `-0` are different: `Object.is(0, -0) === false`, technically that's correct because internally the number has a sign bit that may be different even if all other bits are zeroes. In all other cases, `Object.is(a, b)` is the same as `a === b`. -This way of comparison is often used in JavaScript specification. When an internal algorithm needs to compare two values for being exactly the same, it uses `Object.is` (internally called [SameValue](https://tc39.github.io/ecma262/#sec-samevalue)). +We mention `Object.is` here, because it's often used in JavaScript specification. When an internal algorithm needs to compare two values for being exactly the same, it uses `Object.is` (internally called [SameValue](https://tc39.github.io/ecma262/#sec-samevalue)). ``` @@ -344,7 +393,7 @@ alert( +"100px" ); // NaN The sole exception is spaces at the beginning or at the end of the string, as they are ignored. -But in real life we often have values in units, like `"100px"` or `"12pt"` in CSS. Also in many countries the currency symbol goes after the amount, so we have `"19€"` and would like to extract a numeric value out of that. +But in real life, we often have values in units, like `"100px"` or `"12pt"` in CSS. Also in many countries, the currency symbol goes after the amount, so we have `"19€"` and would like to extract a numeric value out of that. That's what `parseInt` and `parseFloat` are for. @@ -382,7 +431,7 @@ JavaScript has a built-in [Math](https://developer.mozilla.org/en/docs/Web/JavaS A few examples: `Math.random()` -: Returns a random number from 0 to 1 (not including 1) +: Returns a random number from 0 to 1 (not including 1). ```js run alert( Math.random() ); // 0.1234567894322 @@ -390,8 +439,8 @@ A few examples: alert( Math.random() ); // ... (any random numbers) ``` -`Math.max(a, b, c...)` / `Math.min(a, b, c...)` -: Returns the greatest/smallest from the arbitrary number of arguments. +`Math.max(a, b, c...)` and `Math.min(a, b, c...)` +: Returns the greatest and smallest from the arbitrary number of arguments. ```js run alert( Math.max(3, 5, -10, 0, 1) ); // 5 @@ -399,27 +448,34 @@ A few examples: ``` `Math.pow(n, power)` -: Returns `n` raised the given power +: Returns `n` raised to the given power. ```js run alert( Math.pow(2, 10) ); // 2 in power 10 = 1024 ``` -There are more functions and constants in `Math` object, including trigonometry, which you can find in the [docs for the Math](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Math) object. +There are more functions and constants in `Math` object, including trigonometry, which you can find in the [docs for the Math object](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Math). ## Summary -To write big numbers: +To write numbers with many zeroes: -- Append `"e"` with the zeroes count to the number. Like: `123e6` is `123` with 6 zeroes. -- A negative number after `"e"` causes the number to be divided by 1 with given zeroes. That's for one-millionth or such. +- Append `"e"` with the zeroes count to the number. Like: `123e6` is the same as `123` with 6 zeroes `123000000`. +- A negative number after `"e"` causes the number to be divided by 1 with given zeroes. E.g. `123e-6` means `0.000123` (`123` millionths). For different numeral systems: -- Can write numbers directly in hex (`0x`), octal (`0o`) and binary (`0b`) systems -- `parseInt(str, base)` parses an integer from any numeral system with base: `2 ≤ base ≤ 36`. +- Can write numbers directly in hex (`0x`), octal (`0o`) and binary (`0b`) systems. +- `parseInt(str, base)` parses the string `str` into an integer in numeral system with given `base`, `2 ≤ base ≤ 36`. - `num.toString(base)` converts a number to a string in the numeral system with the given `base`. +For regular number tests: + +- `isNaN(value)` converts its argument to a number and then tests it for being `NaN` +- `Number.isNaN(value)` checks whether its argument belongs to the `number` type, and if so, tests it for being `NaN` +- `isFinite(value)` converts its argument to a number and then tests it for not being `NaN/Infinity/-Infinity` +- `Number.isFinite(value)` checks whether its argument belongs to the `number` type, and if so, tests it for not being `NaN/Infinity/-Infinity` + For converting values like `12pt` and `100px` to a number: - Use `parseInt/parseFloat` for the "soft" conversion, which reads a number from a string and then returns the value they could read before the error. @@ -431,4 +487,4 @@ For fractions: More mathematical functions: -- See the [Math](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Math) object when you need them. The library is very small, but can cover basic needs. +- See the [Math](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Math) object when you need them. The library is very small but can cover basic needs. diff --git a/1-js/05-data-types/03-string/1-ucfirst/solution.md b/1-js/05-data-types/03-string/1-ucfirst/solution.md index 4809cf123..be5dd2aaf 100644 --- a/1-js/05-data-types/03-string/1-ucfirst/solution.md +++ b/1-js/05-data-types/03-string/1-ucfirst/solution.md @@ -6,16 +6,11 @@ But we can make a new string based on the existing one, with the uppercased firs let newStr = str[0].toUpperCase() + str.slice(1); ``` -There's a small problem though. If `str` is empty, then `str[0]` is undefined, so we'll get an error. +There's a small problem though. If `str` is empty, then `str[0]` is `undefined`, and as `undefined` doesn't have the `toUpperCase()` method, we'll get an error. -There are two variants here: +The easiest way out is to add a test for an empty string, like this: -1. Use `str.charAt(0)`, as it always returns a string (maybe empty). -2. Add a test for an empty string. - -Here's the 2nd variant: - -```js run +```js run demo function ucFirst(str) { if (!str) return str; @@ -24,4 +19,3 @@ function ucFirst(str) { alert( ucFirst("john") ); // John ``` - diff --git a/1-js/05-data-types/03-string/1-ucfirst/task.md b/1-js/05-data-types/03-string/1-ucfirst/task.md index c0e6ecac4..ed8a1e6a7 100644 --- a/1-js/05-data-types/03-string/1-ucfirst/task.md +++ b/1-js/05-data-types/03-string/1-ucfirst/task.md @@ -2,7 +2,7 @@ importance: 5 --- -# Uppercast the first character +# Uppercase the first character Write a function `ucFirst(str)` that returns the string `str` with the uppercased first character, for instance: diff --git a/1-js/05-data-types/03-string/2-check-spam/solution.md b/1-js/05-data-types/03-string/2-check-spam/solution.md index 893c26497..de8dde57d 100644 --- a/1-js/05-data-types/03-string/2-check-spam/solution.md +++ b/1-js/05-data-types/03-string/2-check-spam/solution.md @@ -1,6 +1,6 @@ To make the search case-insensitive, let's bring the string to lower case and then search: -```js run +```js run demo function checkSpam(str) { let lowerStr = str.toLowerCase(); diff --git a/1-js/05-data-types/03-string/2-check-spam/task.md b/1-js/05-data-types/03-string/2-check-spam/task.md index d073adc05..98b5dd8a0 100644 --- a/1-js/05-data-types/03-string/2-check-spam/task.md +++ b/1-js/05-data-types/03-string/2-check-spam/task.md @@ -4,7 +4,7 @@ importance: 5 # Check for spam -Write a function `checkSpam(str)` that returns `true` if `str` contains 'viagra' or 'XXX', otherwise `false. +Write a function `checkSpam(str)` that returns `true` if `str` contains 'viagra' or 'XXX', otherwise `false`. The function must be case-insensitive: diff --git a/1-js/05-data-types/03-string/3-truncate/solution.md b/1-js/05-data-types/03-string/3-truncate/solution.md index 5546c47ee..d51672ae6 100644 --- a/1-js/05-data-types/03-string/3-truncate/solution.md +++ b/1-js/05-data-types/03-string/3-truncate/solution.md @@ -1,6 +1,6 @@ The maximal length must be `maxlength`, so we need to cut it a little shorter, to give space for the ellipsis. -Note that there is actually a single unicode character for an ellipsis. That's not three dots. +Note that there is actually a single Unicode character for an ellipsis. That's not three dots. ```js run demo function truncate(str, maxlength) { diff --git a/1-js/05-data-types/03-string/3-truncate/task.md b/1-js/05-data-types/03-string/3-truncate/task.md index 6382029f4..c99a5f15a 100644 --- a/1-js/05-data-types/03-string/3-truncate/task.md +++ b/1-js/05-data-types/03-string/3-truncate/task.md @@ -11,7 +11,7 @@ The result of the function should be the truncated (if needed) string. For instance: ```js -truncate("What I'd like to tell on this topic is:", 20) = "What I'd like to te…" +truncate("What I'd like to tell on this topic is:", 20) == "What I'd like to te…" -truncate("Hi everyone!", 20) = "Hi everyone!" +truncate("Hi everyone!", 20) == "Hi everyone!" ``` diff --git a/1-js/05-data-types/03-string/article.md b/1-js/05-data-types/03-string/article.md index e748d65f0..60ce2b6f0 100644 --- a/1-js/05-data-types/03-string/article.md +++ b/1-js/05-data-types/03-string/article.md @@ -17,7 +17,7 @@ let double = "double-quoted"; let backticks = `backticks`; ``` -Single and double quotes are essentially the same. Backticks, however, allow us to embed any expression into the string, including function calls: +Single and double quotes are essentially the same. Backticks, however, allow us to embed any expression into the string, by wrapping it in `${…}`: ```js run function sum(a, b) { @@ -39,60 +39,61 @@ let guestList = `Guests: alert(guestList); // a list of guests, multiple lines ``` -If we try to use single or double quotes in the same way, there will be an error: +Looks natural, right? But single or double quotes do not work this way. + +If we use them and try to use multiple lines, there'll be an error: + ```js run -let guestList = "Guests: // Error: Unexpected token ILLEGAL +let guestList = "Guests: // Error: Unexpected token ILLEGAL * John"; ``` -Single and double quotes come from ancient times of language creation when the need for multiline strings was not taken into account. Backticks appeared much later and thus are more versatile. - -Backticks also allow us to specify a "template function" before the first backtick. The syntax is: func`string`. The function `func` is called automatically, receives the string and embedded expressions and can process them. You can read more about it in the [docs](mdn:/JavaScript/Reference/Template_literals#Tagged_template_literals). This is called "tagged templates". This feature makes it easier to wrap strings into custom templating or other functionality, but it is rarely used. +Single and double quotes come from ancient times of language creation, when the need for multiline strings was not taken into account. Backticks appeared much later and thus are more versatile. +Backticks also allow us to specify a "template function" before the first backtick. The syntax is: func`string`. The function `func` is called automatically, receives the string and embedded expressions and can process them. This feature is called "tagged templates", it's rarely seen, but you can read about it in the MDN: [Template literals](mdn:/JavaScript/Reference/Template_literals#Tagged_templates). ## Special characters -It is still possible to create multiline strings with single quotes by using a so-called "newline character", written as `\n`, which denotes a line break: +It is still possible to create multiline strings with single and double quotes by using a so-called "newline character", written as `\n`, which denotes a line break: ```js run let guestList = "Guests:\n * John\n * Pete\n * Mary"; -alert(guestList); // a multiline list of guests +alert(guestList); // a multiline list of guests, same as above ``` -For example, these two lines describe the same: +As a simpler example, these two lines are equal, just written differently: ```js run -alert( "Hello\nWorld" ); // two lines using a "newline symbol" +let str1 = "Hello\nWorld"; // two lines using a "newline symbol" // two lines using a normal newline and backticks -alert( `Hello -World` ); +let str2 = `Hello +World`; + +alert(str1 == str2); // true ``` -There are other, less common "special" characters as well. Here's the list: +There are other, less common special characters: | Character | Description | |-----------|-------------| -|`\b`|Backspace| -|`\f`|Form feed| |`\n`|New line| -|`\r`|Carriage return| +|`\r`|In Windows text files a combination of two characters `\r\n` represents a new break, while on non-Windows OS it's just `\n`. That's for historical reasons, most Windows software also understands `\n`. | +|`\'`, `\"`, \\`|Quotes| +|`\\`|Backslash| |`\t`|Tab| -|`\uNNNN`|A unicode symbol with the hex code `NNNN`, for instance `\u00A9` -- is a unicode for the copyright symbol `©`. It must be exactly 4 hex digits. | -|`\u{NNNNNNNN}`|Some rare characters are encoded with two unicode symbols, taking up to 4 bytes. This long unicode requires braces around it.| +|`\b`, `\f`, `\v`| Backspace, Form Feed, Vertical Tab -- mentioned for completeness, coming from old times, not used nowadays (you can forget them right now). | -Examples with unicode: +As you can see, all special characters start with a backslash character `\`. It is also called an "escape character". + +Because it's so special, if we need to show an actual backslash `\` within the string, we need to double it: ```js run -alert( "\u00A9" ); // © -alert( "\u{20331}" ); // 佫, a rare chinese hieroglyph (long unicode) -alert( "\u{1F60D}" ); // 😍, a smiling face symbol (another long unicode) +alert( `The backslash: \\` ); // The backslash: \ ``` -All special characters start with a backslash character `\`. It is also called an "escape character". - -We would also use it if we want to insert a quote into the string. +So-called "escaped" quotes `\'`, `\"`, \\` are used to insert a quote into the same-quoted string. For instance: @@ -102,25 +103,16 @@ alert( 'I*!*\'*/!*m the Walrus!' ); // *!*I'm*/!* the Walrus! As you can see, we have to prepend the inner quote by the backslash `\'`, because otherwise it would indicate the string end. -Of course, that refers only to the quotes that are same as the enclosing ones. So, as a more elegant solution, we could switch to double quotes or backticks instead: +Of course, only the quotes that are the same as the enclosing ones need to be escaped. So, as a more elegant solution, we could switch to double quotes or backticks instead: ```js run -alert( `I'm the Walrus!` ); // I'm the Walrus! +alert( "I'm the Walrus!" ); // I'm the Walrus! ``` -Note that the backslash `\` serves for the correct reading of the string by JavaScript, then disappears. The in-memory string has no `\`. You can clearly see that in `alert` from the examples above. - -But what if we need to show an actual backslash `\` within the string? - -That's possible, but we need to double it like `\\`: - -```js run -alert( `The backslash: \\` ); // The backslash: \ -``` +Besides these special characters, there's also a special notation for Unicode codes `\u…`, it's rarely used and is covered in the optional chapter about [Unicode](info:unicode). ## String length - The `length` property has the string length: ```js run @@ -132,33 +124,36 @@ Note that `\n` is a single "special" character, so the length is indeed `3`. ```warn header="`length` is a property" People with a background in some other languages sometimes mistype by calling `str.length()` instead of just `str.length`. That doesn't work. -Please note that `str.length` is a numeric property, not a function. There is no need to add parenthesis after it. +Please note that `str.length` is a numeric property, not a function. There is no need to add parenthesis after it. Not `.length()`, but `.length`. ``` ## Accessing characters -To get a character at position `pos`, use square brackets `[pos]` or call the method [str.charAt(pos)](mdn:js/String/charAt). The first character starts from the zero position: +To get a character at position `pos`, use square brackets `[pos]` or call the method [str.at(pos)](mdn:js/String/at). The first character starts from the zero position: ```js run let str = `Hello`; // the first character alert( str[0] ); // H -alert( str.charAt(0) ); // H +alert( str.at(0) ); // H // the last character alert( str[str.length - 1] ); // o +alert( str.at(-1) ); ``` -The square brackets are a modern way of getting a character, while `charAt` exists mostly for historical reasons. +As you can see, the `.at(pos)` method has a benefit of allowing negative position. If `pos` is negative, then it's counted from the end of the string. -The only difference between them is that if no character is found, `[]` returns `undefined`, and `charAt` returns an empty string: +So `.at(-1)` means the last character, and `.at(-2)` is the one before it, etc. + +The square brackets always return `undefined` for negative indexes, for instance: ```js run let str = `Hello`; -alert( str[1000] ); // undefined -alert( str.charAt(1000) ); // '' (an empty string) +alert( str[-2] ); // undefined +alert( str.at(-2) ); // l ``` We can also iterate over characters using `for..of`: @@ -189,7 +184,7 @@ For instance: ```js run let str = 'Hi'; -str = 'h' + str[1]; // replace the string +str = 'h' + str[1]; // replace the string alert( str ); // hi ``` @@ -207,7 +202,7 @@ alert( 'Interface'.toLowerCase() ); // interface Or, if we want a single character lowercased: -```js +```js run alert( 'Interface'[0].toLowerCase() ); // 'i' ``` @@ -232,7 +227,7 @@ alert( str.indexOf('widget') ); // -1, not found, the search is case-sensitive alert( str.indexOf("id") ); // 1, "id" is found at the position 1 (..idget with id) ``` -The optional second parameter allows us to search starting from the given position. +The optional second parameter allows us to start searching from a given position. For instance, the first occurrence of `"id"` is at position `1`. To look for the next occurrence, let's start the search from position `2`: @@ -242,10 +237,8 @@ let str = 'Widget with id'; alert( str.indexOf('id', 2) ) // 12 ``` - If we're interested in all occurrences, we can run `indexOf` in a loop. Every new call is made with the position after the previous match: - ```js run let str = 'As sly as a fox, as strong as an ox'; @@ -305,41 +298,6 @@ if (str.indexOf("Widget") != -1) { } ``` -````smart header="The bitwise NOT trick" -One of the old tricks used here is the [bitwise NOT](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators#Bitwise_NOT) `~` operator. It converts the number to a 32-bit integer (removes the decimal part if exists) and then reverses all bits in its binary representation. - -For 32-bit integers the call `~n` means exactly the same as `-(n+1)` (due to IEEE-754 format). - -For instance: - -```js run -alert( ~2 ); // -3, the same as -(2+1) -alert( ~1 ); // -2, the same as -(1+1) -alert( ~0 ); // -1, the same as -(0+1) -*!* -alert( ~-1 ); // 0, the same as -(-1+1) -*/!* -``` - -As we can see, `~n` is zero only if `n == -1`. - -So, the test `if ( ~str.indexOf("...") )` is truthy that the result of `indexOf` is not `-1`. In other words, when there is a match. - -People use it to shorten `indexOf` checks: - -```js run -let str = "Widget"; - -if (~str.indexOf("Widget")) { - alert( 'Found it!' ); // works -} -``` - -It is usually not recommended to use language features in a non-obvious way, but this particular trick is widely used in old code, so we should understand it. - -Just remember: `if (~str.indexOf(...))` reads as "if found". -```` - ### includes, startsWith, endsWith The more modern method [str.includes(substr, pos)](mdn:js/String/includes) returns `true/false` depending on whether `str` contains `substr` within. @@ -355,15 +313,15 @@ alert( "Hello".includes("Bye") ); // false The optional second argument of `str.includes` is the position to start searching from: ```js run -alert( "Midget".includes("id") ); // true -alert( "Midget".includes("id", 3) ); // false, from position 3 there is no "id" +alert( "Widget".includes("id") ); // true +alert( "Widget".includes("id", 3) ); // false, from position 3 there is no "id" ``` The methods [str.startsWith](mdn:js/String/startsWith) and [str.endsWith](mdn:js/String/endsWith) do exactly what they say: ```js run -alert( "Widget".startsWith("Wid") ); // true, "Widget" starts with "Wid" -alert( "Widget".endsWith("get") ); // true, "Widget" ends with "get" +alert( "*!*Wid*/!*get".startsWith("Wid") ); // true, "Widget" starts with "Wid" +alert( "Wid*!*get*/!*".endsWith("get") ); // true, "Widget" ends with "get" ``` ## Getting a substring @@ -385,7 +343,7 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and ```js run let str = "st*!*ringify*/!*"; - alert( str.slice(2) ); // ringify, from the 2nd position till the end + alert( str.slice(2) ); // 'ringify', from the 2nd position till the end ``` Negative values for `start/end` are also possible. They mean the position is counted from the string end: @@ -394,18 +352,16 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and let str = "strin*!*gif*/!*y"; // start at the 4th position from the right, end at the 1st from the right - alert( str.slice(-4, -1) ); // gif + alert( str.slice(-4, -1) ); // 'gif' ``` - `str.substring(start [, end])` -: Returns the part of the string *between* `start` and `end`. +: Returns the part of the string *between* `start` and `end` (not including `end`). - This is almost the same as `slice`, but it allows `start` to be greater than `end`. + This is almost the same as `slice`, but it allows `start` to be greater than `end` (in this case it simply swaps `start` and `end` values). For instance: - ```js run let str = "st*!*ring*/!*ify"; @@ -421,7 +377,6 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and Negative arguments are (unlike slice) not supported, they are treated as `0`. - `str.substr(start [, length])` : Returns the part of the string from `start`, with the given `length`. @@ -429,29 +384,32 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and ```js run let str = "st*!*ring*/!*ify"; - alert( str.substr(2, 4) ); // ring, from the 2nd position get 4 characters + alert( str.substr(2, 4) ); // 'ring', from the 2nd position get 4 characters ``` The first argument may be negative, to count from the end: ```js run let str = "strin*!*gi*/!*fy"; - alert( str.substr(-4, 2) ); // gi, from the 4th position get 2 characters + alert( str.substr(-4, 2) ); // 'gi', from the 4th position get 2 characters ``` + This method resides in the [Annex B](https://tc39.es/ecma262/#sec-string.prototype.substr) of the language specification. It means that only browser-hosted Javascript engines should support it, and it's not recommended to use it. In practice, it's supported everywhere. + Let's recap these methods to avoid any confusion: | method | selects... | negatives | |--------|-----------|-----------| | `slice(start, end)` | from `start` to `end` (not including `end`) | allows negatives | -| `substring(start, end)` | between `start` and `end` | negative values mean `0` | +| `substring(start, end)` | between `start` and `end` (not including `end`)| negative values mean `0` | | `substr(start, length)` | from `start` get `length` characters | allows negative `start` | - ```smart header="Which one to choose?" All of them can do the job. Formally, `substr` has a minor drawback: it is described not in the core JavaScript specification, but in Annex B, which covers browser-only features that exist mainly for historical reasons. So, non-browser environments may fail to support it. But in practice it works everywhere. -The author finds themself using `slice` almost all the time. +Of the other two variants, `slice` is a little bit more flexible, it allows negative arguments and shorter to write. + +So, for practical use it's enough to remember only `slice`. ``` ## Comparing strings @@ -474,17 +432,18 @@ Although, there are some oddities. This may lead to strange results if we sort these country names. Usually people would expect `Zealand` to come after `Österreich` in the list. -To understand what happens, let's review the internal representation of strings in JavaScript. +To understand what happens, we should be aware that strings in Javascript are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). That is: each character has a corresponding numeric code. -All strings are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). That is: each character has a corresponding numeric code. There are special methods that allow to get the character for the code and back. +There are special methods that allow to get the character for the code and back: `str.codePointAt(pos)` -: Returns the code for the character at position `pos`: +: Returns a decimal number representing the code for the character at position `pos`: ```js run // different case letters have different codes - alert( "z".codePointAt(0) ); // 122 alert( "Z".codePointAt(0) ); // 90 + alert( "z".codePointAt(0) ); // 122 + alert( "z".codePointAt(0).toString(16) ); // 7a (if we need a hexadecimal value) ``` `String.fromCodePoint(code)` @@ -492,13 +451,7 @@ All strings are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). Th ```js run alert( String.fromCodePoint(90) ); // Z - ``` - - We can also add unicode characters by their codes using `\u` followed by the hex code: - - ```js run - // 90 is 5a in hexadecimal system - alert( '\u005a' ); // Z + alert( String.fromCodePoint(0x5a) ); // Z (we can also use a hex value as an argument) ``` Now let's see the characters with codes `65..220` (the latin alphabet and a little bit extra) by making a string of them: @@ -510,35 +463,35 @@ for (let i = 65; i <= 220; i++) { str += String.fromCodePoint(i); } alert( str ); +// Output: // ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„ // ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜ ``` -See? Capital characters go first, then a few special ones, then lowercase characters. +See? Capital characters go first, then a few special ones, then lowercase characters, and `Ö` near the end of the output. Now it becomes obvious why `a > Z`. The characters are compared by their numeric code. The greater code means that the character is greater. The code for `a` (97) is greater than the code for `Z` (90). - All lowercase letters go after uppercase letters because their codes are greater. -- Some letters like `Ö` stand apart from the main alphabet. Here, it's code is greater than anything from `a` to `z`. - +- Some letters like `Ö` stand apart from the main alphabet. Here, its code is greater than anything from `a` to `z`. -### Correct comparisons +### Correct comparisons [#correct-comparisons] -The "right" algorithm to do string comparisons is more complex than it may seem, because alphabets are different for different languages. The same-looking letter may be located differently in different alphabets. +The "right" algorithm to do string comparisons is more complex than it may seem, because alphabets are different for different languages. So, the browser needs to know the language to compare. -Luckily, all modern browsers (IE10- requires the additional library [Intl.JS](https://github.com/andyearnshaw/Intl.js/)) support the internationalization standard [ECMA 402](http://www.ecma-international.org/ecma-402/1.0/ECMA-402.pdf). +Luckily, modern browsers support the internationalization standard [ECMA-402](https://www.ecma-international.org/publications-and-standards/standards/ecma-402/). It provides a special method to compare strings in different languages, following their rules. -The call [str.localeCompare(str2)](mdn:js/String/localeCompare): +The call [str.localeCompare(str2)](mdn:js/String/localeCompare) returns an integer indicating whether `str` is less, equal or greater than `str2` according to the language rules: -- Returns `1` if `str` is greater than `str2` according to the language rules. -- Returns `-1` if `str` is less than `str2`. -- Returns `0` if they are equal. +- Returns a negative number if `str` is less than `str2`. +- Returns a positive number if `str` is greater than `str2`. +- Returns `0` if they are equivalent. For instance: @@ -546,120 +499,13 @@ For instance: alert( 'Österreich'.localeCompare('Zealand') ); // -1 ``` -This method actually has two additional arguments specified in [the documentation](mdn:js/String/localeCompare), which allows it to specify the language (by default taken from the environment) and setup additional rules like case sensitivity or should `"a"` and `"á"` be treated as the same etc. - -## Internals, Unicode - -```warn header="Advanced knowledge" -The section goes deeper into string internals. This knowledge will be useful for you if you plan to deal with emoji, rare mathematical or hieroglyphic characters or other rare symbols. - -You can skip the section if you don't plan to support them. -``` - -### Surrogate pairs - -Most symbols have a 2-byte code. Letters in most european languages, numbers, and even most hieroglyphs, have a 2-byte representation. - -But 2 bytes only allow 65536 combinations and that's not enough for every possible symbol. So rare symbols are encoded with a pair of 2-byte characters called "a surrogate pair". - -The length of such symbols is `2`: - -```js run -alert( '𝒳'.length ); // 2, MATHEMATICAL SCRIPT CAPITAL X -alert( '😂'.length ); // 2, FACE WITH TEARS OF JOY -alert( '𩷶'.length ); // 2, a rare chinese hieroglyph -``` - -Note that surrogate pairs did not exist at the time when JavaScript was created, and thus are not correctly processed by the language! - -We actually have a single symbol in each of the strings above, but the `length` shows a length of `2`. - -`String.fromCodePoint` and `str.codePointAt` are few rare methods that deal with surrogate pairs right. They recently appeared in the language. Before them, there were only [String.fromCharCode](mdn:js/String/fromCharCode) and [str.charCodeAt](mdn:js/String/charCodeAt). These methods are actually the same as `fromCodePoint/codePointAt`, but don't work with surrogate pairs. - -But, for instance, getting a symbol can be tricky, because surrogate pairs are treated as two characters: - -```js run -alert( '𝒳'[0] ); // strange symbols... -alert( '𝒳'[1] ); // ...pieces of the surrogate pair -``` - -Note that pieces of the surrogate pair have no meaning without each other. So the alerts in the example above actually display garbage. - -Technically, surrogate pairs are also detectable by their codes: if a character has the code in the interval of `0xd800..0xdbff`, then it is the first part of the surrogate pair. The next character (second part) must have the code in interval `0xdc00..0xdfff`. These intervals are reserved exclusively for surrogate pairs by the standard. - -In the case above: - -```js run -// charCodeAt is not surrogate-pair aware, so it gives codes for parts - -alert( '𝒳'.charCodeAt(0).toString(16) ); // d835, between 0xd800 and 0xdbff -alert( '𝒳'.charCodeAt(1).toString(16) ); // dcb3, between 0xdc00 and 0xdfff -``` - -You will find more ways to deal with surrogate pairs later in the chapter . There are probably special libraries for that too, but nothing famous enough to suggest here. - -### Diacritical marks and normalization - -In many languages there are symbols that are composed of the base character with a mark above/under it. - -For instance, the letter `a` can be the base character for: `àáâäãåā`. Most common "composite" character have their own code in the UTF-16 table. But not all of them, because there are too many possible combinations. - -To support arbitrary compositions, UTF-16 allows us to use several unicode characters. The base character and one or many "mark" characters that "decorate" it. - -For instance, if we have `S` followed by the special "dot above" character (code `\u0307`), it is shown as Ṡ. - -```js run -alert( 'S\u0307' ); // Ṡ -``` - -If we need an additional mark above the letter (or below it) -- no problem, just add the necessary mark character. - -For instance, if we append a character "dot below" (code `\u0323`), then we'll have "S with dots above and below": `Ṩ`. - -For example: - -```js run -alert( 'S\u0307\u0323' ); // Ṩ -``` - -This provides great flexibility, but also an interesting problem: two characters may visually look the same, but be represented with different unicode compositions. - -For instance: - -```js run -alert( 'S\u0307\u0323' ); // Ṩ, S + dot above + dot below -alert( 'S\u0323\u0307' ); // Ṩ, S + dot below + dot above - -alert( 'S\u0307\u0323' == 'S\u0323\u0307' ); // false -``` - -To solve this, there exists a "unicode normalization" algorithm that brings each string to the single "normal" form. - -It is implemented by [str.normalize()](mdn:js/String/normalize). - -```js run -alert( "S\u0307\u0323".normalize() == "S\u0323\u0307".normalize() ); // true -``` - -It's funny that in our situation `normalize()` actually brings together a sequence of 3 characters to one: `\u1e68` (S with two dots). - -```js run -alert( "S\u0307\u0323".normalize().length ); // 1 - -alert( "S\u0307\u0323".normalize() == "\u1e68" ); // true -``` - -In reality, this is not always the case. The reason being that the symbol `Ṩ` is "common enough", so UTF-16 creators included it in the main table and gave it the code. - -If you want to learn more about normalization rules and variants -- they are described in the appendix of the Unicode standard: [Unicode Normalization Forms](http://www.unicode.org/reports/tr15/), but for most practical purposes the information from this section is enough. - +This method actually has two additional arguments specified in [the documentation](mdn:js/String/localeCompare), which allows it to specify the language (by default taken from the environment, letter order depends on the language) and setup additional rules like case sensitivity or should `"a"` and `"á"` be treated as the same etc. ## Summary -- There are 3 types of quotes. Backticks allow a string to span multiple lines and embed expressions. -- Strings in JavaScript are encoded using UTF-16. -- We can use special characters like `\n` and insert letters by their unicode using `\u...`. -- To get a character, use: `[]`. +- There are 3 types of quotes. Backticks allow a string to span multiple lines and embed expressions `${…}`. +- We can use special characters, such as a line break `\n`. +- To get a character, use: `[]` or `at` method. - To get a substring, use: `slice` or `substring`. - To lowercase/uppercase a string, use: `toLowerCase/toUpperCase`. - To look for a substring, use: `indexOf`, or `includes/startsWith/endsWith` for simple checks. @@ -669,6 +515,8 @@ There are several other helpful methods in strings: - `str.trim()` -- removes ("trims") spaces from the beginning and end of the string. - `str.repeat(n)` -- repeats the string `n` times. -- ...and more. See the [manual](mdn:js/String) for details. +- ...and more to be found in the [manual](mdn:js/String). + +Strings also have methods for doing search/replace with regular expressions. But that's big topic, so it's explained in a separate tutorial section . -Strings also have methods for doing search/replace with regular expressions. But that topic deserves a separate chapter, so we'll return to that later. +Also, as of now it's important to know that strings are based on Unicode encoding, and hence there're issues with comparisons. There's more about Unicode in the chapter . diff --git a/1-js/05-data-types/04-array/10-maximal-subarray/solution.md b/1-js/05-data-types/04-array/10-maximal-subarray/solution.md index daadf494b..7e1ca3bde 100644 --- a/1-js/05-data-types/04-array/10-maximal-subarray/solution.md +++ b/1-js/05-data-types/04-array/10-maximal-subarray/solution.md @@ -57,9 +57,9 @@ alert( getMaxSubSum([1, 2, 3]) ); // 6 alert( getMaxSubSum([100, -9, 2, -3, 5]) ); // 100 ``` -The solution has a time complexety of [O(n2)](https://en.wikipedia.org/wiki/Big_O_notation). In other words, if we increase the array size 2 times, the algorithm will work 4 times longer. +The solution has a time complexity of [O(n2)](https://en.wikipedia.org/wiki/Big_O_notation). In other words, if we increase the array size 2 times, the algorithm will work 4 times longer. -For big arrays (1000, 10000 or more items) such algorithms can lead to a serious sluggishness. +For big arrays (1000, 10000 or more items) such algorithms can lead to serious sluggishness. # Fast solution @@ -91,4 +91,4 @@ alert( getMaxSubSum([-1, -2, -3]) ); // 0 The algorithm requires exactly 1 array pass, so the time complexity is O(n). -You can find more detail information about the algorithm here: [Maximum subarray problem](http://en.wikipedia.org/wiki/Maximum_subarray_problem). If it's still not obvious why that works, then please trace the algorithm on the examples above, see how it works, that's better than any words. +You can find more detailed information about the algorithm here: [Maximum subarray problem](http://en.wikipedia.org/wiki/Maximum_subarray_problem). If it's still not obvious why that works, then please trace the algorithm on the examples above, see how it works, that's better than any words. diff --git a/1-js/05-data-types/04-array/10-maximal-subarray/task.md b/1-js/05-data-types/04-array/10-maximal-subarray/task.md index e63c4e625..f1a1d9f95 100644 --- a/1-js/05-data-types/04-array/10-maximal-subarray/task.md +++ b/1-js/05-data-types/04-array/10-maximal-subarray/task.md @@ -10,15 +10,15 @@ The task is: find the contiguous subarray of `arr` with the maximal sum of items Write the function `getMaxSubSum(arr)` that will return that sum. -For instance: +For instance: ```js -getMaxSubSum([-1, *!*2, 3*/!*, -9]) = 5 (the sum of highlighted items) -getMaxSubSum([*!*2, -1, 2, 3*/!*, -9]) = 6 -getMaxSubSum([-1, 2, 3, -9, *!*11*/!*]) = 11 -getMaxSubSum([-2, -1, *!*1, 2*/!*]) = 3 -getMaxSubSum([*!*100*/!*, -9, 2, -3, 5]) = 100 -getMaxSubSum([*!*1, 2, 3*/!*]) = 6 (take all) +getMaxSubSum([-1, *!*2, 3*/!*, -9]) == 5 (the sum of highlighted items) +getMaxSubSum([*!*2, -1, 2, 3*/!*, -9]) == 6 +getMaxSubSum([-1, 2, 3, -9, *!*11*/!*]) == 11 +getMaxSubSum([-2, -1, *!*1, 2*/!*]) == 3 +getMaxSubSum([*!*100*/!*, -9, 2, -3, 5]) == 100 +getMaxSubSum([*!*1, 2, 3*/!*]) == 6 (take all) ``` If all items are negative, it means that we take none (the subarray is empty), so the sum is zero: diff --git a/1-js/05-data-types/04-array/2-create-array/task.md b/1-js/05-data-types/04-array/2-create-array/task.md index 3e9300793..d4551c79c 100644 --- a/1-js/05-data-types/04-array/2-create-array/task.md +++ b/1-js/05-data-types/04-array/2-create-array/task.md @@ -8,7 +8,7 @@ Let's try 5 array operations. 1. Create an array `styles` with items "Jazz" and "Blues". 2. Append "Rock-n-Roll" to the end. -3. Replace the value in the middle by "Classics". Your code for finding the middle value should work for any arrays with odd length. +3. Replace the value in the middle with "Classics". Your code for finding the middle value should work for any arrays with odd length. 4. Strip off the first value of the array and show it. 5. Prepend `Rap` and `Reggae` to the array. @@ -16,7 +16,7 @@ The array in the process: ```js no-beautify Jazz, Blues -Jazz, Bues, Rock-n-Roll +Jazz, Blues, Rock-n-Roll Jazz, Classics, Rock-n-Roll Classics, Rock-n-Roll Rap, Reggae, Classics, Rock-n-Roll diff --git a/1-js/05-data-types/04-array/3-call-array-this/solution.md b/1-js/05-data-types/04-array/3-call-array-this/solution.md index e994ae078..3cb0317cf 100644 --- a/1-js/05-data-types/04-array/3-call-array-this/solution.md +++ b/1-js/05-data-types/04-array/3-call-array-this/solution.md @@ -9,7 +9,7 @@ arr.push(function() { alert( this ); }) -arr[2](); // "a","b",function +arr[2](); // a,b,function(){...} ``` The array has 3 values: initially it had two, plus the function. diff --git a/1-js/05-data-types/04-array/3-call-array-this/task.md b/1-js/05-data-types/04-array/3-call-array-this/task.md index 340c5feef..f1e13499c 100644 --- a/1-js/05-data-types/04-array/3-call-array-this/task.md +++ b/1-js/05-data-types/04-array/3-call-array-this/task.md @@ -11,7 +11,7 @@ let arr = ["a", "b"]; arr.push(function() { alert( this ); -}) +}); arr[2](); // ? ``` diff --git a/1-js/05-data-types/04-array/article.md b/1-js/05-data-types/04-array/article.md index aead164f5..e71e86a5b 100644 --- a/1-js/05-data-types/04-array/article.md +++ b/1-js/05-data-types/04-array/article.md @@ -1,12 +1,12 @@ -# Arrays +# Arrays Objects allow you to store keyed collections of values. That's fine. -But quite often we find that we need an *ordered collection*, where we have a 1st, a 2nd, a 3rd element and so on. For example, we need that to store a list of something: users, goods, HTML elements etc. +But quite often we find that we need an *ordered collection*, where we have a 1st, a 2nd, a 3rd element and so on. For example, we need that to store a list of something: users, goods, HTML elements etc. It is not convenient to use an object here, because it provides no methods to manage the order of elements. We can’t insert a new property “between” the existing ones. Objects are just not meant for such use. -There exists a special data structure named `Array`, to store ordered collections. +There exists a special data structure named `Array`, to store ordered collections. ## Declaration @@ -81,10 +81,10 @@ arr[3](); // hello ````smart header="Trailing comma" An array, just like an object, may end with a comma: -```js +```js let fruits = [ - "Apple", - "Orange", + "Apple", + "Orange", "Plum"*!*,*/!* ]; ``` @@ -92,10 +92,42 @@ let fruits = [ The "trailing comma" style makes it easier to insert/remove items, because all lines become alike. ```` +## Get last elements with "at" + +[recent browser="new"] + +Let's say we want the last element of the array. + +Some programming languages allow the use of negative indexes for the same purpose, like `fruits[-1]`. + +Although, in JavaScript it won't work. The result will be `undefined`, because the index in square brackets is treated literally. + +We can explicitly calculate the last element index and then access it: `fruits[fruits.length - 1]`. + +```js run +let fruits = ["Apple", "Orange", "Plum"]; + +alert( fruits[fruits.length-1] ); // Plum +``` + +A bit cumbersome, isn't it? We need to write the variable name twice. + +Luckily, there's a shorter syntax: `fruits.at(-1)`: + +```js run +let fruits = ["Apple", "Orange", "Plum"]; + +// same as fruits[fruits.length-1] +alert( fruits.at(-1) ); // Plum +``` + +In other words, `arr.at(i)`: +- is exactly the same as `arr[i]`, if `i >= 0`. +- for negative values of `i`, it steps back from the end of the array. ## Methods pop/push, shift/unshift -A [queue](https://en.wikipedia.org/wiki/Queue_(abstract_data_type)) is one of most common uses of an array. In computer science, this means an ordered collection of elements which supports two operations: +A [queue](https://en.wikipedia.org/wiki/Queue_(abstract_data_type)) is one of the most common uses of an array. In computer science, this means an ordered collection of elements which supports two operations: - `push` appends an element to the end. - `shift` get an element from the beginning, advancing the queue, so that the 2nd element becomes the 1st. @@ -106,7 +138,7 @@ Arrays support both operations. In practice we need it very often. For example, a queue of messages that need to be shown on-screen. -There's another use case for arrays -- the data structure named [stack](https://en.wikipedia.org/wiki/Stack_(abstract_data_type)). +There's another use case for arrays -- the data structure named [stack](https://en.wikipedia.org/wiki/Stack_(abstract_data_type)). It supports two operations: @@ -121,9 +153,9 @@ A stack is usually illustrated as a pack of cards: new cards are added to the to For stacks, the latest pushed item is received first, that's also called LIFO (Last-In-First-Out) principle. For queues, we have FIFO (First-In-First-Out). -Arrays in JavaScript can work both as a queue and as a stack. They allow you to add/remove elements both to/from the beginning or the end. +Arrays in JavaScript can work both as a queue and as a stack. They allow you to add/remove elements, both to/from the beginning or the end. -In computer science the data structure that allows it is called [deque](https://en.wikipedia.org/wiki/Double-ended_queue). +In computer science, the data structure that allows this, is called [deque](https://en.wikipedia.org/wiki/Double-ended_queue). **Methods that work with the end of the array:** @@ -138,6 +170,8 @@ In computer science the data structure that allows it is called [deque](https:// alert( fruits ); // Apple, Orange ``` + Both `fruits.pop()` and `fruits.at(-1)` return the last element of the array, but `fruits.pop()` also modifies the array by removing it. + `push` : Append the element to the end of the array: @@ -156,7 +190,7 @@ In computer science the data structure that allows it is called [deque](https:// `shift` : Extracts the first element of the array and returns it: - ```js + ```js run let fruits = ["Apple", "Orange", "Pear"]; alert( fruits.shift() ); // remove Apple and alert it @@ -167,7 +201,7 @@ In computer science the data structure that allows it is called [deque](https:// `unshift` : Add the element to the beginning of the array: - ```js + ```js run let fruits = ["Orange", "Pear"]; fruits.unshift('Apple'); @@ -189,11 +223,11 @@ alert( fruits ); ## Internals -An array is a special kind of object. The square brackets used to access a property `arr[0]` actually come from the object syntax. Numbers are used as keys. +An array is a special kind of object. The square brackets used to access a property `arr[0]` actually come from the object syntax. That's essentially the same as `obj[key]`, where `arr` is the object, while numbers are used as keys. They extend objects providing special methods to work with ordered collections of data and also the `length` property. But at the core it's still an object. -Remember, there are only 7 basic types in JavaScript. Array is an object and thus behaves like an object. +Remember, there are only eight basic data types in JavaScript (see the [Data types](info:types) chapter for more info). Array is an object and thus behaves like an object. For instance, it is copied by reference: @@ -203,13 +237,13 @@ let fruits = ["Banana"] let arr = fruits; // copy by reference (two variables reference the same array) alert( arr === fruits ); // true - + arr.push("Pear"); // modify the array by reference alert( fruits ); // Banana, Pear - 2 items now ``` -...But what makes arrays really special is their internal representation. The engine tries to store its elements in the contiguous memory area, one after another, just as depicted on the illustrations in this chapter, and there are other optimizations as well, to make arrays work really fast. +...But what makes arrays really special is their internal representation. The engine tries to store its elements in the contiguous memory area, one after another, just as depicted on the illustrations in this chapter, and there are other optimizations as well, to make arrays work really fast. But they all break if we quit working with an array as with an "ordered collection" and start working with it as if it were a regular object. @@ -229,7 +263,7 @@ But the engine will see that we're working with the array as with a regular obje The ways to misuse an array: -- Add a non-numeric property like `arr.test = 5`. +- Add a non-numeric property like `arr.test = 5`. - Make holes, like: add `arr[0]` and then `arr[1000]` (and nothing between them). - Fill the array in the reverse order, like `arr[1000]`, `arr[999]` and so on. @@ -247,7 +281,7 @@ Why is it faster to work with the end of an array than with its beginning? Let's fruits.shift(); // take 1 element from the start ``` -It's not enough to take and remove the element with the number `0`. Other elements need to be renumbered as well. +It's not enough to take and remove the element with the index `0`. Other elements need to be renumbered as well. The `shift` operation must do 3 things: @@ -296,7 +330,7 @@ let fruits = ["Apple", "Orange", "Plum"]; // iterates over array elements for (let fruit of fruits) { - alert( fruit ); + alert( fruit ); } ``` @@ -320,7 +354,7 @@ But that's actually a bad idea. There are potential problems with it: There are so-called "array-like" objects in the browser and in other environments, that *look like arrays*. That is, they have `length` and indexes properties, but they may also have other non-numeric properties and methods, which we usually don't need. The `for..in` loop will list them though. So if we need to work with array-like objects, then these "extra" properties can become a problem. -2. The `for..in` loop is optimized for generic objects, not arrays, and thus is 10-100 times slower. Of course, it's still very fast. The speedup may only matter in bottlenecks or seem irrelevant. But still we should be aware of the difference. +2. The `for..in` loop is optimized for generic objects, not arrays, and thus is 10-100 times slower. Of course, it's still very fast. The speedup may only matter in bottlenecks. But still we should be aware of the difference. Generally, we shouldn't use `for..in` for arrays. @@ -338,7 +372,7 @@ fruits[123] = "Apple"; alert( fruits.length ); // 124 ``` -Note that we usually don't use arrays like that. +Note that we usually don't use arrays like that. Another interesting thing about the `length` property is that it's writable. @@ -365,11 +399,11 @@ There is one more syntax to create an array: let arr = *!*new Array*/!*("Apple", "Pear", "etc"); ``` -It's rarely used, because square brackets `[]` are shorter. Also there's a tricky feature with it. +It's rarely used, because square brackets `[]` are shorter. Also, there's a tricky feature with it. If `new Array` is called with a single argument which is a number, then it creates an array *without items, but with the given length*. -Let's see how one can shoot themself in the foot: +Let's see how one can shoot themselves in the foot: ```js run let arr = new Array(2); // will it create an array of [2] ? @@ -379,13 +413,11 @@ alert( arr[0] ); // undefined! no elements. alert( arr.length ); // length 2 ``` -In the code above, `new Array(number)` has all elements `undefined`. - -To evade such surprises, we usually use square brackets, unless we really know what we're doing. +To avoid such surprises, we usually use square brackets, unless we really know what we're doing. ## Multidimensional arrays -Arrays can have items that are also arrays. We can use it for multidimensional arrays, to store matrices: +Arrays can have items that are also arrays. We can use it for multidimensional arrays, for example to store matrices: ```js run let matrix = [ @@ -394,7 +426,7 @@ let matrix = [ [7, 8, 9] ]; -alert( matrix[1][1] ); // the central element +alert( matrix[0][1] ); // 2, the second value of the first inner array ``` ## toString @@ -429,36 +461,91 @@ alert( "1" + 1 ); // "11" alert( "1,2" + 1 ); // "1,21" ``` +## Don't compare arrays with == + +Arrays in JavaScript, unlike some other programming languages, shouldn't be compared with operator `==`. + +This operator has no special treatment for arrays, it works with them as with any objects. + +Let's recall the rules: + +- Two objects are equal `==` only if they're references to the same object. +- If one of the arguments of `==` is an object, and the other one is a primitive, then the object gets converted to primitive, as explained in the chapter . +- ...With an exception of `null` and `undefined` that equal `==` each other and nothing else. + +The strict comparison `===` is even simpler, as it doesn't convert types. + +So, if we compare arrays with `==`, they are never the same, unless we compare two variables that reference exactly the same array. + +For example: +```js run +alert( [] == [] ); // false +alert( [0] == [0] ); // false +``` + +These arrays are technically different objects. So they aren't equal. The `==` operator doesn't do item-by-item comparison. + +Comparison with primitives may give seemingly strange results as well: + +```js run +alert( 0 == [] ); // true + +alert('0' == [] ); // false +``` + +Here, in both cases, we compare a primitive with an array object. So the array `[]` gets converted to primitive for the purpose of comparison and becomes an empty string `''`. + +Then the comparison process goes on with the primitives, as described in the chapter : + +```js run +// after [] was converted to '' +alert( 0 == '' ); // true, as '' becomes converted to number 0 + +alert('0' == '' ); // false, no type conversion, different strings +``` + +So, how to compare arrays? + +That's simple: don't use the `==` operator. Instead, compare them item-by-item in a loop or using iteration methods explained in the next chapter. + ## Summary Array is a special kind of object, suited to storing and managing ordered data items. -- The declaration: +The declaration: - ```js - // square brackets (usual) - let arr = [item1, item2...]; +```js +// square brackets (usual) +let arr = [item1, item2...]; - // new Array (exceptionally rare) - let arr = new Array(item1, item2...); - ``` +// new Array (exceptionally rare) +let arr = new Array(item1, item2...); +``` - The call to `new Array(number)` creates an array with the given length, but without elements. +The call to `new Array(number)` creates an array with the given length, but without elements. -- The `length` property is the array length or, to be precise, its last numeric index plus one. It is auto-adjusted by array methods. +- The `length` property is the array length or, to be precise, its last numeric index plus one. It is auto-adjusted by array methods. - If we shorten `length` manually, the array is truncated. +Getting the elements: + +- we can get element by its index, like `arr[0]` +- also we can use `at(i)` method that allows negative indexes. For negative values of `i`, it steps back from the end of the array. If `i >= 0`, it works same as `arr[i]`. + We can use an array as a deque with the following operations: - `push(...items)` adds `items` to the end. - `pop()` removes the element from the end and returns it. - `shift()` removes the element from the beginning and returns it. -- `unshift(...items)` adds items to the beginning. +- `unshift(...items)` adds `items` to the beginning. To loop over the elements of the array: - `for (let i=0; i. +To compare arrays, don't use the `==` operator (as well as `>`, `<` and others), as they have no special treatment for arrays. They handle them as any objects, and it's not what we usually want. + +Instead you can use `for..of` loop to compare arrays item-by-item. +We will continue with arrays and study more methods to add, remove, extract elements and sort arrays in the next chapter . diff --git a/1-js/05-data-types/05-array-methods/10-average-age/task.md b/1-js/05-data-types/05-array-methods/10-average-age/task.md index a991c156b..bf5f85df3 100644 --- a/1-js/05-data-types/05-array-methods/10-average-age/task.md +++ b/1-js/05-data-types/05-array-methods/10-average-age/task.md @@ -4,7 +4,7 @@ importance: 4 # Get average age -Write the function `getAverageAge(users)` that gets an array of objects with property `age` and gets the average. +Write the function `getAverageAge(users)` that gets an array of objects with property `age` and returns the average age. The formula for the average is `(age1 + age2 + ... + ageN) / N`. @@ -19,4 +19,3 @@ let arr = [ john, pete, mary ]; alert( getAverageAge(arr) ); // (25 + 30 + 29) / 3 = 28 ``` - diff --git a/1-js/05-data-types/05-array-methods/11-array-unique/solution.md b/1-js/05-data-types/05-array-methods/11-array-unique/solution.md index 32d3b2679..b9d627a0a 100644 --- a/1-js/05-data-types/05-array-methods/11-array-unique/solution.md +++ b/1-js/05-data-types/05-array-methods/11-array-unique/solution.md @@ -36,4 +36,4 @@ So if `arr.length` is `10000` we'll have something like `10000*10000` = 100 mill So the solution is only good for small arrays. -Further in the chapter we'll see how to optimize it. +Further in the chapter we'll see how to optimize it. diff --git a/1-js/05-data-types/05-array-methods/12-reduce-object/_js.view/solution.js b/1-js/05-data-types/05-array-methods/12-reduce-object/_js.view/solution.js new file mode 100644 index 000000000..8dea23a06 --- /dev/null +++ b/1-js/05-data-types/05-array-methods/12-reduce-object/_js.view/solution.js @@ -0,0 +1,6 @@ +function groupById(array) { + return array.reduce((obj, value) => { + obj[value.id] = value; + return obj; + }, {}) +} diff --git a/1-js/05-data-types/05-array-methods/12-reduce-object/_js.view/test.js b/1-js/05-data-types/05-array-methods/12-reduce-object/_js.view/test.js new file mode 100644 index 000000000..e48ba138d --- /dev/null +++ b/1-js/05-data-types/05-array-methods/12-reduce-object/_js.view/test.js @@ -0,0 +1,21 @@ +describe("groupById", function() { + + it("creates an object grouped by id", function() { + let users = [ + {id: 'john', name: "John Smith", age: 20}, + {id: 'ann', name: "Ann Smith", age: 24}, + {id: 'pete', name: "Pete Peterson", age: 31}, + ]; + + assert.deepEqual(groupById(users), { + john: {id: 'john', name: "John Smith", age: 20}, + ann: {id: 'ann', name: "Ann Smith", age: 24}, + pete: {id: 'pete', name: "Pete Peterson", age: 31}, + }); + }); + + it("works with an empty array", function() { + users = []; + assert.deepEqual(groupById(users), {}); + }); +}); diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/solution.md b/1-js/05-data-types/05-array-methods/12-reduce-object/solution.md similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/solution.md rename to 1-js/05-data-types/05-array-methods/12-reduce-object/solution.md diff --git a/1-js/05-data-types/05-array-methods/12-reduce-object/task.md b/1-js/05-data-types/05-array-methods/12-reduce-object/task.md new file mode 100644 index 000000000..7f0082357 --- /dev/null +++ b/1-js/05-data-types/05-array-methods/12-reduce-object/task.md @@ -0,0 +1,37 @@ +importance: 4 + +--- + +# Create keyed object from array + +Let's say we received an array of users in the form `{id:..., name:..., age:... }`. + +Create a function `groupById(arr)` that creates an object from it, with `id` as the key, and array items as values. + +For example: + +```js +let users = [ + {id: 'john', name: "John Smith", age: 20}, + {id: 'ann', name: "Ann Smith", age: 24}, + {id: 'pete', name: "Pete Peterson", age: 31}, +]; + +let usersById = groupById(users); + +/* +// after the call we should have: + +usersById = { + john: {id: 'john', name: "John Smith", age: 20}, + ann: {id: 'ann', name: "Ann Smith", age: 24}, + pete: {id: 'pete', name: "Pete Peterson", age: 31}, +} +*/ +``` + +Such function is really handy when working with server data. + +In this task we assume that `id` is unique. There may be no two array items with the same `id`. + +Please use array `.reduce` method in the solution. diff --git a/1-js/05-data-types/05-array-methods/2-filter-range/task.md b/1-js/05-data-types/05-array-methods/2-filter-range/task.md index 18b2c1d9b..46e47c93d 100644 --- a/1-js/05-data-types/05-array-methods/2-filter-range/task.md +++ b/1-js/05-data-types/05-array-methods/2-filter-range/task.md @@ -4,7 +4,7 @@ importance: 4 # Filter range -Write a function `filterRange(arr, a, b)` that gets an array `arr`, looks for elements between `a` and `b` in it and returns an array of them. +Write a function `filterRange(arr, a, b)` that gets an array `arr`, looks for elements with values higher or equal to `a` and lower or equal to `b` and return a result as an array. The function should not modify the array. It should return the new array. diff --git a/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js b/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js index db32d9a11..241b74c6e 100644 --- a/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js +++ b/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js @@ -4,13 +4,13 @@ describe("filterRangeInPlace", function() { let arr = [5, 3, 8, 1]; - filterRangeInPlace(arr, 1, 4); + filterRangeInPlace(arr, 2, 5); - assert.deepEqual(arr, [3, 1]); + assert.deepEqual(arr, [5, 3]); }); it("doesn't return anything", function() { assert.isUndefined(filterRangeInPlace([1,2,3], 1, 4)); }); -}); \ No newline at end of file +}); diff --git a/1-js/05-data-types/05-array-methods/4-sort-back/task.md b/1-js/05-data-types/05-array-methods/4-sort-back/task.md index 05a08aad0..0e3eeab76 100644 --- a/1-js/05-data-types/05-array-methods/4-sort-back/task.md +++ b/1-js/05-data-types/05-array-methods/4-sort-back/task.md @@ -2,12 +2,12 @@ importance: 4 --- -# Sort in the reverse order +# Sort in decreasing order ```js let arr = [5, 2, 1, -10, 8]; -// ... your code to sort it in the reverse order +// ... your code to sort it in decreasing order alert( arr ); // 8, 5, 2, 1, -10 ``` diff --git a/1-js/05-data-types/05-array-methods/6-calculator-extendable/_js.view/solution.js b/1-js/05-data-types/05-array-methods/6-calculator-extendable/_js.view/solution.js index 50c40e804..f62452a5f 100644 --- a/1-js/05-data-types/05-array-methods/6-calculator-extendable/_js.view/solution.js +++ b/1-js/05-data-types/05-array-methods/6-calculator-extendable/_js.view/solution.js @@ -1,6 +1,6 @@ function Calculator() { - let methods = { + this.methods = { "-": (a, b) => a - b, "+": (a, b) => a + b }; @@ -10,16 +10,16 @@ function Calculator() { let split = str.split(' '), a = +split[0], op = split[1], - b = +split[2] + b = +split[2]; - if (!methods[op] || isNaN(a) || isNaN(b)) { + if (!this.methods[op] || isNaN(a) || isNaN(b)) { return NaN; } - return methods[op](a, b); - } + return this.methods[op](a, b); + }; this.addMethod = function(name, func) { - methods[name] = func; + this.methods[name] = func; }; } diff --git a/1-js/05-data-types/05-array-methods/6-calculator-extendable/solution.md b/1-js/05-data-types/05-array-methods/6-calculator-extendable/solution.md index 41178663d..ebe0714cf 100644 --- a/1-js/05-data-types/05-array-methods/6-calculator-extendable/solution.md +++ b/1-js/05-data-types/05-array-methods/6-calculator-extendable/solution.md @@ -1,3 +1,3 @@ -- Please note how methods are stored. They are simply added to the internal object. +- Please note how methods are stored. They are simply added to `this.methods` property. - All tests and numeric conversions are done in the `calculate` method. In future it may be extended to support more complex expressions. diff --git a/1-js/05-data-types/05-array-methods/6-calculator-extendable/task.md b/1-js/05-data-types/05-array-methods/6-calculator-extendable/task.md index cc5453ceb..e0d302f4c 100644 --- a/1-js/05-data-types/05-array-methods/6-calculator-extendable/task.md +++ b/1-js/05-data-types/05-array-methods/6-calculator-extendable/task.md @@ -31,6 +31,6 @@ The task consists of two parts. alert( result ); // 8 ``` -- No brackets or complex expressions in this task. +- No parentheses or complex expressions in this task. - The numbers and the operator are delimited with exactly one space. - There may be error handling if you'd like to add it. diff --git a/1-js/05-data-types/05-array-methods/7-map-objects/solution.md b/1-js/05-data-types/05-array-methods/7-map-objects/solution.md index 5d8bf4a13..2d8d4fb0e 100644 --- a/1-js/05-data-types/05-array-methods/7-map-objects/solution.md +++ b/1-js/05-data-types/05-array-methods/7-map-objects/solution.md @@ -25,7 +25,7 @@ alert( usersMapped[0].id ); // 1 alert( usersMapped[0].fullName ); // John Smith ``` -Please note that in for the arrow functions we need to use additional brackets. +Please note that in the arrow functions we need to use additional brackets. We can't write like this: ```js diff --git a/1-js/05-data-types/05-array-methods/8-sort-objects/solution.md b/1-js/05-data-types/05-array-methods/8-sort-objects/solution.md index 9f1ade707..cfaf9761a 100644 --- a/1-js/05-data-types/05-array-methods/8-sort-objects/solution.md +++ b/1-js/05-data-types/05-array-methods/8-sort-objects/solution.md @@ -1,6 +1,6 @@ ```js run no-beautify function sortByAge(arr) { - arr.sort((a, b) => a.age > b.age ? 1 : -1); + arr.sort((a, b) => a.age - b.age); } let john = { name: "John", age: 25 }; diff --git a/1-js/05-data-types/05-array-methods/9-shuffle/solution.md b/1-js/05-data-types/05-array-methods/9-shuffle/solution.md index a43715db8..6674c444f 100644 --- a/1-js/05-data-types/05-array-methods/9-shuffle/solution.md +++ b/1-js/05-data-types/05-array-methods/9-shuffle/solution.md @@ -45,7 +45,7 @@ for (let key in count) { } ``` -An example result (for V8, July 2017): +An example result (depends on JS engine): ```js 123: 250706 @@ -68,7 +68,13 @@ There are other good ways to do the task. For instance, there's a great algorith function shuffle(array) { for (let i = array.length - 1; i > 0; i--) { let j = Math.floor(Math.random() * (i + 1)); // random index from 0 to i - [array[i], array[j]] = [array[j], array[i]]; // swap elements + + // swap elements array[i] and array[j] + // we use "destructuring assignment" syntax to achieve that + // you'll find more details about that syntax in later chapters + // same can be written as: + // let t = array[i]; array[i] = array[j]; array[j] = t + [array[i], array[j]] = [array[j], array[i]]; } } ``` diff --git a/1-js/05-data-types/05-array-methods/article.md b/1-js/05-data-types/05-array-methods/article.md index 049fd6e56..853645958 100644 --- a/1-js/05-data-types/05-array-methods/article.md +++ b/1-js/05-data-types/05-array-methods/article.md @@ -1,6 +1,6 @@ # Array methods -Arrays provide a lot of methods. To make things easier, in this chapter they are split into groups. +Arrays provide a lot of methods. To make things easier, in this chapter, they are split into groups. ## Add/remove items @@ -11,7 +11,7 @@ We already know methods that add and remove items from the beginning or the end: - `arr.shift()` -- extracts an item from the beginning, - `arr.unshift(...items)` -- adds items to the beginning. -Here are few others. +Here are a few others. ### splice @@ -32,19 +32,19 @@ alert( arr.length ); // 3 The element was removed, but the array still has 3 elements, we can see that `arr.length == 3`. -That's natural, because `delete obj.key` removes a value by the `key`. It's all it does. Fine for objects. But for arrays we usually want the rest of elements to shift and occupy the freed place. We expect to have a shorter array now. +That's natural, because `delete obj.key` removes a value by the `key`. It's all it does. Fine for objects. But for arrays we usually want the rest of the elements to shift and occupy the freed place. We expect to have a shorter array now. So, special methods should be used. -The [arr.splice(str)](mdn:js/Array/splice) method is a swiss army knife for arrays. It can do everything: insert, remove and replace elements. +The [arr.splice](mdn:js/Array/splice) method is a Swiss army knife for arrays. It can do everything: insert, remove and replace elements. The syntax is: ```js -arr.splice(index[, deleteCount, elem1, ..., elemN]) +arr.splice(start[, deleteCount, elem1, ..., elemN]) ``` -It starts from the position `index`: removes `deleteCount` elements and then inserts `elem1, ..., elemN` at their place. Returns the array of removed elements. +It modifies `arr` starting from the index `start`: removes `deleteCount` elements and then inserts `elem1, ..., elemN` at their place. Returns the array of removed elements. This method is easy to grasp by examples. @@ -62,7 +62,7 @@ alert( arr ); // ["I", "JavaScript"] Easy, right? Starting from the index `1` it removed `1` element. -In the next example we remove 3 elements and replace them with the other two: +In the next example, we remove 3 elements and replace them with the other two: ```js run let arr = [*!*"I", "study", "JavaScript",*/!* "right", "now"]; @@ -84,7 +84,7 @@ let removed = arr.splice(0, 2); alert( removed ); // "I", "study" <-- array of removed elements ``` -The `splice` method is also able to insert the elements without any removals. For that we need to set `deleteCount` to `0`: +The `splice` method is also able to insert the elements without any removals. For that, we need to set `deleteCount` to `0`: ```js run let arr = ["I", "study", "JavaScript"]; @@ -114,34 +114,33 @@ alert( arr ); // 1,2,3,4,5 ### slice -The method [arr.slice](mdn:js/Array/slice) is much simpler than similar-looking `arr.splice`. +The method [arr.slice](mdn:js/Array/slice) is much simpler than the similar-looking `arr.splice`. The syntax is: ```js -arr.slice(start, end) +arr.slice([start], [end]) ``` -It returns a new array containing all items from index `"start"` to `"end"` (not including `"end"`). Both `start` and `end` can be negative, in that case position from array end is assumed. +It returns a new array copying to it all items from index `start` to `end` (not including `end`). Both `start` and `end` can be negative, in that case position from array end is assumed. -It works like `str.slice`, but makes subarrays instead of substrings. +It's similar to a string method `str.slice`, but instead of substrings, it makes subarrays. For instance: ```js run -let str = "test"; let arr = ["t", "e", "s", "t"]; -alert( str.slice(1, 3) ); // es -alert( arr.slice(1, 3) ); // e,s +alert( arr.slice(1, 3) ); // e,s (copy from 1 to 3) -alert( str.slice(-2) ); // st -alert( arr.slice(-2) ); // s,t +alert( arr.slice(-2) ); // s,t (copy from -2 till the end) ``` +We can also call it without arguments: `arr.slice()` creates a copy of `arr`. That's often used to obtain a copy for further transformations that should not affect the original array. + ### concat -The method [arr.concat](mdn:js/Array/concat) joins the array with other arrays and/or items. +The method [arr.concat](mdn:js/Array/concat) creates a new array that includes values from other arrays and additional items. The syntax is: @@ -153,24 +152,24 @@ It accepts any number of arguments -- either arrays or values. The result is a new array containing items from `arr`, then `arg1`, `arg2` etc. -If an argument is an array or has `Symbol.isConcatSpreadable` property, then all its elements are copied. Otherwise, the argument itself is copied. +If an argument `argN` is an array, then all its elements are copied. Otherwise, the argument itself is copied. For instance: ```js run let arr = [1, 2]; -// merge arr with [3,4] -alert( arr.concat([3, 4])); // 1,2,3,4 +// create an array from: arr and [3,4] +alert( arr.concat([3, 4]) ); // 1,2,3,4 -// merge arr with [3,4] and [5,6] -alert( arr.concat([3, 4], [5, 6])); // 1,2,3,4,5,6 +// create an array from: arr and [3,4] and [5,6] +alert( arr.concat([3, 4], [5, 6]) ); // 1,2,3,4,5,6 -// merge arr with [3,4], then add values 5 and 6 -alert( arr.concat([3, 4], 5, 6)); // 1,2,3,4,5,6 +// create an array from: arr and [3,4], then add values 5 and 6 +alert( arr.concat([3, 4], 5, 6) ); // 1,2,3,4,5,6 ``` -Normally, it only copies elements from arrays ("spreads" them). Other objects, even if they look like arrays, added as a whole: +Normally, it only copies elements from arrays. Other objects, even if they look like arrays, are added as a whole: ```js run let arr = [1, 2]; @@ -181,10 +180,9 @@ let arrayLike = { }; alert( arr.concat(arrayLike) ); // 1,2,[object Object] -//[1, 2, arrayLike] ``` -...But if an array-like object has `Symbol.isConcatSpreadable` property, then its elements are added instead: +...But if an array-like object has a special `Symbol.isConcatSpreadable` property, then it's treated as an array by `concat`: its elements are added instead: ```js run let arr = [1, 2]; @@ -208,7 +206,7 @@ The [arr.forEach](mdn:js/Array/forEach) method allows to run a function for ever The syntax: ```js arr.forEach(function(item, index, array) { - // ... do something with item + // ... do something with an item }); ``` @@ -232,16 +230,17 @@ The result of the function (if it returns any) is thrown away and ignored. ## Searching in array -These are methods to search for something in an array. +Now let's cover methods that search in an array. ### indexOf/lastIndexOf and includes -The methods [arr.indexOf](mdn:js/Array/indexOf), [arr.lastIndexOf](mdn:js/Array/lastIndexOf) and [arr.includes](mdn:js/Array/includes) have the same syntax and do essentially the same as their string counterparts, but operate on items instead of characters: +The methods [arr.indexOf](mdn:js/Array/indexOf) and [arr.includes](mdn:js/Array/includes) have the similar syntax and do essentially the same as their string counterparts, but operate on items instead of characters: -- `arr.indexOf(item, from)` looks for `item` starting from index `from`, and returns the index where it was found, otherwise `-1`. -- `arr.lastIndexOf(item, from)` -- same, but looks for from right to left. +- `arr.indexOf(item, from)` -- looks for `item` starting from index `from`, and returns the index where it was found, otherwise `-1`. - `arr.includes(item, from)` -- looks for `item` starting from index `from`, returns `true` if found. +Usually, these methods are used with only one argument: the `item` to search. By default, the search is from the beginning. + For instance: ```js run @@ -254,23 +253,35 @@ alert( arr.indexOf(null) ); // -1 alert( arr.includes(1) ); // true ``` -Note that the methods use `===` comparison. So, if we look for `false`, it finds exactly `false` and not the zero. +Please note that `indexOf` uses the strict equality `===` for comparison. So, if we look for `false`, it finds exactly `false` and not the zero. + +If we want to check if `item` exists in the array and don't need the index, then `arr.includes` is preferred. + +The method [arr.lastIndexOf](mdn:js/Array/lastIndexOf) is the same as `indexOf`, but looks for from right to left. + +```js run +let fruits = ['Apple', 'Orange', 'Apple'] -If we want to check for inclusion, and don't want to know the exact index, then `arr.includes` is preferred. +alert( fruits.indexOf('Apple') ); // 0 (first Apple) +alert( fruits.lastIndexOf('Apple') ); // 2 (last Apple) +``` -Also, a very minor difference of `includes` is that it correctly handles `NaN`, unlike `indexOf/lastIndexOf`: +````smart header="The `includes` method handles `NaN` correctly" +A minor, but noteworthy feature of `includes` is that it correctly handles `NaN`, unlike `indexOf`: ```js run const arr = [NaN]; -alert( arr.indexOf(NaN) ); // -1 (should be 0, but === equality doesn't work for NaN) +alert( arr.indexOf(NaN) ); // -1 (wrong, should be 0) alert( arr.includes(NaN) );// true (correct) ``` +That's because `includes` was added to JavaScript much later and uses the more up-to-date comparison algorithm internally. +```` -### find and findIndex +### find and findIndex/findLastIndex -Imagine we have an array of objects. How do we find an object with the specific condition? +Imagine we have an array of objects. How do we find an object with a specific condition? -Here the [arr.find](mdn:js/Array/find) method comes in handy. +Here the [arr.find(fn)](mdn:js/Array/find) method comes in handy. The syntax is: ```js @@ -280,13 +291,13 @@ let result = arr.find(function(item, index, array) { }); ``` -The function is called repetitively for each element of the array: +The function is called for elements of the array, one after another: - `item` is the element. - `index` is its index. - `array` is the array itself. -If it returns `true`, the search is stopped, the `item` is returned. If nothing found, `undefined` is returned. +If it returns `true`, the search is stopped, the `item` is returned. If nothing is found, `undefined` is returned. For example, we have an array of users, each with the fields `id` and `name`. Let's find the one with `id == 1`: @@ -302,11 +313,30 @@ let user = users.find(item => item.id == 1); alert(user.name); // John ``` -In real life arrays of objects is a common thing, so the `find` method is very useful. +In real life, arrays of objects are a common thing, so the `find` method is very useful. + +Note that in the example we provide to `find` the function `item => item.id == 1` with one argument. That's typical, other arguments of this function are rarely used. + +The [arr.findIndex](mdn:js/Array/findIndex) method has the same syntax but returns the index where the element was found instead of the element itself. The value of `-1` is returned if nothing is found. + +The [arr.findLastIndex](mdn:js/Array/findLastIndex) method is like `findIndex`, but searches from right to left, similar to `lastIndexOf`. + +Here's an example: + +```js run +let users = [ + {id: 1, name: "John"}, + {id: 2, name: "Pete"}, + {id: 3, name: "Mary"}, + {id: 4, name: "John"} +]; -Note that in the example we provide to `find` the function `item => item.id == 1` with one argument. Other arguments of this function are rarely used. +// Find the index of the first John +alert(users.findIndex(user => user.name == 'John')); // 0 -The [arr.findIndex](mdn:js/Array/findIndex) method is essentially the same, but it returns the index where the element was found instead of the element itself and `-1` is returned when nothing is found. +// Find the index of the last John +alert(users.findLastIndex(user => user.name == 'John')); // 3 +``` ### filter @@ -314,12 +344,12 @@ The `find` method looks for a single (first) element that makes the function ret If there may be many, we can use [arr.filter(fn)](mdn:js/Array/filter). -The syntax is similar to `find`, but filter continues to iterate for all array elements even if `true` is already returned: +The syntax is similar to `find`, but `filter` returns an array of all matching elements: ```js let results = arr.filter(function(item, index, array) { - // if true item is pushed to results and iteration continues - // returns empty array for complete falsy scenario + // if true item is pushed to results and the iteration continues + // returns empty array if nothing found }); ``` @@ -340,23 +370,22 @@ alert(someUsers.length); // 2 ## Transform an array -This section is about the methods transforming or reordering the array. - +Let's move on to methods that transform and reorder an array. ### map The [arr.map](mdn:js/Array/map) method is one of the most useful and often used. +It calls the function for each element of the array and returns the array of results. + The syntax is: ```js let result = arr.map(function(item, index, array) { // returns the new value instead of item -}) +}); ``` -It calls the function for each element of the array and returns the array of results. - For instance, here we transform each element into its length: ```js run @@ -366,14 +395,16 @@ alert(lengths); // 5,7,6 ### sort(fn) -The method [arr.sort](mdn:js/Array/sort) sorts the array *in place*. +The call to [arr.sort()](mdn:js/Array/sort) sorts the array *in place*, changing its element order. + +It also returns the sorted array, but the returned value is usually ignored, as `arr` itself is modified. For instance: ```js run let arr = [ 1, 2, 15 ]; -// the method reorders the content of arr (and returns it) +// the method reorders the content of arr arr.sort(); alert( arr ); // *!*1, 15, 2*/!* @@ -385,20 +416,21 @@ The order became `1, 15, 2`. Incorrect. But why? **The items are sorted as strings by default.** -Literally, all elements are converted to strings and then compared. So, the lexicographic ordering is applied and indeed `"2" > "15"`. +Literally, all elements are converted to strings for comparisons. For strings, lexicographic ordering is applied and indeed `"2" > "15"`. -To use our own sorting order, we need to supply a function of two arguments as the argument of `arr.sort()`. +To use our own sorting order, we need to supply a function as the argument of `arr.sort()`. + +The function should compare two arbitrary values and return: -The function should work like this: ```js function compare(a, b) { - if (a > b) return 1; - if (a == b) return 0; - if (a < b) return -1; + if (a > b) return 1; // if the first value is greater than the second + if (a == b) return 0; // if values are equal + if (a < b) return -1; // if the first value is less than the second } ``` -For instance: +For instance, to sort as numbers: ```js run function compareNumeric(a, b) { @@ -418,20 +450,20 @@ alert(arr); // *!*1, 2, 15*/!* Now it works as intended. -Let's step aside and think what's happening. The `arr` can be array of anything, right? It may contain numbers or strings or html elements or whatever. We have a set of *something*. To sort it, we need an *ordering function* that knows how to compare its elements. The default is a string order. +Let's step aside and think about what's happening. The `arr` can be an array of anything, right? It may contain numbers or strings or objects or whatever. We have a set of *some items*. To sort it, we need an *ordering function* that knows how to compare its elements. The default is a string order. -The `arr.sort(fn)` method has a built-in implementation of sorting algorithm. We don't need to care how it exactly works (an optimized [quicksort](https://en.wikipedia.org/wiki/Quicksort) most of the time). It will walk the array, compare its elements using the provided function and reorder them, all we need is to provide the `fn` which does the comparison. +The `arr.sort(fn)` method implements a generic sorting algorithm. We don't need to care how it internally works (an optimized [quicksort](https://en.wikipedia.org/wiki/Quicksort) or [Timsort](https://en.wikipedia.org/wiki/Timsort) most of the time). It will walk the array, compare its elements using the provided function and reorder them, all we need is to provide the `fn` which does the comparison. -By the way, if we ever want to know which elements are compared -- nothing prevents from alerting them: +By the way, if we ever want to know which elements are compared -- nothing prevents us from alerting them: ```js run [1, -2, 15, 2, 0, 8].sort(function(a, b) { alert( a + " <> " + b ); + return a - b; }); ``` -The algorithm may compare an element multiple times in the process, but it tries to make as few comparisons as possible. - +The algorithm may compare an element with multiple others in the process, but it tries to make as few comparisons as possible. ````smart header="A comparison function may return any number" Actually, a comparison function is only required to return a positive number to say "greater" and a negative number to say "less". @@ -448,13 +480,29 @@ alert(arr); // *!*1, 2, 15*/!* ```` ````smart header="Arrow functions for the best" -Remember [arrow functions](info:function-expressions-arrows#arrow-functions)? We can use them here for neater sorting: +Remember [arrow functions](info:arrow-functions-basics)? We can use them here for neater sorting: ```js arr.sort( (a, b) => a - b ); ``` -This works exactly the same as the other, longer, version above. +This works exactly the same as the longer version above. +```` + +````smart header="Use `localeCompare` for strings" +Remember [strings](info:string#correct-comparisons) comparison algorithm? It compares letters by their codes by default. + +For many alphabets, it's better to use `str.localeCompare` method to correctly sort letters, such as `Ö`. + +For example, let's sort a few countries in German: + +```js run +let countries = ['Österreich', 'Andorra', 'Vietnam']; + +alert( countries.sort( (a, b) => a > b ? 1 : -1) ); // Andorra, Vietnam, Österreich (wrong) + +alert( countries.sort( (a, b) => a.localeCompare(b) ) ); // Andorra,Österreich,Vietnam (correct!) +``` ```` ### reverse @@ -474,11 +522,11 @@ It also returns the array `arr` after the reversal. ### split and join -Here's the situation from the real life. We are writing a messaging app, and the person enters the comma-delimited list of receivers: `John, Pete, Mary`. But for us an array of names would be much more comfortable than a single string. How to get it? +Here's the situation from real life. We are writing a messaging app, and the person enters the comma-delimited list of receivers: `John, Pete, Mary`. But for us an array of names would be much more comfortable than a single string. How to get it? The [str.split(delim)](mdn:js/String/split) method does exactly that. It splits the string into an array by the given delimiter `delim`. -In the example below, we split by a comma followed by space: +In the example below, we split by a comma followed by a space: ```js run let names = 'Bilbo, Gandalf, Nazgul'; @@ -508,14 +556,14 @@ alert( str.split('') ); // t,e,s,t ``` ```` -The call [arr.join(separator)](mdn:js/Array/join) does the reverse to `split`. It creates a string of `arr` items glued by `separator` between them. +The call [arr.join(glue)](mdn:js/Array/join) does the reverse to `split`. It creates a string of `arr` items joined by `glue` between them. For instance: ```js run let arr = ['Bilbo', 'Gandalf', 'Nazgul']; -let str = arr.join(';'); +let str = arr.join(';'); // glue the array into a string using ; alert( str ); // Bilbo;Gandalf;Nazgul ``` @@ -531,24 +579,29 @@ The methods [arr.reduce](mdn:js/Array/reduce) and [arr.reduceRight](mdn:js/Array The syntax is: ```js -let value = arr.reduce(function(previousValue, item, index, array) { +let value = arr.reduce(function(accumulator, item, index, array) { // ... -}, initial); +}, [initial]); ``` -The function is applied to the elements. You may notice the familiar arguments, starting from the 2nd: +The function is applied to all array elements one after another and "carries on" its result to the next call. + +Arguments: +- `accumulator` -- is the result of the previous function call, equals `initial` the first time (if `initial` is provided). - `item` -- is the current array item. - `index` -- is its position. - `array` -- is the array. -So far, like `forEach/map`. But there's one more argument: +As the function is applied, the result of the previous function call is passed to the next one as the first argument. -- `previousValue` -- is the result of the previous function call, `initial` for the first call. +So, the first argument is essentially the accumulator that stores the combined result of all previous executions. And at the end, it becomes the result of `reduce`. + +Sounds complicated? The easiest way to grasp that is by example. -Here we get a sum of array in one line: +Here we get a sum of an array in one line: ```js run let arr = [1, 2, 3, 4, 5]; @@ -558,11 +611,11 @@ let result = arr.reduce((sum, current) => sum + current, 0); alert(result); // 15 ``` -Here we used the most common variant of `reduce` which uses only 2 arguments. +The function passed to `reduce` uses only 2 arguments, that's typically enough. Let's see the details of what's going on. -1. On the first run, `sum` is the initial value (the last argument of `reduce`), equals `0`, and `current` is the first array element, equals `1`. So the result is `1`. +1. On the first run, `sum` is the `initial` value (the last argument of `reduce`), equals `0`, and `current` is the first array element, equals `1`. So the function result is `1`. 2. On the second run, `sum = 1`, we add the second array element (`2`) to it and return. 3. On the 3rd run, `sum = 3` and we add one more element to it, and so on... @@ -572,7 +625,7 @@ The calculation flow: Or in the form of a table, where each row represents a function call on the next array element: -| |`sum`|`current`|`result`| +| |`sum`|`current`|result| |---|-----|---------|---------| |the first call|`0`|`1`|`1`| |the second call|`1`|`2`|`3`| @@ -580,8 +633,7 @@ Or in the form of a table, where each row represents a function call on the next |the fourth call|`6`|`4`|`10`| |the fifth call|`10`|`5`|`15`| - -As we can see, the result of the previous call becomes the first argument of the next one. +Here we can clearly see how the result of the previous call becomes the first argument of the next one. We also can omit the initial value: @@ -610,11 +662,9 @@ let arr = []; arr.reduce((sum, current) => sum + current); ``` - So it's advised to always specify the initial value. -The method [arr.reduceRight](mdn:js/Array/reduceRight) does the same, but goes from right to left. - +The method [arr.reduceRight](mdn:js/Array/reduceRight) does the same but goes from right to left. ## Array.isArray @@ -624,7 +674,7 @@ So `typeof` does not help to distinguish a plain object from an array: ```js run alert(typeof {}); // object -alert(typeof []); // same +alert(typeof []); // object (same) ``` ...But arrays are used so often that there's a special method for that: [Array.isArray(value)](mdn:js/Array/isArray). It returns `true` if the `value` is an array, and `false` otherwise. @@ -639,7 +689,7 @@ alert(Array.isArray([])); // true Almost all array methods that call functions -- like `find`, `filter`, `map`, with a notable exception of `sort`, accept an optional additional parameter `thisArg`. -That parameter is not explained in the sections above, because it's rarely used. But for completeness we have to cover it. +That parameter is not explained in the sections above, because it's rarely used. But for completeness, we have to cover it. Here's the full syntax of these methods: @@ -653,51 +703,57 @@ arr.map(func, thisArg); The value of `thisArg` parameter becomes `this` for `func`. -For instance, here we use an object method as a filter and `thisArg` comes in handy: +For example, here we use a method of `army` object as a filter, and `thisArg` passes the context: ```js run -let user = { - age: 18, - younger(otherUser) { - return otherUser.age < this.age; +let army = { + minAge: 18, + maxAge: 27, + canJoin(user) { + return user.age >= this.minAge && user.age < this.maxAge; } }; let users = [ - {age: 12}, {age: 16}, - {age: 32} + {age: 20}, + {age: 23}, + {age: 30} ]; *!* -// find all users younger than user -let youngerUsers = users.filter(user.younger, user); +// find users, for who army.canJoin returns true +let soldiers = users.filter(army.canJoin, army); */!* -alert(youngerUsers.length); // 2 +alert(soldiers.length); // 2 +alert(soldiers[0].age); // 20 +alert(soldiers[1].age); // 23 ``` -In the call above, we use `user.younger` as a filter and also provide `user` as the context for it. If we didn't provide the context, `users.filter(user.younger)` would call `user.younger` as a standalone function, with `this=undefined`. That would mean an instant error. +If in the example above we used `users.filter(army.canJoin)`, then `army.canJoin` would be called as a standalone function, with `this=undefined`, thus leading to an instant error. + +A call to `users.filter(army.canJoin, army)` can be replaced with `users.filter(user => army.canJoin(user))`, that does the same. The latter is used more often, as it's a bit easier to understand for most people. ## Summary -A cheatsheet of array methods: +A cheat sheet of array methods: - To add/remove elements: - `push(...items)` -- adds items to the end, - `pop()` -- extracts an item from the end, - `shift()` -- extracts an item from the beginning, - `unshift(...items)` -- adds items to the beginning. - - `splice(pos, deleteCount, ...items)` -- at index `pos` delete `deleteCount` elements and insert `items`. - - `slice(start, end)` -- creates a new array, copies elements from position `start` till `end` (not inclusive) into it. + - `splice(pos, deleteCount, ...items)` -- at index `pos` deletes `deleteCount` elements and inserts `items`. + - `slice(start, end)` -- creates a new array, copies elements from index `start` till `end` (not inclusive) into it. - `concat(...items)` -- returns a new array: copies all members of the current one and adds `items` to it. If any of `items` is an array, then its elements are taken. - To search among elements: - - `indexOf/lastIndexOf(item, pos)` -- look for `item` starting from position `pos`, return the index or `-1` if not found. + - `indexOf/lastIndexOf(item, pos)` -- look for `item` starting from position `pos`, and return the index or `-1` if not found. - `includes(value)` -- returns `true` if the array has `value`, otherwise `false`. - `find/filter(func)` -- filter elements through the function, return first/all values that make it return `true`. - `findIndex` is like `find`, but returns the index instead of a value. - + - To iterate over elements: - `forEach(func)` -- calls `func` for every element, does not return anything. @@ -706,27 +762,41 @@ A cheatsheet of array methods: - `sort(func)` -- sorts the array in-place, then returns it. - `reverse()` -- reverses the array in-place, then returns it. - `split/join` -- convert a string to array and back. - - `reduce(func, initial)` -- calculate a single value over the array by calling `func` for each element and passing an intermediate result between the calls. + - `reduce/reduceRight(func, initial)` -- calculate a single value over the array by calling `func` for each element and passing an intermediate result between the calls. - Additionally: - - `Array.isArray(arr)` checks `arr` for being an array. + - `Array.isArray(value)` checks `value` for being an array, if so returns `true`, otherwise `false`. Please note that methods `sort`, `reverse` and `splice` modify the array itself. These methods are the most used ones, they cover 99% of use cases. But there are few others: -- [arr.some(fn)](mdn:js/Array/some)/[arr.every(fn)](mdn:js/Array/every) checks the array. +- [arr.some(fn)](mdn:js/Array/some)/[arr.every(fn)](mdn:js/Array/every) check the array. The function `fn` is called on each element of the array similar to `map`. If any/all results are `true`, returns `true`, otherwise `false`. + These methods behave sort of like `||` and `&&` operators: if `fn` returns a truthy value, `arr.some()` immediately returns `true` and stops iterating over the rest of items; if `fn` returns a falsy value, `arr.every()` immediately returns `false` and stops iterating over the rest of items as well. + + We can use `every` to compare arrays: + + ```js run + function arraysEqual(arr1, arr2) { + return arr1.length === arr2.length && arr1.every((value, index) => value === arr2[index]); + } + + alert( arraysEqual([1, 2], [1, 2])); // true + ``` + - [arr.fill(value, start, end)](mdn:js/Array/fill) -- fills the array with repeating `value` from index `start` to `end`. - [arr.copyWithin(target, start, end)](mdn:js/Array/copyWithin) -- copies its elements from position `start` till position `end` into *itself*, at position `target` (overwrites existing). +- [arr.flat(depth)](mdn:js/Array/flat)/[arr.flatMap(fn)](mdn:js/Array/flatMap) create a new flat array from a multidimensional array. + For the full list, see the [manual](mdn:js/Array). -From the first sight it may seem that there are so many methods, quite difficult to remember. But actually that's much easier than it seems. +At first sight, it may seem that there are so many methods, quite difficult to remember. But actually, that's much easier. -Look through the cheatsheet just to be aware of them. Then solve the tasks of this chapter to practice, so that you have experience with array methods. +Look through the cheat sheet just to be aware of them. Then solve the tasks of this chapter to practice, so that you have experience with array methods. -Afterwards whenever you need to do something with an array, and you don't know how -- come here, look at the cheatsheet and find the right method. Examples will help you to write it correctly. Soon you'll automatically remember the methods, without specific efforts from your side. +Afterwards whenever you need to do something with an array, and you don't know how -- come here, look at the cheat sheet and find the right method. Examples will help you to write it correctly. Soon you'll automatically remember the methods, without specific efforts from your side. diff --git a/1-js/05-data-types/06-iterable/article.md b/1-js/05-data-types/06-iterable/article.md index 7f72f5caf..e2c0d4f97 100644 --- a/1-js/05-data-types/06-iterable/article.md +++ b/1-js/05-data-types/06-iterable/article.md @@ -1,18 +1,18 @@ # Iterables -*Iterable* objects is a generalization of arrays. That's a concept that allows to make any object useable in a `for..of` loop. +*Iterable* objects are a generalization of arrays. That's a concept that allows us to make any object useable in a `for..of` loop. -Of course, Arrays are iterable. But there are many other built-in objects, that are iterable as well. For instance, Strings are iterable also. As we'll see, many built-in operators and methods rely on them. +Of course, Arrays are iterable. But there are many other built-in objects, that are iterable as well. For instance, strings are also iterable. -If an object represents a collection (list, set) of something, then `for..of` is a great syntax to loop over it, so let's see how to make it work. +If an object isn't technically an array, but represents a collection (list, set) of something, then `for..of` is a great syntax to loop over it, so let's see how to make it work. ## Symbol.iterator We can easily grasp the concept of iterables by making one of our own. -For instance, we have an object, that is not an array, but looks suitable for `for..of`. +For instance, we have an object that is not an array, but looks suitable for `for..of`. Like a `range` object that represents an interval of numbers: @@ -26,14 +26,14 @@ let range = { // for(let num of range) ... num=1,2,3,4,5 ``` -To make the `range` iterable (and thus let `for..of` work) we need to add a method to the object named `Symbol.iterator` (a special built-in symbol just for that). +To make the `range` object iterable (and thus let `for..of` work) we need to add a method to the object named `Symbol.iterator` (a special built-in symbol just for that). 1. When `for..of` starts, it calls that method once (or errors if not found). The method must return an *iterator* -- an object with the method `next`. 2. Onward, `for..of` works *only with that returned object*. 3. When `for..of` wants the next value, it calls `next()` on that object. -4. The result of `next()` must have the form `{done: Boolean, value: any}`, where `done=true` means that the iteration is finished, otherwise `value` must be the new value. +4. The result of `next()` must have the form `{done: Boolean, value: any}`, where `done=true` means that the loop is finished, otherwise `value` is the next value. -Here's the full implementation for `range`: +Here's the full implementation for `range` with remarks: ```js run let range = { @@ -45,10 +45,10 @@ let range = { range[Symbol.iterator] = function() { // ...it returns the iterator object: - // 2. Onward, for..of works only with this iterator, asking it for next values + // 2. Onward, for..of works only with the iterator object below, asking it for next values return { current: this.from, - last: this.to, + last: this.to, // 3. next() is called on each iteration by the for..of loop next() { @@ -68,10 +68,10 @@ for (let num of range) { } ``` -Please note the core feature of iterables: an important separation of concerns: +Please note the core feature of iterables: separation of concerns. - The `range` itself does not have the `next()` method. -- Instead, another object, a so-called "iterator" is created by the call to `range[Symbol.iterator]()`, and it handles the whole iteration. +- Instead, another object, a so-called "iterator" is created by the call to `range[Symbol.iterator]()`, and its `next()` generates values for the iteration. So, the iterator object is separate from the object it iterates over. @@ -105,7 +105,7 @@ for (let num of range) { Now `range[Symbol.iterator]()` returns the `range` object itself: it has the necessary `next()` method and remembers the current iteration progress in `this.current`. Shorter? Yes. And sometimes that's fine too. -The downside is that now it's impossible to have two `for..of` loops running over the object simultaneously: they'll share the iteration state, because there's only one iterator -- the object itself. But two parallel for-ofs is a rare thing, doable with some async scenarios. +The downside is that now it's impossible to have two `for..of` loops running over the object simultaneously: they'll share the iteration state, because there's only one iterator -- the object itself. But two parallel for-ofs is a rare thing, even in async scenarios. ```smart header="Infinite iterators" Infinite iterators are also possible. For instance, the `range` becomes infinite for `range.to = Infinity`. Or we can make an iterable object that generates an infinite sequence of pseudorandom numbers. Also can be useful. @@ -140,11 +140,9 @@ for (let char of str) { ## Calling an iterator explicitly -Normally, internals of iterables are hidden from the external code. There's a `for..of` loop, that works, that's all it needs to know. +For deeper understanding, let's see how to use an iterator explicitly. -But to understand things a little bit deeper let's see how to create an iterator explicitly. - -We'll iterate over a string the same way as `for..of`, but with direct calls. This code gets a string iterator and calls it "manually": +We'll iterate over a string in exactly the same way as `for..of`, but with direct calls. This code creates a string iterator and gets values from it "manually": ```js run let str = "Hello"; @@ -152,7 +150,9 @@ let str = "Hello"; // does the same as // for (let char of str) alert(char); +*!* let iterator = str[Symbol.iterator](); +*/!* while (true) { let result = iterator.next(); @@ -165,14 +165,16 @@ That is rarely needed, but gives us more control over the process than `for..of` ## Iterables and array-likes [#array-like] -There are two official terms that look similar, but are very different. Please make sure you understand them well to avoid the confusion. +Two official terms look similar, but are very different. Please make sure you understand them well to avoid the confusion. - *Iterables* are objects that implement the `Symbol.iterator` method, as described above. - *Array-likes* are objects that have indexes and `length`, so they look like arrays. -Naturally, these properties can combine. For instance, strings are both iterable (`for..of` works on them) and array-like (they have numeric indexes and `length`). +When we use JavaScript for practical tasks in a browser or any other environment, we may meet objects that are iterables or array-likes, or both. + +For instance, strings are both iterable (`for..of` works on them) and array-like (they have numeric indexes and `length`). -But an iterable may be not array-like. And vice versa an array-like may be not iterable. +But an iterable may not be array-like. And vice versa an array-like may not be iterable. For example, the `range` in the example above is iterable, but not array-like, because it does not have indexed properties and `length`. @@ -191,11 +193,11 @@ for (let item of arrayLike) {} */!* ``` -What do they have in common? Both iterables and array-likes are usually *not arrays*, they don't have `push`, `pop` etc. That's rather inconvenient if we have such an object and want to work with it as with an array. +Both iterables and array-likes are usually *not arrays*, they don't have `push`, `pop` etc. That's rather inconvenient if we have such an object and want to work with it as with an array. E.g. we would like to work with `range` using array methods. How to achieve that? ## Array.from -There's a universal method [Array.from](mdn:js/Array/from) that brings them together. It takes an iterable or array-like value and makes a "real" `Array` from it. Then we can call array methods on it. +There's a universal method [Array.from](mdn:js/Array/from) that takes an iterable or array-like value and makes a "real" `Array` from it. Then we can call array methods on it. For instance: @@ -212,26 +214,26 @@ let arr = Array.from(arrayLike); // (*) alert(arr.pop()); // World (method works) ``` -`Array.from` at the line `(*)` takes the object, examines it for being an iterable or array-like, then makes a new array and copies there all items. +`Array.from` at the line `(*)` takes the object, examines it for being an iterable or array-like, then makes a new array and copies all items to it. The same happens for an iterable: -```js +```js run // assuming that range is taken from the example above let arr = Array.from(range); alert(arr); // 1,2,3,4,5 (array toString conversion works) ``` -The full syntax for `Array.from` allows to provide an optional "mapping" function: +The full syntax for `Array.from` also allows us to provide an optional "mapping" function: ```js Array.from(obj[, mapFn, thisArg]) ``` -The second argument `mapFn` should be the function to apply to each element before adding to the array, and `thisArg` allows to set `this` for it. +The optional second argument `mapFn` can be a function that will be applied to each element before adding it to the array, and `thisArg` allows us to set `this` for it. For instance: -```js +```js run // assuming that range is taken from the example above // square each number @@ -268,7 +270,7 @@ for (let char of str) { alert(chars); ``` -...But is shorter. +...But it is shorter. We can even build surrogate-aware `slice` on it: @@ -281,7 +283,7 @@ let str = '𝒳😂𩷶'; alert( slice(str, 1, 3) ); // 😂𩷶 -// native method does not support surrogate pairs +// the native method does not support surrogate pairs alert( str.slice(1, 3) ); // garbage (two pieces from different surrogate pairs) ``` @@ -291,8 +293,8 @@ alert( str.slice(1, 3) ); // garbage (two pieces from different surrogate pairs) Objects that can be used in `for..of` are called *iterable*. - Technically, iterables must implement the method named `Symbol.iterator`. - - The result of `obj[Symbol.iterator]` is called an *iterator*. It handles the further iteration process. - - An iterator must have the method named `next()` that returns an object `{done: Boolean, value: any}`, here `done:true` denotes the iteration end, otherwise the `value` is the next value. + - The result of `obj[Symbol.iterator]()` is called an *iterator*. It handles further iteration process. + - An iterator must have the method named `next()` that returns an object `{done: Boolean, value: any}`, here `done:true` denotes the end of the iteration process, otherwise the `value` is the next value. - The `Symbol.iterator` method is called automatically by `for..of`, but we also can do it directly. - Built-in iterables like strings or arrays, also implement `Symbol.iterator`. - String iterator knows about surrogate pairs. @@ -302,4 +304,4 @@ Objects that have indexed properties and `length` are called *array-like*. Such If we look inside the specification -- we'll see that most built-in methods assume that they work with iterables or array-likes instead of "real" arrays, because that's more abstract. -`Array.from(obj[, mapFn, thisArg])` makes a real `Array` of an iterable or array-like `obj`, and we can then use array methods on it. The optional arguments `mapFn` and `thisArg` allow us to apply a function to each item. +`Array.from(obj[, mapFn, thisArg])` makes a real `Array` from an iterable or array-like `obj`, and we can then use array methods on it. The optional arguments `mapFn` and `thisArg` allow us to apply a function to each item. diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/04-recipients-read/solution.md b/1-js/05-data-types/07-map-set-weakmap-weakset/04-recipients-read/solution.md deleted file mode 100644 index ce56f593a..000000000 --- a/1-js/05-data-types/07-map-set-weakmap-weakset/04-recipients-read/solution.md +++ /dev/null @@ -1,41 +0,0 @@ -The sane choice here is a `WeakSet`: - -```js -let messages = [ - {text: "Hello", from: "John"}, - {text: "How goes?", from: "John"}, - {text: "See you soon", from: "Alice"} -]; - -let readMessages = new WeakSet(); - -// two messages have been read -readMessages.add(messages[0]); -readMessages.add(messages[1]); -// readMessages has 2 elements - -// ...let's read the first message again! -readMessages.add(messages[0]); -// readMessages still has 2 unique elements - -// answer: was the message[0] read? -alert("Read message 0: " + readMessages.has(messages[0])); // true - -messages.shift(); -// now readMessages has 1 element (technically memory may be cleaned later) -``` - -The `WeakSet` allows to store a set of messages and easily check for the existance of a message in it. - -It cleans up itself automatically. The tradeoff is that we can't iterate over it. We can't get "all read messages" directly. But we can do it by iterating over all messages and filtering those that are in the set. - -P.S. Adding a property of our own to each message may be dangerous if messages are managed by someone else's code, but we can make it a symbol to evade conflicts. - -Like this: -```js -// the symbolic property is only known to our code -let isRead = Symbol("isRead"); -messages[0][isRead] = true; -``` - -Now even if someone else's code uses `for..in` loop for message properties, our secret flag won't appear. diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/04-recipients-read/task.md b/1-js/05-data-types/07-map-set-weakmap-weakset/04-recipients-read/task.md deleted file mode 100644 index 7ec1faf16..000000000 --- a/1-js/05-data-types/07-map-set-weakmap-weakset/04-recipients-read/task.md +++ /dev/null @@ -1,23 +0,0 @@ -importance: 5 - ---- - -# Store "unread" flags - -There's an array of messages: - -```js -let messages = [ - {text: "Hello", from: "John"}, - {text: "How goes?", from: "John"}, - {text: "See you soon", from: "Alice"} -]; -``` - -Your code can access it, but the messages are managed by someone else's code. New messages are added, old ones are removed regularly by that code, and you don't know the exact moments when it happens. - -Now, which data structure you could use to store information whether the message "have been read"? The structure must be well-suited to give the answer "was it read?" for the given message object. - -P.S. When a message is removed from `messages`, it should disappear from your structure as well. - -P.P.S. We shouldn't modify message objects directly. If they are managed by someone else's code, then adding extra properties to them may have bad consequences. diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/article.md b/1-js/05-data-types/07-map-set-weakmap-weakset/article.md deleted file mode 100644 index 034ad22c3..000000000 --- a/1-js/05-data-types/07-map-set-weakmap-weakset/article.md +++ /dev/null @@ -1,458 +0,0 @@ - -# Map, Set, WeakMap and WeakSet - -Now we've learned about the following complex data structures: - -- Objects for storing keyed collections. -- Arrays for storing ordered collections. - -But that's not enough for real life. That's why `Map` and `Set` also exist. - -## Map - -[Map](mdn:js/Map) is a collection of keyed data items, just like an `Object`. But the main difference is that `Map` allows keys of any type. - -The main methods are: - -- `new Map()` -- creates the map. -- `map.set(key, value)` -- stores the value by the key. -- `map.get(key)` -- returns the value by the key, `undefined` if `key` doesn't exist in map. -- `map.has(key)` -- returns `true` if the `key` exists, `false` otherwise. -- `map.delete(key)` -- removes the value by the key. -- `map.clear()` -- clears the map -- `map.size` -- returns the current element count. - -For instance: - -```js run -let map = new Map(); - -map.set('1', 'str1'); // a string key -map.set(1, 'num1'); // a numeric key -map.set(true, 'bool1'); // a boolean key - -// remember the regular Object? it would convert keys to string -// Map keeps the type, so these two are different: -alert( map.get(1) ); // 'num1' -alert( map.get('1') ); // 'str1' - -alert( map.size ); // 3 -``` - -As we can see, unlike objects, keys are not converted to strings. Any type of key is possible. - -**Map can also use objects as keys.** - -For instance: -```js run -let john = { name: "John" }; - -// for every user, let's store their visits count -let visitsCountMap = new Map(); - -// john is the key for the map -visitsCountMap.set(john, 123); - -alert( visitsCountMap.get(john) ); // 123 -``` - -Using objects as keys is one of most notable and important `Map` features. For string keys, `Object` can be fine, but it would be difficult to replace the `Map` with a regular `Object` in the example above. - -In the old times, before `Map` existed, people added unique identifiers to objects for that: - -```js run -// we add the id field -let john = { name: "John", *!*id: 1*/!* }; - -let visitsCounts = {}; - -// now store the value by id -visitsCounts[john.id] = 123; - -alert( visitsCounts[john.id] ); // 123 -``` - -...But `Map` is much more elegant. - - -```smart header="How `Map` compares keys" -To test values for equivalence, `Map` uses the algorithm [SameValueZero](https://tc39.github.io/ecma262/#sec-samevaluezero). It is roughly the same as strict equality `===`, but the difference is that `NaN` is considered equal to `NaN`. So `NaN` can be used as the key as well. - -This algorithm can't be changed or customized. -``` - - -````smart header="Chaining" - -Every `map.set` call returns the map itself, so we can "chain" the calls: - -```js -map.set('1', 'str1') - .set(1, 'num1') - .set(true, 'bool1'); -``` -```` - -## Map from Object - -When a `Map` is created, we can pass an array (or another iterable) with key-value pairs, like this: - -```js -// array of [key, value] pairs -let map = new Map([ - ['1', 'str1'], - [1, 'num1'], - [true, 'bool1'] -]); -``` - -There is a built-in method [Object.entries(obj)](mdn:js/Object/entries) that returns an array of key/value pairs for an object exactly in that format. - -So we can initialize a map from an object like this: - -```js -let map = new Map(Object.entries({ - name: "John", - age: 30 -})); -``` - -Here, `Object.entries` returns the array of key/value pairs: `[ ["name","John"], ["age", 30] ]`. That's what `Map` needs. - -## Iteration over Map - -For looping over a `map`, there are 3 methods: - -- `map.keys()` -- returns an iterable for keys, -- `map.values()` -- returns an iterable for values, -- `map.entries()` -- returns an iterable for entries `[key, value]`, it's used by default in `for..of`. - -For instance: - -```js run -let recipeMap = new Map([ - ['cucumber', 500], - ['tomatoes', 350], - ['onion', 50] -]); - -// iterate over keys (vegetables) -for (let vegetable of recipeMap.keys()) { - alert(vegetable); // cucumber, tomatoes, onion -} - -// iterate over values (amounts) -for (let amount of recipeMap.values()) { - alert(amount); // 500, 350, 50 -} - -// iterate over [key, value] entries -for (let entry of recipeMap) { // the same as of recipeMap.entries() - alert(entry); // cucumber,500 (and so on) -} -``` - -```smart header="The insertion order is used" -The iteration goes in the same order as the values were inserted. `Map` preserves this order, unlike a regular `Object`. -``` - -Besides that, `Map` has a built-in `forEach` method, similar to `Array`: - -```js -// runs the function for each (key, value) pair -recipeMap.forEach( (value, key, map) => { - alert(`${key}: ${value}`); // cucumber: 500 etc -}); -``` - - -## Set - -A `Set` is a collection of values, where each value may occur only once. - -Its main methods are: - -- `new Set(iterable)` -- creates the set, optionally from an array of values (any iterable will do). -- `set.add(value)` -- adds a value, returns the set itself. -- `set.delete(value)` -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. -- `set.has(value)` -- returns `true` if the value exists in the set, otherwise `false`. -- `set.clear()` -- removes everything from the set. -- `set.size` -- is the elements count. - -For example, we have visitors coming, and we'd like to remember everyone. But repeated visits should not lead to duplicates. A visitor must be "counted" only once. - -`Set` is just the right thing for that: - -```js run -let set = new Set(); - -let john = { name: "John" }; -let pete = { name: "Pete" }; -let mary = { name: "Mary" }; - -// visits, some users come multiple times -set.add(john); -set.add(pete); -set.add(mary); -set.add(john); -set.add(mary); - -// set keeps only unique values -alert( set.size ); // 3 - -for (let user of set) { - alert(user.name); // John (then Pete and Mary) -} -``` - -The alternative to `Set` could be an array of users, and the code to check for duplicates on every insertion using [arr.find](mdn:js/Array/find). But the performance would be much worse, because this method walks through the whole array checking every element. `Set` is much better optimized internally for uniqueness checks. - -## Iteration over Set - -We can loop over a set either with `for..of` or using `forEach`: - -```js run -let set = new Set(["oranges", "apples", "bananas"]); - -for (let value of set) alert(value); - -// the same with forEach: -set.forEach((value, valueAgain, set) => { - alert(value); -}); -``` - -Note the funny thing. The `forEach` function in the `Set` has 3 arguments: a value, then *again a value*, and then the target object. Indeed, the same value appears in the arguments twice. - -That's for compatibility with `Map` where `forEach` has three arguments. Looks a bit strange, for sure. But may help to replace `Map` with `Set` in certain cases with ease, and vice versa. - -The same methods `Map` has for iterators are also supported: - -- `set.keys()` -- returns an iterable object for values, -- `set.values()` -- same as `set.keys`, for compatibility with `Map`, -- `set.entries()` -- returns an iterable object for entries `[value, value]`, exists for compatibility with `Map`. - -## WeakMap and WeakSet - -`WeakSet` is a special kind of `Set` that does not prevent JavaScript from removing its items from memory. `WeakMap` is the same thing for `Map`. - -As we know from the chapter , JavaScript engine stores a value in memory while it is reachable (and can potentially be used). - -For instance: -```js -let john = { name: "John" }; - -// the object can be accessed, john is the reference to it - -// overwrite the reference -john = null; - -*!* -// the object will be removed from memory -*/!* -``` - -Usually, properties of an object or elements of an array or another data structure are considered reachable and kept in memory while that data structure is in memory. - -For instance, if we put an object into an array, then while the array is alive, the object will be alive as well, even if there are no other references to it. - -Like this: - -```js -let john = { name: "John" }; - -let array = [ john ]; - -john = null; // overwrite the reference - -*!* -// john is stored inside the array, so it won't be garbage-collected -// we can get it as array[0] -*/!* -``` - -Or, if we use an object as the key in a regular `Map`, then while the `Map` exists, that object exists as well. It occupies memory and may not be garbage collected. - -For instance: - -```js -let john = { name: "John" }; - -let map = new Map(); -map.set(john, "..."); - -john = null; // overwrite the reference - -*!* -// john is stored inside the map, -// we can get it by using map.keys() -*/!* -``` - -`WeakMap/WeakSet` are fundamentally different in this aspect. They do not prevent garbage-collection of key objects. - -Let's explain it starting with `WeakMap`. - -The first difference from `Map` is that `WeakMap` keys must be objects, not primitive values: - -```js run -let weakMap = new WeakMap(); - -let obj = {}; - -weakMap.set(obj, "ok"); // works fine (object key) - -*!* -// can't use a string as the key -weakMap.set("test", "Whoops"); // Error, because "test" is not an object -*/!* -``` - -Now, if we use an object as the key in it, and there are no other references to that object -- it will be removed from memory (and from the map) automatically. - -```js -let john = { name: "John" }; - -let weakMap = new WeakMap(); -weakMap.set(john, "..."); - -john = null; // overwrite the reference - -// john is removed from memory! -``` - -Compare it with the regular `Map` example above. Now if `john` only exists as the key of `WeakMap` -- it is to be automatically deleted. - -`WeakMap` does not support iteration and methods `keys()`, `values()`, `entries()`, so there's no way to get all keys or values from it. - -`WeakMap` has only the following methods: - -- `weakMap.get(key)` -- `weakMap.set(key, value)` -- `weakMap.delete(key)` -- `weakMap.has(key)` - -Why such a limitation? That's for technical reasons. If an object has lost all other references (like `john` in the code above), then it is to be garbage-collected automatically. But technically it's not exactly specified *when the cleanup happens*. - -The JavaScript engine decides that. It may choose to perform the memory cleanup immediately or to wait and do the cleaning later when more deletions happen. So, technically the current element count of a `WeakMap` is not known. The engine may have cleaned it up or not, or did it partially. For that reason, methods that access `WeakMap` as a whole are not supported. - -Now where do we need such thing? - -The idea of `WeakMap` is that we can store something for an object that should exist only while the object exists. But we do not force the object to live by the mere fact that we store something for it. - -```js -weakMap.set(john, "secret documents"); -// if john dies, secret documents will be destroyed automatically -``` - -That's useful for situations when we have a main storage for the objects somewhere and need to keep additional information, that is only relevant while the object lives. - -Let's look at an example. - -For instance, we have code that keeps a visit count for each user. The information is stored in a map: a user is the key and the visit count is the value. When a user leaves, we don't want to store their visit count anymore. - -One way would be to keep track of users, and when they leave -- clean up the map manually: - -```js run -let john = { name: "John" }; - -// map: user => visits count -let visitsCountMap = new Map(); - -// john is the key for the map -visitsCountMap.set(john, 123); - -// now john leaves us, we don't need him anymore -john = null; - -*!* -// but it's still in the map, we need to clean it! -*/!* -alert( visitsCountMap.size ); // 1 -// and john is also in the memory, because Map uses it as the key -``` - -Another way would be to use `WeakMap`: - -```js -let john = { name: "John" }; - -let visitsCountMap = new WeakMap(); - -visitsCountMap.set(john, 123); - -// now john leaves us, we don't need him anymore -john = null; - -// there are no references except WeakMap, -// so the object is removed both from the memory and from visitsCountMap automatically -``` - -With a regular `Map`, cleaning up after a user has left becomes a tedious task: we not only need to remove the user from its main storage (be it a variable or an array), but also need to clean up the additional stores like `visitsCountMap`. And it can become cumbersome in more complex cases when users are managed in one place of the code and the additional structure is in another place and is getting no information about removals. - -```summary -`WeakMap` can make things simpler, because it is cleaned up automatically. The information in it like visits count in the example above lives only while the key object exists. -``` - -`WeakSet` behaves similarly: - -- It is analogous to `Set`, but we may only add objects to `WeakSet` (not primitives). -- An object exists in the set while it is reachable from somewhere else. -- Like `Set`, it supports `add`, `has` and `delete`, but not `size`, `keys()` and no iterations. - -For instance, we can use it to keep track of whether a message is read: - -```js -let messages = [ - {text: "Hello", from: "John"}, - {text: "How goes?", from: "John"}, - {text: "See you soon", from: "Alice"} -]; - -// fill it with array elements (3 items) -let unreadSet = new WeakSet(messages); - -// use unreadSet to see whether a message is unread -alert(unreadSet.has(messages[1])); // true - -// remove it from the set after reading -unreadSet.delete(messages[1]); // true - -// and when we shift our messages history, the set is cleaned up automatically -messages.shift(); - -*!* -// no need to clean unreadSet, it now has 2 items -*/!* -// (though technically we don't know for sure when the JS engine clears it) -``` - -The most notable limitation of `WeakMap` and `WeakSet` is the absence of iterations, and inability to get all current content. That may appear inconvenient, but does not prevent `WeakMap/WeakSet` from doing their main job -- be an "additional" storage of data for objects which are stored/managed at another place. - -## Summary - -Regular collections: -- `Map` -- is a collection of keyed values. - - The differences from a regular `Object`: - - - Any keys, objects can be keys. - - Iterates in the insertion order. - - Additional convenient methods, the `size` property. - -- `Set` -- is a collection of unique values. - - - Unlike an array, does not allow to reorder elements. - - Keeps the insertion order. - -Collections that allow garbage-collection: - -- `WeakMap` -- a variant of `Map` that allows only objects as keys and removes them once they become inaccessible by other means. - - - It does not support operations on the structure as a whole: no `size`, no `clear()`, no iterations. - -- `WeakSet` -- is a variant of `Set` that only stores objects and removes them once they become inaccessible by other means. - - - Also does not support `size/clear()` and iterations. - -`WeakMap` and `WeakSet` are used as "secondary" data structures in addition to the "main" object storage. Once the object is removed from the main storage, if it is only found in the `WeakMap/WeakSet`, it will be cleaned up automatically. diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/_js.view/solution.js b/1-js/05-data-types/07-map-set/01-array-unique-map/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/_js.view/solution.js rename to 1-js/05-data-types/07-map-set/01-array-unique-map/_js.view/solution.js diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/_js.view/test.js b/1-js/05-data-types/07-map-set/01-array-unique-map/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/_js.view/test.js rename to 1-js/05-data-types/07-map-set/01-array-unique-map/_js.view/test.js diff --git a/1-js/05-data-types/08-keys-values-entries/02-count-properties/solution.md b/1-js/05-data-types/07-map-set/01-array-unique-map/solution.md similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/02-count-properties/solution.md rename to 1-js/05-data-types/07-map-set/01-array-unique-map/solution.md diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/task.md b/1-js/05-data-types/07-map-set/01-array-unique-map/task.md similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/01-array-unique-map/task.md rename to 1-js/05-data-types/07-map-set/01-array-unique-map/task.md diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/_js.view/solution.js b/1-js/05-data-types/07-map-set/02-filter-anagrams/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/_js.view/solution.js rename to 1-js/05-data-types/07-map-set/02-filter-anagrams/_js.view/solution.js diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/_js.view/test.js b/1-js/05-data-types/07-map-set/02-filter-anagrams/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/_js.view/test.js rename to 1-js/05-data-types/07-map-set/02-filter-anagrams/_js.view/test.js diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/solution.md b/1-js/05-data-types/07-map-set/02-filter-anagrams/solution.md similarity index 98% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/solution.md rename to 1-js/05-data-types/07-map-set/02-filter-anagrams/solution.md index 4c8af1f24..160675185 100644 --- a/1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/solution.md +++ b/1-js/05-data-types/07-map-set/02-filter-anagrams/solution.md @@ -36,7 +36,7 @@ Letter-sorting is done by the chain of calls in the line `(*)`. For convenience let's split it into multiple lines: ```js -let sorted = arr[i] // PAN +let sorted = word // PAN .toLowerCase() // pan .split('') // ['p','a','n'] .sort() // ['a','n','p'] diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/task.md b/1-js/05-data-types/07-map-set/02-filter-anagrams/task.md similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/02-filter-anagrams/task.md rename to 1-js/05-data-types/07-map-set/02-filter-anagrams/task.md diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/03-iterable-keys/solution.md b/1-js/05-data-types/07-map-set/03-iterable-keys/solution.md similarity index 100% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/03-iterable-keys/solution.md rename to 1-js/05-data-types/07-map-set/03-iterable-keys/solution.md diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/03-iterable-keys/task.md b/1-js/05-data-types/07-map-set/03-iterable-keys/task.md similarity index 64% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/03-iterable-keys/task.md rename to 1-js/05-data-types/07-map-set/03-iterable-keys/task.md index b1ccbd0ac..81507647f 100644 --- a/1-js/05-data-types/07-map-set-weakmap-weakset/03-iterable-keys/task.md +++ b/1-js/05-data-types/07-map-set/03-iterable-keys/task.md @@ -4,9 +4,9 @@ importance: 5 # Iterable keys -We want to get an array of `map.keys()` and go on working with it (apart from the map itself). +We'd like to get an array of `map.keys()` in a variable and then apply array-specific methods to it, e.g. `.push`. -But there's a problem: +But that doesn't work: ```js run let map = new Map(); diff --git a/1-js/05-data-types/07-map-set/article.md b/1-js/05-data-types/07-map-set/article.md new file mode 100644 index 000000000..37f5e48c2 --- /dev/null +++ b/1-js/05-data-types/07-map-set/article.md @@ -0,0 +1,331 @@ + +# Map and Set + +Till now, we've learned about the following complex data structures: + +- Objects are used for storing keyed collections. +- Arrays are used for storing ordered collections. + +But that's not enough for real life. That's why `Map` and `Set` also exist. + +## Map + +[Map](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) is a collection of keyed data items, just like an `Object`. But the main difference is that `Map` allows keys of any type. + +Methods and properties are: + +- [`new Map()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/Map) -- creates the map. +- [`map.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set) -- stores the value by the key. +- [`map.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get) -- returns the value by the key, `undefined` if `key` doesn't exist in map. +- [`map.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/has) -- returns `true` if the `key` exists, `false` otherwise. +- [`map.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/delete) -- removes the element (the key/value pair) by the key. +- [`map.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/clear) -- removes everything from the map. +- [`map.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size) -- returns the current element count. + +For instance: + +```js run +let map = new Map(); + +map.set('1', 'str1'); // a string key +map.set(1, 'num1'); // a numeric key +map.set(true, 'bool1'); // a boolean key + +// remember the regular Object? it would convert keys to string +// Map keeps the type, so these two are different: +alert( map.get(1) ); // 'num1' +alert( map.get('1') ); // 'str1' + +alert( map.size ); // 3 +``` + +As we can see, unlike objects, keys are not converted to strings. Any type of key is possible. + +```smart header="`map[key]` isn't the right way to use a `Map`" +Although `map[key]` also works, e.g. we can set `map[key] = 2`, this is treating `map` as a plain JavaScript object, so it implies all corresponding limitations (only string/symbol keys and so on). + +So we should use `map` methods: `set`, `get` and so on. +``` + +**Map can also use objects as keys.** + +For instance: + +```js run +let john = { name: "John" }; + +// for every user, let's store their visits count +let visitsCountMap = new Map(); + +// john is the key for the map +visitsCountMap.set(john, 123); + +alert( visitsCountMap.get(john) ); // 123 +``` + +Using objects as keys is one of the most notable and important `Map` features. The same does not count for `Object`. String as a key in `Object` is fine, but we can't use another `Object` as a key in `Object`. + +Let's try: + +```js run +let john = { name: "John" }; +let ben = { name: "Ben" }; + +let visitsCountObj = {}; // try to use an object + +visitsCountObj[ben] = 234; // try to use ben object as the key +visitsCountObj[john] = 123; // try to use john object as the key, ben object will get replaced + +*!* +// That's what got written! +alert( visitsCountObj["[object Object]"] ); // 123 +*/!* +``` + +As `visitsCountObj` is an object, it converts all `Object` keys, such as `john` and `ben` above, to same string `"[object Object]"`. Definitely not what we want. + +```smart header="How `Map` compares keys" +To test keys for equivalence, `Map` uses the algorithm [SameValueZero](https://tc39.github.io/ecma262/#sec-samevaluezero). It is roughly the same as strict equality `===`, but the difference is that `NaN` is considered equal to `NaN`. So `NaN` can be used as the key as well. + +This algorithm can't be changed or customized. +``` + +````smart header="Chaining" +Every `map.set` call returns the map itself, so we can "chain" the calls: + +```js +map.set('1', 'str1') + .set(1, 'num1') + .set(true, 'bool1'); +``` +```` + +## Iteration over Map + +For looping over a `map`, there are 3 methods: + +- [`map.keys()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/keys) -- returns an iterable for keys, +- [`map.values()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/values) -- returns an iterable for values, +- [`map.entries()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/entries) -- returns an iterable for entries `[key, value]`, it's used by default in `for..of`. + +For instance: + +```js run +let recipeMap = new Map([ + ['cucumber', 500], + ['tomatoes', 350], + ['onion', 50] +]); + +// iterate over keys (vegetables) +for (let vegetable of recipeMap.keys()) { + alert(vegetable); // cucumber, tomatoes, onion +} + +// iterate over values (amounts) +for (let amount of recipeMap.values()) { + alert(amount); // 500, 350, 50 +} + +// iterate over [key, value] entries +for (let entry of recipeMap) { // the same as of recipeMap.entries() + alert(entry); // cucumber,500 (and so on) +} +``` + +```smart header="The insertion order is used" +The iteration goes in the same order as the values were inserted. `Map` preserves this order, unlike a regular `Object`. +``` + +Besides that, `Map` has a built-in `forEach` method, similar to `Array`: + +```js +// runs the function for each (key, value) pair +recipeMap.forEach( (value, key, map) => { + alert(`${key}: ${value}`); // cucumber: 500 etc +}); +``` + +## Object.entries: Map from Object + +When a `Map` is created, we can pass an array (or another iterable) with key/value pairs for initialization, like this: + +```js run +// array of [key, value] pairs +let map = new Map([ + ['1', 'str1'], + [1, 'num1'], + [true, 'bool1'] +]); + +alert( map.get('1') ); // str1 +``` + +If we have a plain object, and we'd like to create a `Map` from it, then we can use built-in method [Object.entries(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/entries) that returns an array of key/value pairs for an object exactly in that format. + +So we can create a map from an object like this: + +```js run +let obj = { + name: "John", + age: 30 +}; + +*!* +let map = new Map(Object.entries(obj)); +*/!* + +alert( map.get('name') ); // John +``` + +Here, `Object.entries` returns the array of key/value pairs: `[ ["name","John"], ["age", 30] ]`. That's what `Map` needs. + + +## Object.fromEntries: Object from Map + +We've just seen how to create `Map` from a plain object with `Object.entries(obj)`. + +There's `Object.fromEntries` method that does the reverse: given an array of `[key, value]` pairs, it creates an object from them: + +```js run +let prices = Object.fromEntries([ + ['banana', 1], + ['orange', 2], + ['meat', 4] +]); + +// now prices = { banana: 1, orange: 2, meat: 4 } + +alert(prices.orange); // 2 +``` + +We can use `Object.fromEntries` to get a plain object from `Map`. + +E.g. we store the data in a `Map`, but we need to pass it to a 3rd-party code that expects a plain object. + +Here we go: + +```js run +let map = new Map(); +map.set('banana', 1); +map.set('orange', 2); +map.set('meat', 4); + +*!* +let obj = Object.fromEntries(map.entries()); // make a plain object (*) +*/!* + +// done! +// obj = { banana: 1, orange: 2, meat: 4 } + +alert(obj.orange); // 2 +``` + +A call to `map.entries()` returns an iterable of key/value pairs, exactly in the right format for `Object.fromEntries`. + +We could also make line `(*)` shorter: +```js +let obj = Object.fromEntries(map); // omit .entries() +``` + +That's the same, because `Object.fromEntries` expects an iterable object as the argument. Not necessarily an array. And the standard iteration for `map` returns same key/value pairs as `map.entries()`. So we get a plain object with same key/values as the `map`. + +## Set + +A [`Set`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set) is a special type collection - "set of values" (without keys), where each value may occur only once. + +Its main methods are: + +- [`new Set([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/Set) -- creates the set, and if an `iterable` object is provided (usually an array), copies values from it into the set. +- [`set.add(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/add) -- adds a value, returns the set itself. +- [`set.delete(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/delete) -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. +- [`set.has(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/has) -- returns `true` if the value exists in the set, otherwise `false`. +- [`set.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/clear) -- removes everything from the set. +- [`set.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/size) -- is the elements count. + +The main feature is that repeated calls of `set.add(value)` with the same value don't do anything. That's the reason why each value appears in a `Set` only once. + +For example, we have visitors coming, and we'd like to remember everyone. But repeated visits should not lead to duplicates. A visitor must be "counted" only once. + +`Set` is just the right thing for that: + +```js run +let set = new Set(); + +let john = { name: "John" }; +let pete = { name: "Pete" }; +let mary = { name: "Mary" }; + +// visits, some users come multiple times +set.add(john); +set.add(pete); +set.add(mary); +set.add(john); +set.add(mary); + +// set keeps only unique values +alert( set.size ); // 3 + +for (let user of set) { + alert(user.name); // John (then Pete and Mary) +} +``` + +The alternative to `Set` could be an array of users, and the code to check for duplicates on every insertion using [arr.find](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find). But the performance would be much worse, because this method walks through the whole array checking every element. `Set` is much better optimized internally for uniqueness checks. + +## Iteration over Set + +We can loop over a set either with `for..of` or using `forEach`: + +```js run +let set = new Set(["oranges", "apples", "bananas"]); + +for (let value of set) alert(value); + +// the same with forEach: +set.forEach((value, valueAgain, set) => { + alert(value); +}); +``` + +Note the funny thing. The callback function passed in `forEach` has 3 arguments: a `value`, then *the same value* `valueAgain`, and then the target object. Indeed, the same value appears in the arguments twice. + +That's for compatibility with `Map` where the callback passed `forEach` has three arguments. Looks a bit strange, for sure. But this may help to replace `Map` with `Set` in certain cases with ease, and vice versa. + +The same methods `Map` has for iterators are also supported: + +- [`set.keys()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/keys) -- returns an iterable object for values, +- [`set.values()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/values) -- same as `set.keys()`, for compatibility with `Map`, +- [`set.entries()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/entries) -- returns an iterable object for entries `[value, value]`, exists for compatibility with `Map`. + +## Summary + +[`Map`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) -- is a collection of keyed values. + +Methods and properties: + +- [`new Map([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/Map) -- creates the map, with optional `iterable` (e.g. array) of `[key,value]` pairs for initialization. +- [`map.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set) -- stores the value by the key, returns the map itself. +- [`map.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get) -- returns the value by the key, `undefined` if `key` doesn't exist in map. +- [`map.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/has) -- returns `true` if the `key` exists, `false` otherwise. +- [`map.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/delete) -- removes the element by the key, returns `true` if `key` existed at the moment of the call, otherwise `false`. +- [`map.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/clear) -- removes everything from the map. +- [`map.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size) -- returns the current element count. + +The differences from a regular `Object`: + +- Any keys, objects can be keys. +- Additional convenient methods, the `size` property. + +[`Set`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set) -- is a collection of unique values. + +Methods and properties: + +- [`new Set([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/Set) -- creates the set, with optional `iterable` (e.g. array) of values for initialization. +- [`set.add(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/add) -- adds a value (does nothing if `value` exists), returns the set itself. +- [`set.delete(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/delete) -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. +- [`set.has(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/has) -- returns `true` if the value exists in the set, otherwise `false`. +- [`set.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/clear) -- removes everything from the set. +- [`set.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/size) -- is the elements count. + +Iteration over `Map` and `Set` is always in the insertion order, so we can't say that these collections are unordered, but we can't reorder elements or directly get an element by its number. diff --git a/1-js/05-data-types/08-weakmap-weakset/01-recipients-read/solution.md b/1-js/05-data-types/08-weakmap-weakset/01-recipients-read/solution.md new file mode 100644 index 000000000..e2147ccfa --- /dev/null +++ b/1-js/05-data-types/08-weakmap-weakset/01-recipients-read/solution.md @@ -0,0 +1,43 @@ +Let's store read messages in `WeakSet`: + +```js run +let messages = [ + {text: "Hello", from: "John"}, + {text: "How goes?", from: "John"}, + {text: "See you soon", from: "Alice"} +]; + +let readMessages = new WeakSet(); + +// two messages have been read +readMessages.add(messages[0]); +readMessages.add(messages[1]); +// readMessages has 2 elements + +// ...let's read the first message again! +readMessages.add(messages[0]); +// readMessages still has 2 unique elements + +// answer: was the message[0] read? +alert("Read message 0: " + readMessages.has(messages[0])); // true + +messages.shift(); +// now readMessages has 1 element (technically memory may be cleaned later) +``` + +The `WeakSet` allows to store a set of messages and easily check for the existence of a message in it. + +It cleans up itself automatically. The tradeoff is that we can't iterate over it, can't get "all read messages" from it directly. But we can do it by iterating over all messages and filtering those that are in the set. + +Another, different solution could be to add a property like `message.isRead=true` to a message after it's read. As messages objects are managed by another code, that's generally discouraged, but we can use a symbolic property to avoid conflicts. + +Like this: +```js +// the symbolic property is only known to our code +let isRead = Symbol("isRead"); +messages[0][isRead] = true; +``` + +Now third-party code probably won't see our extra property. + +Although symbols allow to lower the probability of problems, using `WeakSet` is better from the architectural point of view. diff --git a/1-js/05-data-types/08-weakmap-weakset/01-recipients-read/task.md b/1-js/05-data-types/08-weakmap-weakset/01-recipients-read/task.md new file mode 100644 index 000000000..fd31a891b --- /dev/null +++ b/1-js/05-data-types/08-weakmap-weakset/01-recipients-read/task.md @@ -0,0 +1,23 @@ +importance: 5 + +--- + +# Store "unread" flags + +There's an array of messages: + +```js +let messages = [ + {text: "Hello", from: "John"}, + {text: "How goes?", from: "John"}, + {text: "See you soon", from: "Alice"} +]; +``` + +Your code can access it, but the messages are managed by someone else's code. New messages are added, old ones are removed regularly by that code, and you don't know the exact moments when it happens. + +Now, which data structure could you use to store information about whether the message "has been read"? The structure must be well-suited to give the answer "was it read?" for the given message object. + +P.S. When a message is removed from `messages`, it should disappear from your structure as well. + +P.P.S. We shouldn't modify message objects, add our properties to them. As they are managed by someone else's code, that may lead to bad consequences. diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/05-recipients-when-read/solution.md b/1-js/05-data-types/08-weakmap-weakset/02-recipients-when-read/solution.md similarity index 61% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/05-recipients-when-read/solution.md rename to 1-js/05-data-types/08-weakmap-weakset/02-recipients-when-read/solution.md index 7f387b4da..2af0547c1 100644 --- a/1-js/05-data-types/07-map-set-weakmap-weakset/05-recipients-when-read/solution.md +++ b/1-js/05-data-types/08-weakmap-weakset/02-recipients-when-read/solution.md @@ -3,9 +3,9 @@ To store a date, we can use `WeakMap`: ```js let messages = [ - {text: "Hello", from: "John"}, - {text: "How goes?", from: "John"}, - {text: "See you soon", from: "Alice"} + {text: "Hello", from: "John"}, + {text: "How goes?", from: "John"}, + {text: "See you soon", from: "Alice"} ]; let readMap = new WeakMap(); diff --git a/1-js/05-data-types/07-map-set-weakmap-weakset/05-recipients-when-read/task.md b/1-js/05-data-types/08-weakmap-weakset/02-recipients-when-read/task.md similarity index 54% rename from 1-js/05-data-types/07-map-set-weakmap-weakset/05-recipients-when-read/task.md rename to 1-js/05-data-types/08-weakmap-weakset/02-recipients-when-read/task.md index 22b51a382..8e341c184 100644 --- a/1-js/05-data-types/07-map-set-weakmap-weakset/05-recipients-when-read/task.md +++ b/1-js/05-data-types/08-weakmap-weakset/02-recipients-when-read/task.md @@ -8,12 +8,14 @@ There's an array of messages as in the [previous task](info:task/recipients-read ```js let messages = [ - {text: "Hello", from: "John"}, - {text: "How goes?", from: "John"}, - {text: "See you soon", from: "Alice"} + {text: "Hello", from: "John"}, + {text: "How goes?", from: "John"}, + {text: "See you soon", from: "Alice"} ]; ``` The question now is: which data structure you'd suggest to store the information: "when the message was read?". -In the previous task we only needed to store the "yes/no" fact. Now we need to store the date and it, once again, should disappear if the message is gone. +In the previous task we only needed to store the "yes/no" fact. Now we need to store the date, and it should only remain in memory until the message is garbage collected. + +P.S. Dates can be stored as objects of built-in `Date` class, that we'll cover later. diff --git a/1-js/05-data-types/08-weakmap-weakset/article.md b/1-js/05-data-types/08-weakmap-weakset/article.md new file mode 100644 index 000000000..9795017d4 --- /dev/null +++ b/1-js/05-data-types/08-weakmap-weakset/article.md @@ -0,0 +1,295 @@ + +# WeakMap and WeakSet + +As we know from the chapter , JavaScript engine keeps a value in memory while it is "reachable" and can potentially be used. + +For instance: + +```js +let john = { name: "John" }; + +// the object can be accessed, john is the reference to it + +// overwrite the reference +john = null; + +*!* +// the object will be removed from memory +*/!* +``` + +Usually, properties of an object or elements of an array or another data structure are considered reachable and kept in memory while that data structure is in memory. + +For instance, if we put an object into an array, then while the array is alive, the object will be alive as well, even if there are no other references to it. + +Like this: + +```js +let john = { name: "John" }; + +let array = [ john ]; + +john = null; // overwrite the reference + +*!* +// the object previously referenced by john is stored inside the array +// therefore it won't be garbage-collected +// we can get it as array[0] +*/!* +``` + +Similar to that, if we use an object as the key in a regular `Map`, then while the `Map` exists, that object exists as well. It occupies memory and may not be garbage collected. + +For instance: + +```js +let john = { name: "John" }; + +let map = new Map(); +map.set(john, "..."); + +john = null; // overwrite the reference + +*!* +// john is stored inside the map, +// we can get it by using map.keys() +*/!* +``` + +[`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is fundamentally different in this aspect. It doesn't prevent garbage-collection of key objects. + +Let's see what it means on examples. + +## WeakMap + +The first difference between [`Map`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) and [`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is that keys must be objects, not primitive values: + +```js run +let weakMap = new WeakMap(); + +let obj = {}; + +weakMap.set(obj, "ok"); // works fine (object key) + +*!* +// can't use a string as the key +weakMap.set("test", "Whoops"); // Error, because "test" is not an object +*/!* +``` + +Now, if we use an object as the key in it, and there are no other references to that object -- it will be removed from memory (and from the map) automatically. + +```js +let john = { name: "John" }; + +let weakMap = new WeakMap(); +weakMap.set(john, "..."); + +john = null; // overwrite the reference + +// john is removed from memory! +``` + +Compare it with the regular `Map` example above. Now if `john` only exists as the key of `WeakMap` -- it will be automatically deleted from the map (and memory). + +`WeakMap` does not support iteration and methods `keys()`, `values()`, `entries()`, so there's no way to get all keys or values from it. + +`WeakMap` has only the following methods: + +- [`weakMap.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/set) +- [`weakMap.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/get) +- [`weakMap.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/delete) +- [`weakMap.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/has) + +Why such a limitation? That's for technical reasons. If an object has lost all other references (like `john` in the code above), then it is to be garbage-collected automatically. But technically it's not exactly specified *when the cleanup happens*. + +The JavaScript engine decides that. It may choose to perform the memory cleanup immediately or to wait and do the cleaning later when more deletions happen. So, technically, the current element count of a `WeakMap` is not known. The engine may have cleaned it up or not, or did it partially. For that reason, methods that access all keys/values are not supported. + +Now, where do we need such a data structure? + +## Use case: additional data + +The main area of application for `WeakMap` is an *additional data storage*. + +If we're working with an object that "belongs" to another code, maybe even a third-party library, and would like to store some data associated with it, that should only exist while the object is alive - then `WeakMap` is exactly what's needed. + +We put the data to a `WeakMap`, using the object as the key, and when the object is garbage collected, that data will automatically disappear as well. + +```js +weakMap.set(john, "secret documents"); +// if john dies, secret documents will be destroyed automatically +``` + +Let's look at an example. + +For instance, we have code that keeps a visit count for users. The information is stored in a map: a user object is the key and the visit count is the value. When a user leaves (its object gets garbage collected), we don't want to store their visit count anymore. + +Here's an example of a counting function with `Map`: + +```js +// 📁 visitsCount.js +let visitsCountMap = new Map(); // map: user => visits count + +// increase the visits count +function countUser(user) { + let count = visitsCountMap.get(user) || 0; + visitsCountMap.set(user, count + 1); +} +``` + +And here's another part of the code, maybe another file using it: + +```js +// 📁 main.js +let john = { name: "John" }; + +countUser(john); // count his visits + +// later john leaves us +john = null; +``` + +Now, `john` object should be garbage collected, but remains in memory, as it's a key in `visitsCountMap`. + +We need to clean `visitsCountMap` when we remove users, otherwise it will grow in memory indefinitely. Such cleaning can become a tedious task in complex architectures. + +We can avoid it by switching to `WeakMap` instead: + +```js +// 📁 visitsCount.js +let visitsCountMap = new WeakMap(); // weakmap: user => visits count + +// increase the visits count +function countUser(user) { + let count = visitsCountMap.get(user) || 0; + visitsCountMap.set(user, count + 1); +} +``` + +Now we don't have to clean `visitsCountMap`. After `john` object becomes unreachable, by all means except as a key of `WeakMap`, it gets removed from memory, along with the information by that key from `WeakMap`. + +## Use case: caching + +Another common example is caching. We can store ("cache") results from a function, so that future calls on the same object can reuse it. + +To achieve that, we can use `Map` (not optimal scenario): + +```js run +// 📁 cache.js +let cache = new Map(); + +// calculate and remember the result +function process(obj) { + if (!cache.has(obj)) { + let result = /* calculations of the result for */ obj; + + cache.set(obj, result); + return result; + } + + return cache.get(obj); +} + +*!* +// Now we use process() in another file: +*/!* + +// 📁 main.js +let obj = {/* let's say we have an object */}; + +let result1 = process(obj); // calculated + +// ...later, from another place of the code... +let result2 = process(obj); // remembered result taken from cache + +// ...later, when the object is not needed any more: +obj = null; + +alert(cache.size); // 1 (Ouch! The object is still in cache, taking memory!) +``` + +For multiple calls of `process(obj)` with the same object, it only calculates the result the first time, and then just takes it from `cache`. The downside is that we need to clean `cache` when the object is not needed any more. + +If we replace `Map` with `WeakMap`, then this problem disappears. The cached result will be removed from memory automatically after the object gets garbage collected. + +```js run +// 📁 cache.js +*!* +let cache = new WeakMap(); +*/!* + +// calculate and remember the result +function process(obj) { + if (!cache.has(obj)) { + let result = /* calculate the result for */ obj; + + cache.set(obj, result); + return result; + } + + return cache.get(obj); +} + +// 📁 main.js +let obj = {/* some object */}; + +let result1 = process(obj); +let result2 = process(obj); + +// ...later, when the object is not needed any more: +obj = null; + +// Can't get cache.size, as it's a WeakMap, +// but it's 0 or soon be 0 +// When obj gets garbage collected, cached data will be removed as well +``` + +## WeakSet + +[`WeakSet`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet) behaves similarly: + +- It is analogous to `Set`, but we may only add objects to `WeakSet` (not primitives). +- An object exists in the set while it is reachable from somewhere else. +- Like `Set`, it supports [`add`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/add), [`has`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/has) and [`delete`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/delete), but not `size`, `keys()` and no iterations. + +Being "weak", it also serves as additional storage. But not for arbitrary data, rather for "yes/no" facts. A membership in `WeakSet` may mean something about the object. + +For instance, we can add users to `WeakSet` to keep track of those who visited our site: + +```js run +let visitedSet = new WeakSet(); + +let john = { name: "John" }; +let pete = { name: "Pete" }; +let mary = { name: "Mary" }; + +visitedSet.add(john); // John visited us +visitedSet.add(pete); // Then Pete +visitedSet.add(john); // John again + +// visitedSet has 2 users now + +// check if John visited? +alert(visitedSet.has(john)); // true + +// check if Mary visited? +alert(visitedSet.has(mary)); // false + +john = null; + +// visitedSet will be cleaned automatically +``` + +The most notable limitation of `WeakMap` and `WeakSet` is the absence of iterations, and the inability to get all current content. That may appear inconvenient, but does not prevent `WeakMap/WeakSet` from doing their main job -- be an "additional" storage of data for objects which are stored/managed at another place. + +## Summary + +[`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is `Map`-like collection that allows only objects as keys and removes them together with associated value once they become inaccessible by other means. + +[`WeakSet`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet) is `Set`-like collection that stores only objects and removes them once they become inaccessible by other means. + +Their main advantages are that they have weak reference to objects, so they can easily be removed by garbage collector. + +That comes at the cost of not having support for `clear`, `size`, `keys`, `values`... + +`WeakMap` and `WeakSet` are used as "secondary" data structures in addition to the "primary" object storage. Once the object is removed from the primary storage, if it is only found as the key of `WeakMap` or in a `WeakSet`, it will be cleaned up automatically. diff --git a/1-js/05-data-types/08-keys-values-entries/01-sum-salaries/_js.view/solution.js b/1-js/05-data-types/09-keys-values-entries/01-sum-salaries/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/01-sum-salaries/_js.view/solution.js rename to 1-js/05-data-types/09-keys-values-entries/01-sum-salaries/_js.view/solution.js diff --git a/1-js/05-data-types/08-keys-values-entries/01-sum-salaries/_js.view/test.js b/1-js/05-data-types/09-keys-values-entries/01-sum-salaries/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/01-sum-salaries/_js.view/test.js rename to 1-js/05-data-types/09-keys-values-entries/01-sum-salaries/_js.view/test.js diff --git a/1-js/05-data-types/08-keys-values-entries/01-sum-salaries/solution.md b/1-js/05-data-types/09-keys-values-entries/01-sum-salaries/solution.md similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/01-sum-salaries/solution.md rename to 1-js/05-data-types/09-keys-values-entries/01-sum-salaries/solution.md diff --git a/1-js/05-data-types/08-keys-values-entries/01-sum-salaries/task.md b/1-js/05-data-types/09-keys-values-entries/01-sum-salaries/task.md similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/01-sum-salaries/task.md rename to 1-js/05-data-types/09-keys-values-entries/01-sum-salaries/task.md diff --git a/1-js/05-data-types/08-keys-values-entries/02-count-properties/_js.view/solution.js b/1-js/05-data-types/09-keys-values-entries/02-count-properties/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/02-count-properties/_js.view/solution.js rename to 1-js/05-data-types/09-keys-values-entries/02-count-properties/_js.view/solution.js diff --git a/1-js/05-data-types/08-keys-values-entries/02-count-properties/_js.view/test.js b/1-js/05-data-types/09-keys-values-entries/02-count-properties/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/02-count-properties/_js.view/test.js rename to 1-js/05-data-types/09-keys-values-entries/02-count-properties/_js.view/test.js diff --git a/1-js/05-data-types/09-destructuring-assignment/6-max-salary/solution.md b/1-js/05-data-types/09-keys-values-entries/02-count-properties/solution.md similarity index 100% rename from 1-js/05-data-types/09-destructuring-assignment/6-max-salary/solution.md rename to 1-js/05-data-types/09-keys-values-entries/02-count-properties/solution.md diff --git a/1-js/05-data-types/08-keys-values-entries/02-count-properties/task.md b/1-js/05-data-types/09-keys-values-entries/02-count-properties/task.md similarity index 100% rename from 1-js/05-data-types/08-keys-values-entries/02-count-properties/task.md rename to 1-js/05-data-types/09-keys-values-entries/02-count-properties/task.md diff --git a/1-js/05-data-types/08-keys-values-entries/article.md b/1-js/05-data-types/09-keys-values-entries/article.md similarity index 58% rename from 1-js/05-data-types/08-keys-values-entries/article.md rename to 1-js/05-data-types/09-keys-values-entries/article.md index 66ca3ca92..bef678f53 100644 --- a/1-js/05-data-types/08-keys-values-entries/article.md +++ b/1-js/05-data-types/09-keys-values-entries/article.md @@ -1,17 +1,17 @@ # Object.keys, values, entries -Let's step away from the individual data structures and talk about the iterations over them. +Let's step away from the individual data structures and talk about the iterations over them. In the previous chapter we saw methods `map.keys()`, `map.values()`, `map.entries()`. -These methods are generic, there is a common agreement to use them for data structures. If we ever create a data structure of our own, we should implement them too. +These methods are generic, there is a common agreement to use them for data structures. If we ever create a data structure of our own, we should implement them too. They are supported for: - `Map` - `Set` -- `Array` (except `arr.values()`) +- `Array` Plain objects also support similar methods, but the syntax is a bit different. @@ -23,7 +23,7 @@ For plain objects, the following methods are available: - [Object.values(obj)](mdn:js/Object/values) -- returns an array of values. - [Object.entries(obj)](mdn:js/Object/entries) -- returns an array of `[key, value]` pairs. -...But please note the distinctions (compared to map for example): +Please note the distinctions (compared to map for example): | | Map | Object | |-------------|------------------|--------------| @@ -32,7 +32,7 @@ For plain objects, the following methods are available: The first difference is that we have to call `Object.keys(obj)`, and not `obj.keys()`. -Why so? The main reason is flexibility. Remember, objects are a base of all complex structures in JavaScript. So we may have an object of our own like `order` that implements its own `order.values()` method. And we still can call `Object.values(order)` on it. +Why so? The main reason is flexibility. Remember, objects are a base of all complex structures in JavaScript. So we may have an object of our own like `data` that implements its own `data.values()` method. And we still can call `Object.values(data)` on it. The second difference is that `Object.*` methods return "real" array objects, not just an iterable. That's mainly for historical reasons. @@ -63,8 +63,41 @@ for (let value of Object.values(user)) { } ``` -## Object.keys/values/entries ignore symbolic properties - +```warn header="Object.keys/values/entries ignore symbolic properties" Just like a `for..in` loop, these methods ignore properties that use `Symbol(...)` as keys. -Usually that's convenient. But if we want symbolic keys too, then there's a separate method [Object.getOwnPropertySymbols](mdn:js/Object/getOwnPropertySymbols) that returns an array of only symbolic keys. Also, the method [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) returns *all* keys. +Usually that's convenient. But if we want symbolic keys too, then there's a separate method [Object.getOwnPropertySymbols](mdn:js/Object/getOwnPropertySymbols) that returns an array of only symbolic keys. Also, there exist a method [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) that returns *all* keys. +``` + + +## Transforming objects + +Objects lack many methods that exist for arrays, e.g. `map`, `filter` and others. + +If we'd like to apply them, then we can use `Object.entries` followed by `Object.fromEntries`: + +1. Use `Object.entries(obj)` to get an array of key/value pairs from `obj`. +2. Use array methods on that array, e.g. `map`, to transform these key/value pairs. +3. Use `Object.fromEntries(array)` on the resulting array to turn it back into an object. + +For example, we have an object with prices, and would like to double them: + +```js run +let prices = { + banana: 1, + orange: 2, + meat: 4, +}; + +*!* +let doublePrices = Object.fromEntries( + // convert prices to array, map each key/value pair into another pair + // and then fromEntries gives back the object + Object.entries(prices).map(entry => [entry[0], entry[1] * 2]) +); +*/!* + +alert(doublePrices.meat); // 8 +``` + +It may look difficult at first sight, but becomes easy to understand after you use it once or twice. We can make powerful chains of transforms this way. diff --git a/1-js/05-data-types/10-date/1-new-date/solution.md b/1-js/05-data-types/10-date/1-new-date/solution.md deleted file mode 100644 index eb271a91a..000000000 --- a/1-js/05-data-types/10-date/1-new-date/solution.md +++ /dev/null @@ -1,8 +0,0 @@ -The `new Date` constructor uses the local time zone by default. So the only important thing to remember is that months start from zero. - -So February has number 1. - -```js run -let d = new Date(2012, 1, 20, 3, 12); -alert( d ); -``` diff --git a/1-js/05-data-types/09-destructuring-assignment/1-destruct-user/solution.md b/1-js/05-data-types/10-destructuring-assignment/1-destruct-user/solution.md similarity index 100% rename from 1-js/05-data-types/09-destructuring-assignment/1-destruct-user/solution.md rename to 1-js/05-data-types/10-destructuring-assignment/1-destruct-user/solution.md diff --git a/1-js/05-data-types/09-destructuring-assignment/1-destruct-user/task.md b/1-js/05-data-types/10-destructuring-assignment/1-destruct-user/task.md similarity index 76% rename from 1-js/05-data-types/09-destructuring-assignment/1-destruct-user/task.md rename to 1-js/05-data-types/10-destructuring-assignment/1-destruct-user/task.md index b2213323a..b68db5c59 100644 --- a/1-js/05-data-types/09-destructuring-assignment/1-destruct-user/task.md +++ b/1-js/05-data-types/10-destructuring-assignment/1-destruct-user/task.md @@ -17,9 +17,9 @@ Write the destructuring assignment that reads: - `name` property into the variable `name`. - `years` property into the variable `age`. -- `isAdmin` property into the variable `isAdmin` (false if absent) +- `isAdmin` property into the variable `isAdmin` (false, if no such property) -The values after the assignment should be: +Here's an example of the values after your assignment: ```js let user = { name: "John", years: 30 }; diff --git a/1-js/05-data-types/09-destructuring-assignment/6-max-salary/_js.view/solution.js b/1-js/05-data-types/10-destructuring-assignment/6-max-salary/_js.view/solution.js similarity index 67% rename from 1-js/05-data-types/09-destructuring-assignment/6-max-salary/_js.view/solution.js rename to 1-js/05-data-types/10-destructuring-assignment/6-max-salary/_js.view/solution.js index f4bd5c761..6538af42b 100644 --- a/1-js/05-data-types/09-destructuring-assignment/6-max-salary/_js.view/solution.js +++ b/1-js/05-data-types/10-destructuring-assignment/6-max-salary/_js.view/solution.js @@ -1,16 +1,14 @@ function topSalary(salaries) { - let max = 0; + let maxSalary = 0; let maxName = null; for(const [name, salary] of Object.entries(salaries)) { - if (max < salary) { - max = salary; + if (maxSalary < salary) { + maxSalary = salary; maxName = name; } } return maxName; -} - - +} \ No newline at end of file diff --git a/1-js/05-data-types/09-destructuring-assignment/6-max-salary/_js.view/test.js b/1-js/05-data-types/10-destructuring-assignment/6-max-salary/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/09-destructuring-assignment/6-max-salary/_js.view/test.js rename to 1-js/05-data-types/10-destructuring-assignment/6-max-salary/_js.view/test.js diff --git a/1-js/05-data-types/10-date/3-weekday/solution.md b/1-js/05-data-types/10-destructuring-assignment/6-max-salary/solution.md similarity index 100% rename from 1-js/05-data-types/10-date/3-weekday/solution.md rename to 1-js/05-data-types/10-destructuring-assignment/6-max-salary/solution.md diff --git a/1-js/05-data-types/09-destructuring-assignment/6-max-salary/task.md b/1-js/05-data-types/10-destructuring-assignment/6-max-salary/task.md similarity index 100% rename from 1-js/05-data-types/09-destructuring-assignment/6-max-salary/task.md rename to 1-js/05-data-types/10-destructuring-assignment/6-max-salary/task.md diff --git a/1-js/05-data-types/09-destructuring-assignment/article.md b/1-js/05-data-types/10-destructuring-assignment/article.md similarity index 55% rename from 1-js/05-data-types/09-destructuring-assignment/article.md rename to 1-js/05-data-types/10-destructuring-assignment/article.md index 2f918e566..376d332d9 100644 --- a/1-js/05-data-types/09-destructuring-assignment/article.md +++ b/1-js/05-data-types/10-destructuring-assignment/article.md @@ -2,37 +2,48 @@ The two most used data structures in JavaScript are `Object` and `Array`. -Objects allow us to pack many pieces of information into a single entity and arrays allow us to store ordered collections. So we can make an object or an array and handle it as a single entity, or maybe pass it to a function call. +- Objects allow us to create a single entity that stores data items by key. +- Arrays allow us to gather data items into an ordered list. -*Destructuring assignment* is a special syntax that allows us to "unpack" arrays or objects into a bunch of variables, as sometimes they are more convenient. Destructuring also works great with complex functions that have a lot of parameters, default values, and soon we'll see how these are handled too. +However, when we pass these to a function, we may not need all of it. The function might only require certain elements or properties. + +*Destructuring assignment* is a special syntax that allows us to "unpack" arrays or objects into a bunch of variables, as sometimes that's more convenient. + +Destructuring also works well with complex functions that have a lot of parameters, default values, and so on. Soon we'll see that. ## Array destructuring -An example of how the array is destructured into variables: +Here's an example of how an array is destructured into variables: ```js -// we have an array with the name and surname -let arr = ["Ilya", "Kantor"] +// we have an array with a name and surname +let arr = ["John", "Smith"] *!* // destructuring assignment +// sets firstName = arr[0] +// and surname = arr[1] let [firstName, surname] = arr; */!* -alert(firstName); // Ilya -alert(surname); // Kantor +alert(firstName); // John +alert(surname); // Smith ``` Now we can work with variables instead of array members. It looks great when combined with `split` or other array-returning methods: -```js -let [firstName, surname] = "Ilya Kantor".split(' '); +```js run +let [firstName, surname] = "John Smith".split(' '); +alert(firstName); // John +alert(surname); // Smith ``` +As you can see, the syntax is simple. There are several peculiar details though. Let's see more examples to understand it better. + ````smart header="\"Destructuring\" does not mean \"destructive\"." -It's called "destructuring assignment," because it "destructurizes" by copying items into variables. But the array itself is not modified. +It's called "destructuring assignment," because it "destructurizes" by copying items into variables. However, the array itself is not modified. It's just a shorter way to write: ```js @@ -54,7 +65,7 @@ let [firstName, , title] = ["Julius", "Caesar", "Consul", "of the Roman Republic alert( title ); // Consul ``` -In the code above, the second element of the array is skipped, the third one is assigned to `title`, and the rest of the array is also skipped. +In the code above, the second element of the array is skipped, the third one is assigned to `title`, and the rest of the array items are also skipped (as there are no variables for them). ```` ````smart header="Works with any iterable on the right-side" @@ -65,29 +76,28 @@ In the code above, the second element of the array is skipped, the third one is let [a, b, c] = "abc"; // ["a", "b", "c"] let [one, two, three] = new Set([1, 2, 3]); ``` - +That works, because internally a destructuring assignment works by iterating over the right value. It's a kind of syntax sugar for calling `for..of` over the value to the right of `=` and assigning the values. ```` ````smart header="Assign to anything at the left-side" - -We can use any "assignables" at the left side. +We can use any "assignables" on the left side. For instance, an object property: ```js run let user = {}; -[user.name, user.surname] = "Ilya Kantor".split(' '); +[user.name, user.surname] = "John Smith".split(' '); -alert(user.name); // Ilya +alert(user.name); // John +alert(user.surname); // Smith ``` ```` ````smart header="Looping with .entries()" +In the previous chapter, we saw the [Object.entries(obj)](mdn:js/Object/entries) method. -In the previous chapter we saw the [Object.entries(obj)](mdn:js/Object/entries) method. - -We can use it with destructuring to loop over keys-and-values of an object: +We can use it with destructuring to loop over the keys-and-values of an object: ```js run let user = { @@ -95,7 +105,7 @@ let user = { age: 30 }; -// loop over keys-and-values +// loop over the keys-and-values *!* for (let [key, value] of Object.entries(user)) { */!* @@ -103,7 +113,7 @@ for (let [key, value] of Object.entries(user)) { } ``` -...And the same for a map: +The similar code for a `Map` is simpler, as it's iterable: ```js run let user = new Map(); @@ -111,35 +121,73 @@ user.set("name", "John"); user.set("age", "30"); *!* -for (let [key, value] of user.entries()) { +// Map iterates as [key, value] pairs, very convenient for destructuring +for (let [key, value] of user) { */!* alert(`${key}:${value}`); // name:John, then age:30 } ``` ```` + +````smart header="Swap variables trick" +There's a well-known trick for swapping values of two variables using a destructuring assignment: + +```js run +let guest = "Jane"; +let admin = "Pete"; + +// Let's swap the values: make guest=Pete, admin=Jane +*!* +[guest, admin] = [admin, guest]; +*/!* + +alert(`${guest} ${admin}`); // Pete Jane (successfully swapped!) +``` + +Here we create a temporary array of two variables and immediately destructure it in swapped order. + +We can swap more than two variables this way. +```` + ### The rest '...' -If we want not just to get first values, but also to gather all that follows -- we can add one more parameter that gets "the rest" using three dots `"..."`: +Usually, if the array is longer than the list at the left, the "extra" items are omitted. + +For example, here only two items are taken, and the rest is just ignored: ```js run -let [name1, name2, *!*...rest*/!*] = ["Julius", "Caesar", *!*"Consul", "of the Roman Republic"*/!*]; +let [name1, name2] = ["Julius", "Caesar", "Consul", "of the Roman Republic"]; alert(name1); // Julius alert(name2); // Caesar +// Further items aren't assigned anywhere +``` + +If we'd like also to gather all that follows -- we can add one more parameter that gets "the rest" using three dots `"..."`: + +```js run +let [name1, name2, *!*...rest*/!*] = ["Julius", "Caesar", *!*"Consul", "of the Roman Republic"*/!*]; *!* -// Note that type of `rest` is Array. +// rest is an array of items, starting from the 3rd one alert(rest[0]); // Consul alert(rest[1]); // of the Roman Republic alert(rest.length); // 2 */!* ``` -The value of `rest` is the array of the remaining array elements. We can use any other variable name in place of `rest`, just make sure it has three dots before it and goes last in the destructuring assignment. +The value of `rest` is the array of the remaining array elements. + +We can use any other variable name in place of `rest`, just make sure it has three dots before it and goes last in the destructuring assignment. + +```js run +let [name1, name2, *!*...titles*/!*] = ["Julius", "Caesar", "Consul", "of the Roman Republic"]; +// now titles = ["Consul", "of the Roman Republic"] +``` ### Default values -If there are fewer values in the array than variables in the assignment, there will be no error. Absent values are considered undefined: +If the array is shorter than the list of variables on the left, there will be no errors. Absent values are considered undefined: ```js run *!* @@ -164,7 +212,7 @@ alert(surname); // Anonymous (default used) Default values can be more complex expressions or even function calls. They are evaluated only if the value is not provided. -For instance, here we use the `prompt` function for two defaults. But it will run only for the missing one: +For instance, here we use the `prompt` function for two defaults: ```js run // runs only prompt for surname @@ -174,7 +222,7 @@ alert(name); // Julius (from array) alert(surname); // whatever prompt gets ``` - +Please note: the `prompt` will run only for the missing value (`surname`). ## Object destructuring @@ -183,10 +231,10 @@ The destructuring assignment also works with objects. The basic syntax is: ```js -let {var1, var2} = {var1:…, var2…} +let {var1, var2} = {var1:…, var2:…} ``` -We have an existing object at the right side, that we want to split into variables. The left side contains a "pattern" for corresponding properties. In the simple case, that's a list of variable names in `{...}`. +We should have an existing object on the right side, that we want to split into variables. The left side contains an object-like "pattern" for corresponding properties. In the simplest case, that's a list of variable names in `{...}`. For instance: @@ -206,16 +254,18 @@ alert(width); // 100 alert(height); // 200 ``` -Properties `options.title`, `options.width` and `options.height` are assigned to the corresponding variables. The order does not matter. This works too: +Properties `options.title`, `options.width` and `options.height` are assigned to the corresponding variables. + +The order does not matter. This works too: ```js -// changed the order of properties in let {...} +// changed the order in let {...} let {height, width, title} = { title: "Menu", height: 200, width: 100 } ``` The pattern on the left side may be more complex and specify the mapping between properties and variables. -If we want to assign a property to a variable with another name, for instance, `options.width` to go into the variable named `w`, then we can set it using a colon: +If we want to assign a property to a variable with another name, for instance, make `options.width` go into the variable named `w`, then we can set the variable name using a colon: ```js run let options = { @@ -258,7 +308,7 @@ alert(height); // 200 Just like with arrays or function parameters, default values can be any expressions or even function calls. They will be evaluated if the value is not provided. -The code below asks for width, but not the title. +In the code below `prompt` asks for `width`, but not for `title`: ```js run let options = { @@ -270,7 +320,7 @@ let {width = prompt("width?"), title = prompt("title?")} = options; */!* alert(title); // Menu -alert(width); // (whatever you the result of prompt is) +alert(width); // (whatever the result of prompt is) ``` We also can combine both the colon and equality: @@ -289,11 +339,26 @@ alert(w); // 100 alert(h); // 200 ``` -### The rest operator +If we have a complex object with many properties, we can extract only what we need: + +```js run +let options = { + title: "Menu", + width: 100, + height: 200 +}; + +// only extract title as a variable +let { title } = options; + +alert(title); // Menu +``` + +### The rest pattern "..." What if the object has more properties than we have variables? Can we take some and then assign the "rest" somewhere? -The specification for using the rest operator (three dots) here is almost in the standard, but most browsers do not support it yet. +We can use the rest pattern, just like we did with arrays. It's not supported by some older browsers (IE, use Babel to polyfill it), but works in modern ones. It looks like this: @@ -305,6 +370,8 @@ let options = { }; *!* +// title = property named title +// rest = object with the rest of properties let {title, ...rest} = options; */!* @@ -313,10 +380,8 @@ alert(rest.height); // 200 alert(rest.width); // 100 ``` - - -````smart header="Gotcha without `let`" -In the examples above variables were declared right before the assignment: `let {…} = {…}`. Of course, we could use existing variables too. But there's a catch. +````smart header="Gotcha if there's no `let`" +In the examples above variables were declared right in the assignment: `let {…} = {…}`. Of course, we could use existing variables too, without `let`. But there's a catch. This won't work: ```js run @@ -337,7 +402,9 @@ The problem is that JavaScript treats `{...}` in the main code flow (not inside } ``` -To show JavaScript that it's not a code block, we can wrap the whole assignment in parentheses `(...)`: +So here JavaScript assumes that we have a code block, that's why there's an error. We want destructuring instead. + +To show JavaScript that it's not a code block, we can wrap the expression in parentheses `(...)`: ```js run let title, width, height; @@ -347,14 +414,13 @@ let title, width, height; alert( title ); // Menu ``` - ```` ## Nested destructuring -If an object or an array contain other objects and arrays, we can use more complex left-side patterns to extract deeper portions. +If an object or an array contains other nested objects and arrays, we can use more complex left-side patterns to extract deeper portions. -In the code below `options` has another object in the property `size` and an array in the property `items`. The pattern at the left side of the assignment has the same structure: +In the code below `options` has another object in the property `size` and an array in the property `items`. The pattern on the left side of the assignment has the same structure to extract values from them: ```js run let options = { @@ -363,10 +429,10 @@ let options = { height: 200 }, items: ["Cake", "Donut"], - extra: true // something extra that we will not destruct + extra: true }; -// destructuring assignment on multiple lines for clarity +// destructuring assignment split in multiple lines for clarity let { size: { // put size here width, @@ -383,27 +449,24 @@ alert(item1); // Cake alert(item2); // Donut ``` -The whole `options` object except `extra` that was not mentioned, is assigned to corresponding variables. +All properties of `options` object except `extra` which is absent in the left part, are assigned to corresponding variables: +<<<<<<< HEAD:1-js/05-data-types/09-destructuring-assignment/article.md Note that `size` and `items` itself is not destructured. +======= +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/05-data-types/10-destructuring-assignment/article.md ![](destructuring-complex.svg) Finally, we have `width`, `height`, `item1`, `item2` and `title` from the default value. -That often happens with destructuring assignments. We have a complex object with many properties and want to extract only what we need. - -Even here it happens: -```js -// take size as a whole into a variable, ignore the rest -let { size } = options; -``` +Note that there are no variables for `size` and `items`, as we take their content instead. ## Smart function parameters -There are times when a function may have many parameters, most of which are optional. That's especially true for user interfaces. Imagine a function that creates a menu. It may have a width, a height, a title, items list and so on. +There are times when a function has many parameters, most of which are optional. That's especially true for user interfaces. Imagine a function that creates a menu. It may have a width, a height, a title, an item list and so on. -Here's a bad way to write such function: +Here's a bad way to write such a function: ```js function showMenu(title = "Untitled", width = 200, height = 100, items = []) { @@ -411,11 +474,12 @@ function showMenu(title = "Untitled", width = 200, height = 100, items = []) { } ``` -In real-life, the problem is how to remember the order of arguments. Usually IDEs try to help us, especially if the code is well-documented, but still... Another problem is how to call a function when most parameters are ok by default. +In real-life, the problem is how to remember the order of arguments. Usually, IDEs try to help us, especially if the code is well-documented, but still... Another problem is how to call a function when most parameters are ok by default. Like this? ```js +// undefined where default values are fine showMenu("My Menu", undefined, undefined, ["Item1", "Item2"]) ``` @@ -467,29 +531,28 @@ function showMenu({ showMenu(options); ``` -The syntax is the same as for a destructuring assignment: +The full syntax is the same as for a destructuring assignment: ```js function({ - incomingProperty: parameterName = defaultValue + incomingProperty: varName = defaultValue ... }) ``` +Then, for an object of parameters, there will be a variable `varName` for the property `incomingProperty`, with `defaultValue` by default. + Please note that such destructuring assumes that `showMenu()` does have an argument. If we want all values by default, then we should specify an empty object: ```js -showMenu({}); - +showMenu({}); // ok, all values are default showMenu(); // this would give an error ``` -We can fix this by making `{}` the default value for the whole destructuring thing: - +We can fix this by making `{}` the default value for the whole object of parameters: ```js run -// simplified parameters a bit for clarity -function showMenu(*!*{ title = "Menu", width = 100, height = 200 } = {}*/!*) { +function showMenu({ title = "Menu", width = 100, height = 200 }*!* = {}*/!*) { alert( `${title} ${width} ${height}` ); } @@ -501,19 +564,21 @@ In the code above, the whole arguments object is `{}` by default, so there's alw ## Summary - Destructuring assignment allows for instantly mapping an object or array onto many variables. -- The object syntax: +- The full object syntax: ```js - let {prop : varName = default, ...} = object + let {prop : varName = defaultValue, ...rest} = object ``` This means that property `prop` should go into the variable `varName` and, if no such property exists, then the `default` value should be used. -- The array syntax: + Object properties that have no mapping are copied to the `rest` object. + +- The full array syntax: ```js - let [item1 = default, item2, ...rest] = array + let [item1 = defaultValue, item2, ...rest] = array ``` - The first item goes to `item1`; the second goes into `item2`, all the rest makes the array `rest`. + The first item goes to `item1`; the second goes into `item2`, and all the rest makes the array `rest`. -- For more complex cases, the left side must have the same structure as the right one. +- It's possible to extract data from nested arrays/objects, for that the left side must have the same structure as the right one. diff --git a/1-js/05-data-types/09-destructuring-assignment/destructuring-complex.svg b/1-js/05-data-types/10-destructuring-assignment/destructuring-complex.svg similarity index 73% rename from 1-js/05-data-types/09-destructuring-assignment/destructuring-complex.svg rename to 1-js/05-data-types/10-destructuring-assignment/destructuring-complex.svg index c3e25b569..c2c0acf7c 100644 --- a/1-js/05-data-types/09-destructuring-assignment/destructuring-complex.svg +++ b/1-js/05-data-types/10-destructuring-assignment/destructuring-complex.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/05-data-types/09-destructuring-assignment/destructuring-complex.svg @@ -56,4 +57,7 @@ - \ No newline at end of file + +======= + +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/05-data-types/10-destructuring-assignment/destructuring-complex.svg diff --git a/1-js/05-data-types/11-date/1-new-date/solution.md b/1-js/05-data-types/11-date/1-new-date/solution.md new file mode 100644 index 000000000..18286c336 --- /dev/null +++ b/1-js/05-data-types/11-date/1-new-date/solution.md @@ -0,0 +1,18 @@ +The `new Date` constructor uses the local time zone. So the only important thing to remember is that months start from zero. + +So February has number 1. + +Here's an example with numbers as date components: + +```js run +//new Date(year, month, date, hour, minute, second, millisecond) +let d1 = new Date(2012, 1, 20, 3, 12); +alert( d1 ); +``` +We could also create a date from a string, like this: + +```js run +//new Date(datastring) +let d2 = new Date("2012-02-20T03:12"); +alert( d2 ); +``` diff --git a/1-js/05-data-types/10-date/1-new-date/task.md b/1-js/05-data-types/11-date/1-new-date/task.md similarity index 100% rename from 1-js/05-data-types/10-date/1-new-date/task.md rename to 1-js/05-data-types/11-date/1-new-date/task.md diff --git a/1-js/05-data-types/10-date/2-get-week-day/_js.view/solution.js b/1-js/05-data-types/11-date/2-get-week-day/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/10-date/2-get-week-day/_js.view/solution.js rename to 1-js/05-data-types/11-date/2-get-week-day/_js.view/solution.js diff --git a/1-js/05-data-types/10-date/2-get-week-day/_js.view/test.js b/1-js/05-data-types/11-date/2-get-week-day/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/10-date/2-get-week-day/_js.view/test.js rename to 1-js/05-data-types/11-date/2-get-week-day/_js.view/test.js diff --git a/1-js/05-data-types/10-date/2-get-week-day/solution.md b/1-js/05-data-types/11-date/2-get-week-day/solution.md similarity index 100% rename from 1-js/05-data-types/10-date/2-get-week-day/solution.md rename to 1-js/05-data-types/11-date/2-get-week-day/solution.md diff --git a/1-js/05-data-types/10-date/2-get-week-day/task.md b/1-js/05-data-types/11-date/2-get-week-day/task.md similarity index 100% rename from 1-js/05-data-types/10-date/2-get-week-day/task.md rename to 1-js/05-data-types/11-date/2-get-week-day/task.md diff --git a/1-js/05-data-types/10-date/3-weekday/_js.view/solution.js b/1-js/05-data-types/11-date/3-weekday/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/10-date/3-weekday/_js.view/solution.js rename to 1-js/05-data-types/11-date/3-weekday/_js.view/solution.js diff --git a/1-js/05-data-types/10-date/3-weekday/_js.view/test.js b/1-js/05-data-types/11-date/3-weekday/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/10-date/3-weekday/_js.view/test.js rename to 1-js/05-data-types/11-date/3-weekday/_js.view/test.js diff --git a/1-js/11-async/01-callbacks/01-animate-circle-callback/solution.md b/1-js/05-data-types/11-date/3-weekday/solution.md similarity index 100% rename from 1-js/11-async/01-callbacks/01-animate-circle-callback/solution.md rename to 1-js/05-data-types/11-date/3-weekday/solution.md diff --git a/1-js/05-data-types/10-date/3-weekday/task.md b/1-js/05-data-types/11-date/3-weekday/task.md similarity index 100% rename from 1-js/05-data-types/10-date/3-weekday/task.md rename to 1-js/05-data-types/11-date/3-weekday/task.md diff --git a/1-js/05-data-types/10-date/4-get-date-ago/_js.view/solution.js b/1-js/05-data-types/11-date/4-get-date-ago/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/10-date/4-get-date-ago/_js.view/solution.js rename to 1-js/05-data-types/11-date/4-get-date-ago/_js.view/solution.js diff --git a/1-js/05-data-types/10-date/4-get-date-ago/_js.view/test.js b/1-js/05-data-types/11-date/4-get-date-ago/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/10-date/4-get-date-ago/_js.view/test.js rename to 1-js/05-data-types/11-date/4-get-date-ago/_js.view/test.js diff --git a/1-js/05-data-types/10-date/4-get-date-ago/solution.md b/1-js/05-data-types/11-date/4-get-date-ago/solution.md similarity index 100% rename from 1-js/05-data-types/10-date/4-get-date-ago/solution.md rename to 1-js/05-data-types/11-date/4-get-date-ago/solution.md diff --git a/1-js/05-data-types/10-date/4-get-date-ago/task.md b/1-js/05-data-types/11-date/4-get-date-ago/task.md similarity index 92% rename from 1-js/05-data-types/10-date/4-get-date-ago/task.md rename to 1-js/05-data-types/11-date/4-get-date-ago/task.md index 40dcd926d..058d39c7e 100644 --- a/1-js/05-data-types/10-date/4-get-date-ago/task.md +++ b/1-js/05-data-types/11-date/4-get-date-ago/task.md @@ -8,7 +8,7 @@ Create a function `getDateAgo(date, days)` to return the day of month `days` ago For instance, if today is 20th, then `getDateAgo(new Date(), 1)` should be 19th and `getDateAgo(new Date(), 2)` should be 18th. -Should also work over months/years reliably: +Should work reliably for `days=365` or more: ```js let date = new Date(2015, 0, 2); diff --git a/1-js/05-data-types/10-date/5-last-day-of-month/_js.view/solution.js b/1-js/05-data-types/11-date/5-last-day-of-month/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/10-date/5-last-day-of-month/_js.view/solution.js rename to 1-js/05-data-types/11-date/5-last-day-of-month/_js.view/solution.js diff --git a/1-js/05-data-types/10-date/5-last-day-of-month/_js.view/test.js b/1-js/05-data-types/11-date/5-last-day-of-month/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/10-date/5-last-day-of-month/_js.view/test.js rename to 1-js/05-data-types/11-date/5-last-day-of-month/_js.view/test.js diff --git a/1-js/05-data-types/10-date/5-last-day-of-month/solution.md b/1-js/05-data-types/11-date/5-last-day-of-month/solution.md similarity index 100% rename from 1-js/05-data-types/10-date/5-last-day-of-month/solution.md rename to 1-js/05-data-types/11-date/5-last-day-of-month/solution.md diff --git a/1-js/05-data-types/10-date/5-last-day-of-month/task.md b/1-js/05-data-types/11-date/5-last-day-of-month/task.md similarity index 100% rename from 1-js/05-data-types/10-date/5-last-day-of-month/task.md rename to 1-js/05-data-types/11-date/5-last-day-of-month/task.md diff --git a/1-js/05-data-types/10-date/6-get-seconds-today/solution.md b/1-js/05-data-types/11-date/6-get-seconds-today/solution.md similarity index 96% rename from 1-js/05-data-types/10-date/6-get-seconds-today/solution.md rename to 1-js/05-data-types/11-date/6-get-seconds-today/solution.md index a483afe93..8f8e52b68 100644 --- a/1-js/05-data-types/10-date/6-get-seconds-today/solution.md +++ b/1-js/05-data-types/11-date/6-get-seconds-today/solution.md @@ -23,4 +23,6 @@ function getSecondsToday() { let d = new Date(); return d.getHours() * 3600 + d.getMinutes() * 60 + d.getSeconds(); } + +alert( getSecondsToday() ); ``` diff --git a/1-js/05-data-types/10-date/6-get-seconds-today/task.md b/1-js/05-data-types/11-date/6-get-seconds-today/task.md similarity index 68% rename from 1-js/05-data-types/10-date/6-get-seconds-today/task.md rename to 1-js/05-data-types/11-date/6-get-seconds-today/task.md index 3fbe13286..456790928 100644 --- a/1-js/05-data-types/10-date/6-get-seconds-today/task.md +++ b/1-js/05-data-types/11-date/6-get-seconds-today/task.md @@ -2,11 +2,11 @@ importance: 5 --- -# How many seconds has passed today? +# How many seconds have passed today? Write a function `getSecondsToday()` that returns the number of seconds from the beginning of today. -For instance, if now `10:00 am`, and there was no daylight savings shift, then: +For instance, if now were `10:00 am`, and there was no daylight savings shift, then: ```js getSecondsToday() == 36000 // (3600 * 10) diff --git a/1-js/05-data-types/10-date/7-get-seconds-to-tomorrow/solution.md b/1-js/05-data-types/11-date/7-get-seconds-to-tomorrow/solution.md similarity index 100% rename from 1-js/05-data-types/10-date/7-get-seconds-to-tomorrow/solution.md rename to 1-js/05-data-types/11-date/7-get-seconds-to-tomorrow/solution.md diff --git a/1-js/05-data-types/10-date/7-get-seconds-to-tomorrow/task.md b/1-js/05-data-types/11-date/7-get-seconds-to-tomorrow/task.md similarity index 100% rename from 1-js/05-data-types/10-date/7-get-seconds-to-tomorrow/task.md rename to 1-js/05-data-types/11-date/7-get-seconds-to-tomorrow/task.md diff --git a/1-js/05-data-types/10-date/8-format-date-relative/_js.view/solution.js b/1-js/05-data-types/11-date/8-format-date-relative/_js.view/solution.js similarity index 100% rename from 1-js/05-data-types/10-date/8-format-date-relative/_js.view/solution.js rename to 1-js/05-data-types/11-date/8-format-date-relative/_js.view/solution.js diff --git a/1-js/05-data-types/10-date/8-format-date-relative/_js.view/test.js b/1-js/05-data-types/11-date/8-format-date-relative/_js.view/test.js similarity index 100% rename from 1-js/05-data-types/10-date/8-format-date-relative/_js.view/test.js rename to 1-js/05-data-types/11-date/8-format-date-relative/_js.view/test.js diff --git a/1-js/05-data-types/10-date/8-format-date-relative/solution.md b/1-js/05-data-types/11-date/8-format-date-relative/solution.md similarity index 93% rename from 1-js/05-data-types/10-date/8-format-date-relative/solution.md rename to 1-js/05-data-types/11-date/8-format-date-relative/solution.md index 2507c840c..372485685 100644 --- a/1-js/05-data-types/10-date/8-format-date-relative/solution.md +++ b/1-js/05-data-types/11-date/8-format-date-relative/solution.md @@ -40,7 +40,7 @@ alert( formatDate(new Date(new Date - 30 * 1000)) ); // "30 sec. ago" alert( formatDate(new Date(new Date - 5 * 60 * 1000)) ); // "5 min. ago" -// yesterday's date like 31.12.2016, 20:00 +// yesterday's date like 31.12.2016 20:00 alert( formatDate(new Date(new Date - 86400 * 1000)) ); ``` @@ -62,6 +62,8 @@ function formatDate(date) { year = year.toString().slice(-2); month = month < 10 ? '0' + month : month; dayOfMonth = dayOfMonth < 10 ? '0' + dayOfMonth : dayOfMonth; + hour = hour < 10 ? '0' + hour : hour; + minutes = minutes < 10 ? '0' + minutes : minutes; if (diffSec < 1) { return 'right now'; diff --git a/1-js/05-data-types/10-date/8-format-date-relative/task.md b/1-js/05-data-types/11-date/8-format-date-relative/task.md similarity index 94% rename from 1-js/05-data-types/10-date/8-format-date-relative/task.md rename to 1-js/05-data-types/11-date/8-format-date-relative/task.md index 7b341ca2e..9651b305f 100644 --- a/1-js/05-data-types/10-date/8-format-date-relative/task.md +++ b/1-js/05-data-types/11-date/8-format-date-relative/task.md @@ -20,6 +20,6 @@ alert( formatDate(new Date(new Date - 30 * 1000)) ); // "30 sec. ago" alert( formatDate(new Date(new Date - 5 * 60 * 1000)) ); // "5 min. ago" -// yesterday's date like 31.12.2016, 20:00 +// yesterday's date like 31.12.16 20:00 alert( formatDate(new Date(new Date - 86400 * 1000)) ); ``` diff --git a/1-js/05-data-types/10-date/article.md b/1-js/05-data-types/11-date/article.md similarity index 82% rename from 1-js/05-data-types/10-date/article.md rename to 1-js/05-data-types/11-date/article.md index 8a75f1cbd..6958a3a97 100644 --- a/1-js/05-data-types/10-date/article.md +++ b/1-js/05-data-types/11-date/article.md @@ -29,18 +29,24 @@ To create a new `Date` object call `new Date()` with one of the following argume alert( Jan02_1970 ); ``` - The number of milliseconds that has passed since the beginning of 1970 is called a *timestamp*. + An integer number representing the number of milliseconds that has passed since the beginning of 1970 is called a *timestamp*. It's a lightweight numeric representation of a date. We can always create a date from a timestamp using `new Date(timestamp)` and convert the existing `Date` object to a timestamp using the `date.getTime()` method (see below). -`new Date(datestring)` -: If there is a single argument, and it's a string, then it is parsed with the `Date.parse` algorithm (see below). + Dates before 01.01.1970 have negative timestamps, e.g.: + ```js run + // 31 Dec 1969 + let Dec31_1969 = new Date(-24 * 3600 * 1000); + alert( Dec31_1969 ); + ``` +`new Date(datestring)` +: If there is a single argument, and it's a string, then it is parsed automatically. The algorithm is the same as `Date.parse` uses, we'll cover it later. ```js run let date = new Date("2017-01-26"); alert(date); - // The time portion of the date is assumed to be midnight GMT and + // The time is not set, so it's assumed to be midnight GMT and // is adjusted according to the timezone the code is run in // So the result could be // Thu Jan 26 2017 11:00:00 GMT+1100 (Australian Eastern Daylight Time) @@ -49,11 +55,9 @@ To create a new `Date` object call `new Date()` with one of the following argume ``` `new Date(year, month, date, hours, minutes, seconds, ms)` -: Create the date with the given components in the local time zone. Only two first arguments are obligatory. - - Note: +: Create the date with the given components in the local time zone. Only the first two arguments are obligatory. - - The `year` must have 4 digits: `2013` is okay, `98` is not. + - The `year` should have 4 digits. For compatibility, 2 digits are also accepted and considered `19xx`, e.g. `98` is the same as `1998` here, but always using 4 digits is strongly encouraged. - The `month` count starts with `0` (Jan), up to `11` (Dec). - The `date` parameter is actually the day of month, if absent then `1` is assumed. - If `hours/minutes/seconds/ms` is absent, they are assumed to be equal `0`. @@ -61,11 +65,11 @@ To create a new `Date` object call `new Date()` with one of the following argume For instance: ```js - new Date(2011, 0, 1, 0, 0, 0, 0); // // 1 Jan 2011, 00:00:00 + new Date(2011, 0, 1, 0, 0, 0, 0); // 1 Jan 2011, 00:00:00 new Date(2011, 0, 1); // the same, hours etc are 0 by default ``` - The minimal precision is 1 ms (1/1000 sec): + The maximal precision is 1 ms (1/1000 sec): ```js run let date = new Date(2011, 0, 1, 2, 3, 4, 567); @@ -74,7 +78,7 @@ To create a new `Date` object call `new Date()` with one of the following argume ## Access date components -There are many methods to access the year, month and so on from the `Date` object. But they can be easily remembered when categorized. +There are methods to access the year, month and so on from the `Date` object: [getFullYear()](mdn:js/Date/getFullYear) : Get the year (4 digits) @@ -120,7 +124,7 @@ Besides the given methods, there are two special ones that do not have a UTC-var : Returns the timestamp for the date -- a number of milliseconds passed from the January 1st of 1970 UTC+0. [getTimezoneOffset()](mdn:js/Date/getTimezoneOffset) -: Returns the difference between the local time zone and UTC, in minutes: +: Returns the difference between UTC and the local time zone, in minutes: ```js run // if you are in timezone UTC-1, outputs 60 @@ -133,12 +137,12 @@ Besides the given methods, there are two special ones that do not have a UTC-var The following methods allow to set date/time components: -- [`setFullYear(year [, month, date])`](mdn:js/Date/setFullYear) -- [`setMonth(month [, date])`](mdn:js/Date/setMonth) +- [`setFullYear(year, [month], [date])`](mdn:js/Date/setFullYear) +- [`setMonth(month, [date])`](mdn:js/Date/setMonth) - [`setDate(date)`](mdn:js/Date/setDate) -- [`setHours(hour [, min, sec, ms])`](mdn:js/Date/setHours) -- [`setMinutes(min [, sec, ms])`](mdn:js/Date/setMinutes) -- [`setSeconds(sec [, ms])`](mdn:js/Date/setSeconds) +- [`setHours(hour, [min], [sec], [ms])`](mdn:js/Date/setHours) +- [`setMinutes(min, [sec], [ms])`](mdn:js/Date/setMinutes) +- [`setSeconds(sec, [ms])`](mdn:js/Date/setSeconds) - [`setMilliseconds(ms)`](mdn:js/Date/setMilliseconds) - [`setTime(milliseconds)`](mdn:js/Date/setTime) (sets the whole date by milliseconds since 01.01.1970 UTC) @@ -217,21 +221,21 @@ The important side effect: dates can be subtracted, the result is their differen That can be used for time measurements: ```js run -let start = new Date(); // start counting +let start = new Date(); // start measuring time // do the job for (let i = 0; i < 100000; i++) { let doSomething = i * i * i; } -let end = new Date(); // done +let end = new Date(); // end measuring time alert( `The loop took ${end - start} ms` ); ``` ## Date.now() -If we only want to measure the difference, we don't need the `Date` object. +If we only want to measure time, we don't need the `Date` object. There's a special method `Date.now()` that returns the current timestamp. @@ -264,6 +268,8 @@ If we want a reliable benchmark of CPU-hungry function, we should be careful. For instance, let's measure two functions that calculate the difference between two dates: which one is faster? +Such performance measurements are often called "benchmarks". + ```js // we have date1 and date2, which function faster returns their difference in ms? function diffSubtract(date1, date2) { @@ -280,7 +286,7 @@ These two do exactly the same thing, but one of them uses an explicit `date.getT So, which one is faster? -The first idea may be to run them many times in a row and measure the time difference. For our case, functions are very simple, so we have to do it around 100000 times. +The first idea may be to run them many times in a row and measure the time difference. For our case, functions are very simple, so we have to do it at least 100000 times. Let's measure: @@ -310,7 +316,7 @@ Wow! Using `getTime()` is so much faster! That's because there's no type convers Okay, we have something. But that's not a good benchmark yet. -Imagine that at the time of running `bench(diffSubtract)` CPU was doing something in parallel, and it was taking resources. And by the time of running `bench(diffGetTime)` the work has finished. +Imagine that at the time of running `bench(diffSubtract)` CPU was doing something in parallel, and it was taking resources. And by the time of running `bench(diffGetTime)` that work has finished. A pretty real scenario for a modern multi-process OS. @@ -318,7 +324,7 @@ As a result, the first benchmark will have less CPU resources than the second. T **For more reliable benchmarking, the whole pack of benchmarks should be rerun multiple times.** -Here's the code example: +For example, like this: ```js run function diffSubtract(date1, date2) { @@ -342,7 +348,7 @@ let time1 = 0; let time2 = 0; *!* -// run bench(upperSlice) and bench(upperLoop) each 10 times alternating +// run bench(diffSubtract) and bench(diffGetTime) each 10 times alternating for (let i = 0; i < 10; i++) { time1 += bench(diffSubtract); time2 += bench(diffGetTime); @@ -368,9 +374,9 @@ for (let i = 0; i < 10; i++) { ``` ```warn header="Be careful doing microbenchmarking" -Modern JavaScript engines perform many optimizations. They may tweak results of "artificial tests" compared to "normal usage", especially when we benchmark something very small. So if you seriously want to understand performance, then please study how the JavaScript engine works. And then you probably won't need microbenchmarks at all. +Modern JavaScript engines perform many optimizations. They may tweak results of "artificial tests" compared to "normal usage", especially when we benchmark something very small, such as how an operator works, or a built-in function. So if you seriously want to understand performance, then please study how the JavaScript engine works. And then you probably won't need microbenchmarks at all. -The great pack of articles about V8 can be found at . +The great pack of articles about V8 can be found at . ``` ## Date.parse from a string @@ -382,7 +388,7 @@ The string format should be: `YYYY-MM-DDTHH:mm:ss.sssZ`, where: - `YYYY-MM-DD` -- is the date: year-month-day. - The character `"T"` is used as the delimiter. - `HH:mm:ss.sss` -- is the time: hours, minutes, seconds and milliseconds. -- The optional `'Z'` part denotes the time zone in the format `+-hh:mm`. A single letter `Z` that would mean UTC+0. +- The optional `'Z'` part denotes the time zone in the format `+-hh:mm`. A single letter `Z` would mean UTC+0. Shorter variants are also possible, like `YYYY-MM-DD` or `YYYY-MM` or even `YYYY`. @@ -401,7 +407,7 @@ We can instantly create a `new Date` object from the timestamp: ```js run let date = new Date( Date.parse('2012-01-26T13:51:50.417-07:00') ); -alert(date); +alert(date); ``` ## Summary @@ -415,13 +421,13 @@ alert(date); Note that unlike many other systems, timestamps in JavaScript are in milliseconds, not in seconds. -Also, sometimes we need more precise time measurements. JavaScript itself does not have a way to measure time in microseconds (1 millionth of a second), but most environments provide it. For instance, browser has [performance.now()](mdn:api/Performance/now) that gives the number of milliseconds from the start of page loading with microsecond precision (3 digits after the point): +Sometimes we need more precise time measurements. JavaScript itself does not have a way to measure time in microseconds (1 millionth of a second), but most environments provide it. For instance, browser has [performance.now()](mdn:api/Performance/now) that gives the number of milliseconds from the start of page loading with microsecond precision (3 digits after the point): ```js run alert(`Loading started ${performance.now()}ms ago`); // Something like: "Loading started 34731.26000000001ms ago" // .26 is microseconds (260 microseconds) -// more than 3 digits after the decimal point are precision errors, but only the first 3 are correct +// more than 3 digits after the decimal point are precision errors, only the first 3 are correct ``` -Node.js has `microtime` module and other ways. Technically, any device and environment allows to get more precision, it's just not in `Date`. +Node.js has `microtime` module and other ways. Technically, almost any device and environment allows to get more precision, it's just not in `Date`. diff --git a/1-js/05-data-types/11-json/1-serialize-object/solution.md b/1-js/05-data-types/12-json/1-serialize-object/solution.md similarity index 100% rename from 1-js/05-data-types/11-json/1-serialize-object/solution.md rename to 1-js/05-data-types/12-json/1-serialize-object/solution.md diff --git a/1-js/05-data-types/11-json/1-serialize-object/task.md b/1-js/05-data-types/12-json/1-serialize-object/task.md similarity index 100% rename from 1-js/05-data-types/11-json/1-serialize-object/task.md rename to 1-js/05-data-types/12-json/1-serialize-object/task.md diff --git a/1-js/05-data-types/11-json/2-serialize-event-circular/solution.md b/1-js/05-data-types/12-json/2-serialize-event-circular/solution.md similarity index 100% rename from 1-js/05-data-types/11-json/2-serialize-event-circular/solution.md rename to 1-js/05-data-types/12-json/2-serialize-event-circular/solution.md diff --git a/1-js/05-data-types/11-json/2-serialize-event-circular/task.md b/1-js/05-data-types/12-json/2-serialize-event-circular/task.md similarity index 79% rename from 1-js/05-data-types/11-json/2-serialize-event-circular/task.md rename to 1-js/05-data-types/12-json/2-serialize-event-circular/task.md index 8b3963ddf..3755a24aa 100644 --- a/1-js/05-data-types/11-json/2-serialize-event-circular/task.md +++ b/1-js/05-data-types/12-json/2-serialize-event-circular/task.md @@ -6,7 +6,7 @@ importance: 5 In simple cases of circular references, we can exclude an offending property from serialization by its name. -But sometimes there are many backreferences. And names may be used both in circular references and normal properties. +But sometimes we can't just use the name, as it may be used both in circular references and normal properties. So we can check the property by its value. Write `replacer` function to stringify everything, but remove properties that reference `meetup`: @@ -22,7 +22,7 @@ let meetup = { }; *!* -// circular references +// circular references room.occupiedBy = meetup; meetup.self = meetup; */!* @@ -39,4 +39,3 @@ alert( JSON.stringify(meetup, function replacer(key, value) { } */ ``` - diff --git a/1-js/05-data-types/11-json/article.md b/1-js/05-data-types/12-json/article.md similarity index 83% rename from 1-js/05-data-types/11-json/article.md rename to 1-js/05-data-types/12-json/article.md index 50458906a..133ffb353 100644 --- a/1-js/05-data-types/11-json/article.md +++ b/1-js/05-data-types/12-json/article.md @@ -21,13 +21,13 @@ let user = { alert(user); // {name: "John", age: 30} ``` -...But in the process of development, new properties are added, old properties are renamed and removed. Updating such `toString` every time can become a pain. We could try to loop over properties in it, but what if the object is complex and has nested objects in properties? We'd need to implement their conversion as well. And, if we're sending the object over a network, then we also need to supply the code to "read" our object on the receiving side. +...But in the process of development, new properties are added, old properties are renamed and removed. Updating such `toString` every time can become a pain. We could try to loop over properties in it, but what if the object is complex and has nested objects in properties? We'd need to implement their conversion as well. Luckily, there's no need to write the code to handle all this. The task has been solved already. ## JSON.stringify -The [JSON](http://en.wikipedia.org/wiki/JSON) (JavaScript Object Notation) is a general format to represent values and objects. It is described as in [RFC 4627](http://tools.ietf.org/html/rfc4627) standard. Initially it was made for JavaScript, but many other languages have libraries to handle it as well. So it's easy to use JSON for data exchange when the client uses JavaScript and the server is written on Ruby/PHP/Java/Whatever. +The [JSON](https://en.wikipedia.org/wiki/JSON) (JavaScript Object Notation) is a general format to represent values and objects. It is described as in [RFC 4627](https://tools.ietf.org/html/rfc4627) standard. Initially it was made for JavaScript, but many other languages have libraries to handle it as well. So it's easy to use JSON for data exchange when the client uses JavaScript and the server is written on Ruby/PHP/Java/Whatever. JavaScript provides methods: @@ -41,7 +41,7 @@ let student = { age: 30, isAdmin: false, courses: ['html', 'css', 'js'], - wife: null + spouse: null }; *!* @@ -58,7 +58,7 @@ alert(json); "age": 30, "isAdmin": false, "courses": ["html", "css", "js"], - "wife": null + "spouse": null } */ */!* @@ -66,7 +66,7 @@ alert(json); The method `JSON.stringify(student)` takes the object and converts it into a string. -The resulting `json` string is a called *JSON-encoded* or *serialized* or *stringified* or *marshalled* object. We are ready to send it over the wire or put into a plain data store. +The resulting `json` string is called a *JSON-encoded* or *serialized* or *stringified* or *marshalled* object. We are ready to send it over the wire or put into a plain data store. Please note that a JSON-encoded object has several important differences from the object literal: @@ -76,7 +76,7 @@ Please note that a JSON-encoded object has several important differences from th `JSON.stringify` can be applied to primitives as well. -Natively supported JSON types are: +JSON supports following data types: - Objects `{ ... }` - Arrays `[ ... ]` @@ -100,12 +100,12 @@ alert( JSON.stringify(true) ); // true alert( JSON.stringify([1, 2, 3]) ); // [1,2,3] ``` -JSON is data-only cross-language specification, so some JavaScript-specific object properties are skipped by `JSON.stringify`. +JSON is data-only language-independent specification, so some JavaScript-specific object properties are skipped by `JSON.stringify`. Namely: - Function properties (methods). -- Symbolic properties. +- Symbolic keys and values. - Properties that store `undefined`. ```js run @@ -213,9 +213,9 @@ alert( JSON.stringify(meetup, *!*['title', 'participants']*/!*) ); // {"title":"Conference","participants":[{},{}]} ``` -Here we are probably too strict. The property list is applied to the whole object structure. So participants are empty, because `name` is not in the list. +Here we are probably too strict. The property list is applied to the whole object structure. So the objects in `participants` are empty, because `name` is not in the list. -Let's include every property except `room.occupiedBy` that would cause the circular reference: +Let's include in the list every property except `room.occupiedBy` that would cause the circular reference: ```js run let room = { @@ -244,7 +244,7 @@ Now everything except `occupiedBy` is serialized. But the list of properties is Fortunately, we can use a function instead of an array as the `replacer`. -The function will be called for every `(key, value)` pair and should return the "replaced" value, which will be used instead of the original one. +The function will be called for every `(key, value)` pair and should return the "replaced" value, which will be used instead of the original one. Or `undefined` if the value is to be skipped. In our case, we can return `value` "as is" for everything except `occupiedBy`. To ignore `occupiedBy`, the code below returns `undefined`: @@ -262,7 +262,7 @@ let meetup = { room.occupiedBy = meetup; // room references meetup alert( JSON.stringify(meetup, function replacer(key, value) { - alert(`${key}: ${value}`); // to see what replacer gets + alert(`${key}: ${value}`); return (key == 'occupiedBy') ? undefined : value; })); @@ -276,6 +276,7 @@ name: John name: Alice place: [object Object] number: 23 +occupiedBy: [object Object] */ ``` @@ -283,16 +284,16 @@ Please note that `replacer` function gets every key/value pair including nested The first call is special. It is made using a special "wrapper object": `{"": meetup}`. In other words, the first `(key, value)` pair has an empty key, and the value is the target object as a whole. That's why the first line is `":[object Object]"` in the example above. -The idea is to provide as much power for `replacer` as possible: it has a chance to analyze and replace/skip the whole object if necessary. +The idea is to provide as much power for `replacer` as possible: it has a chance to analyze and replace/skip even the whole object if necessary. -## Formatting: spacer +## Formatting: space -The third argument of `JSON.stringify(value, replacer, spaces)` is the number of spaces to use for pretty formatting. +The third argument of `JSON.stringify(value, replacer, space)` is the number of spaces to use for pretty formatting. -Previously, all stringified objects had no indents and extra spaces. That's fine if we want to send an object over a network. The `spacer` argument is used exclusively for a nice output. +Previously, all stringified objects had no indents and extra spaces. That's fine if we want to send an object over a network. The `space` argument is used exclusively for a nice output. -Here `spacer = 2` tells JavaScript to show nested objects on multiple lines, with indentation of 2 spaces inside an object: +Here `space = 2` tells JavaScript to show nested objects on multiple lines, with indentation of 2 spaces inside an object: ```js run let user = { @@ -328,7 +329,9 @@ alert(JSON.stringify(user, null, 2)); */ ``` -The `spaces` parameter is used solely for logging and nice-output purposes. +The third argument can also be a string. In this case, the string is used for indentation instead of a number of spaces. + +The `space` parameter is used solely for logging and nice-output purposes. ## Custom "toJSON" @@ -393,7 +396,7 @@ alert( JSON.stringify(meetup) ); */ ``` -As we can see, `toJSON` is used both for the direct call `JSON.stringify(room)` and for the nested object. +As we can see, `toJSON` is used both for the direct call `JSON.stringify(room)` and when `room` is nested in another encoded object. ## JSON.parse @@ -425,14 +428,14 @@ alert( numbers[1] ); // 1 Or for nested objects: ```js run -let user = '{ "name": "John", "age": 35, "isAdmin": false, "friends": [0,1,2,3] }'; +let userData = '{ "name": "John", "age": 35, "isAdmin": false, "friends": [0,1,2,3] }'; -user = JSON.parse(user); +let user = JSON.parse(userData); alert( user.friends[1] ); // 1 ``` -The JSON may be as complex as necessary, objects and arrays can include other objects and arrays. But they must obey the format. +The JSON may be as complex as necessary, objects and arrays can include other objects and arrays. But they must obey the same JSON format. Here are typical mistakes in hand-written JSON (sometimes we have to write it for debugging purposes): @@ -448,7 +451,7 @@ let json = `{ Besides, JSON does not support comments. Adding a comment to JSON makes it invalid. -There's another format named [JSON5](http://json5.org/), which allows unquoted keys, comments etc. But this is a standalone library, not in the specification of the language. +There's another format named [JSON5](https://json5.org/), which allows unquoted keys, comments etc. But this is a standalone library, not in the specification of the language. The regular JSON is that strict not because its developers are lazy, but to allow easy, reliable and very fast implementations of the parsing algorithm. @@ -481,7 +484,7 @@ Whoops! An error! The value of `meetup.date` is a string, not a `Date` object. How could `JSON.parse` know that it should transform that string into a `Date`? -Let's pass to `JSON.parse` the reviving function that returns all values "as is", but `date` will become a `Date`: +Let's pass to `JSON.parse` the reviving function as the second argument, that returns all values "as is", but `date` will become a `Date`: ```js run let str = '{"title":"Conference","date":"2017-11-30T12:00:00.000Z"}'; diff --git a/1-js/05-data-types/11-json/json-meetup.svg b/1-js/05-data-types/12-json/json-meetup.svg similarity index 52% rename from 1-js/05-data-types/11-json/json-meetup.svg rename to 1-js/05-data-types/12-json/json-meetup.svg index 5e1929343..f4c44f183 100644 --- a/1-js/05-data-types/11-json/json-meetup.svg +++ b/1-js/05-data-types/12-json/json-meetup.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/05-data-types/11-json/json-meetup.svg @@ -32,4 +33,7 @@ - \ No newline at end of file + +======= +number: 23title: "Conference"...placeoccupiedByparticipants +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/05-data-types/12-json/json-meetup.svg diff --git a/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md b/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md index 237b9ef9e..11667f940 100644 --- a/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md +++ b/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md @@ -37,4 +37,4 @@ P.S. Naturally, the formula is the fastest solution. It uses only 3 operations f The loop variant is the second in terms of speed. In both the recursive and the loop variant we sum the same numbers. But the recursion involves nested calls and execution stack management. That also takes resources, so it's slower. -P.P.S. The standard describes a "tail call" optimization: if the recursive call is the very last one in the function (like in `sumTo` above), then the outer function will not need to resume the execution and we don't need to remember its execution context. In that case `sumTo(100000)` is countable. But if your JavaScript engine does not support it, there will be an error: maximum stack size exceeded, because there's usually a limitation on the total stack size. +P.P.S. Some engines support the "tail call" optimization: if a recursive call is the very last one in the function, with no other calculations performed, then the outer function will not need to resume the execution, so the engine doesn't need to remember its execution context. That removes the burden on memory. But if the JavaScript engine does not support tail call optimization (most of them don't), there will be an error: maximum stack size exceeded, because there's usually a limitation on the total stack size. diff --git a/1-js/06-advanced-functions/01-recursion/02-factorial/solution.md b/1-js/06-advanced-functions/01-recursion/02-factorial/solution.md index 59040a2b7..09e511db5 100644 --- a/1-js/06-advanced-functions/01-recursion/02-factorial/solution.md +++ b/1-js/06-advanced-functions/01-recursion/02-factorial/solution.md @@ -1,4 +1,4 @@ -By definition, a factorial is `n!` can be written as `n * (n-1)!`. +By definition, a factorial `n!` can be written as `n * (n-1)!`. In other words, the result of `factorial(n)` can be calculated as `n` multiplied by the result of `factorial(n-1)`. And the call for `n-1` can recursively descend lower, and lower, till `1`. diff --git a/1-js/06-advanced-functions/01-recursion/04-output-single-linked-list/solution.md b/1-js/06-advanced-functions/01-recursion/04-output-single-linked-list/solution.md index 4e9de1469..cfcbffea5 100644 --- a/1-js/06-advanced-functions/01-recursion/04-output-single-linked-list/solution.md +++ b/1-js/06-advanced-functions/01-recursion/04-output-single-linked-list/solution.md @@ -43,7 +43,7 @@ function printList(list) { } ``` -...But that would be unwise. In the future we may need to extend a function, do something else with the list. If we change `list`, then we loose such ability. +...But that would be unwise. In the future we may need to extend a function, do something else with the list. If we change `list`, then we lose such ability. Talking about good variable names, `list` here is the list itself. The first element of it. And it should remain like that. That's clear and reliable. diff --git a/1-js/06-advanced-functions/01-recursion/05-output-single-linked-list-reverse/solution.md b/1-js/06-advanced-functions/01-recursion/05-output-single-linked-list-reverse/solution.md index a9ba0baf5..0eb76ea1c 100644 --- a/1-js/06-advanced-functions/01-recursion/05-output-single-linked-list-reverse/solution.md +++ b/1-js/06-advanced-functions/01-recursion/05-output-single-linked-list-reverse/solution.md @@ -33,11 +33,11 @@ printReverseList(list); # Using a loop -The loop variant is also a little bit more complicated then the direct output. +The loop variant is also a little bit more complicated than the direct output. There is no way to get the last value in our `list`. We also can't "go back". -So what we can do is to first go through the items in the direct order and rememeber them in an array, and then output what we remembered in the reverse order: +So what we can do is to first go through the items in the direct order and remember them in an array, and then output what we remembered in the reverse order: ```js run let list = { diff --git a/1-js/06-advanced-functions/01-recursion/article.md b/1-js/06-advanced-functions/01-recursion/article.md index d78142190..5ae894474 100644 --- a/1-js/06-advanced-functions/01-recursion/article.md +++ b/1-js/06-advanced-functions/01-recursion/article.md @@ -61,7 +61,7 @@ When `pow(x, n)` is called, the execution splits into two branches: if n==1 = x / pow(x, n) = - \ + \ else = x * pow(x, n - 1) ``` @@ -85,7 +85,7 @@ So, the recursion reduces a function call to a simpler one, and then -- to even ````smart header="Recursion is usually shorter" A recursive solution is usually shorter than an iterative one. -Here we can rewrite the same using the ternary `?` operator instead of `if` to make `pow(x, n)` more terse and still very readable: +Here we can rewrite the same using the conditional operator `?` instead of `if` to make `pow(x, n)` more terse and still very readable: ```js run function pow(x, n) { @@ -96,15 +96,15 @@ function pow(x, n) { The maximal number of nested calls (including the first one) is called *recursion depth*. In our case, it will be exactly `n`. -The maximal recursion depth is limited by JavaScript engine. We can make sure about 10000, some engines allow more, but 100000 is probably out of limit for the majority of them. There are automatic optimizations that help alleviate this ("tail calls optimizations"), but they are not yet supported everywhere and work only in simple cases. +The maximal recursion depth is limited by JavaScript engine. We can rely on it being 10000, some engines allow more, but 100000 is probably out of limit for the majority of them. There are automatic optimizations that help alleviate this ("tail calls optimizations"), but they are not yet supported everywhere and work only in simple cases. That limits the application of recursion, but it still remains very wide. There are many tasks where recursive way of thinking gives simpler code, easier to maintain. -## The execution stack +## The execution context and stack Now let's examine how recursive calls work. For that we'll look under the hood of functions. -The information about a function run is stored in its *execution context*. +The information about the process of execution of a running function is stored in its *execution context*. The [execution context](https://tc39.github.io/ecma262/#sec-execution-contexts) is an internal data structure that contains details about the execution of a function: where the control flow is now, the current variables, the value of `this` (we don't use it here) and few other internal details. @@ -132,7 +132,7 @@ We can sketch it as: -That's when the function starts to execute. The condition `n == 1` is false, so the flow continues into the second branch of `if`: +That's when the function starts to execute. The condition `n == 1` is falsy, so the flow continues into the second branch of `if`: ```js run function pow(x, n) { @@ -185,7 +185,13 @@ Here's the context stack when we entered the subcall `pow(2, 2)`: The new current execution context is on top (and bold), and previous remembered contexts are below. -When we finish the subcall -- it is easy to resume the previous context, because it keeps both variables and the exact place of the code where it stopped. Here in the picture we use the word "line", but of course it's more precise. +When we finish the subcall -- it is easy to resume the previous context, because it keeps both variables and the exact place of the code where it stopped. + +```smart +Here in the picture we use the word "line", as in our example there's only one subcall in line, but generally a single line of code may contain multiple subcalls, like `pow(…) + pow(…) + somethingElse(…)`. + +So it would be more precise to say that the execution resumes "immediately after the subcall". +``` ### pow(2, 1) @@ -279,7 +285,7 @@ The iterative `pow` uses a single context changing `i` and `result` in the proce **Any recursion can be rewritten as a loop. The loop variant usually can be made more effective.** -...But sometimes the rewrite is non-trivial, especially when function uses different recursive subcalls depending on conditions and merges their results or when the branching is more intricate. And the optimization may be unneeded and totally not worth the efforts. +...But sometimes the rewrite is non-trivial, especially when a function uses different recursive subcalls depending on conditions and merges their results or when the branching is more intricate. And the optimization may be unneeded and totally not worth the efforts. Recursion can give a shorter code, easier to understand and support. Optimizations are not required in every place, mostly we need a good code, that's why it's used. @@ -296,7 +302,7 @@ let company = { salary: 1000 }, { name: 'Alice', - salary: 600 + salary: 1600 }], development: { @@ -319,32 +325,32 @@ let company = { In other words, a company has departments. - A department may have an array of staff. For instance, `sales` department has 2 employees: John and Alice. -- Or a department may split into subdepartments, like `development` has two branches: `sites` and `internals`. Each of them has the own staff. +- Or a department may split into subdepartments, like `development` has two branches: `sites` and `internals`. Each of them has their own staff. - It is also possible that when a subdepartment grows, it divides into subsubdepartments (or teams). For instance, the `sites` department in the future may be split into teams for `siteA` and `siteB`. And they, potentially, can split even more. That's not on the picture, just something to have in mind. Now let's say we want a function to get the sum of all salaries. How can we do that? -An iterative approach is not easy, because the structure is not simple. The first idea may be to make a `for` loop over `company` with nested subloop over 1st level departments. But then we need more nested subloops to iterate over the staff in 2nd level departments like `sites`. ...And then another subloop inside those for 3rd level departments that might appear in the future? Should we stop on level 3 or make 4 levels of loops? If we put 3-4 nested subloops in the code to traverse a single object, it becomes rather ugly. +An iterative approach is not easy, because the structure is not simple. The first idea may be to make a `for` loop over `company` with nested subloop over 1st level departments. But then we need more nested subloops to iterate over the staff in 2nd level departments like `sites`... And then another subloop inside those for 3rd level departments that might appear in the future? If we put 3-4 nested subloops in the code to traverse a single object, it becomes rather ugly. Let's try recursion. As we can see, when our function gets a department to sum, there are two possible cases: -1. Either it's a "simple" department with an *array of people* -- then we can sum the salaries in a simple loop. -2. Or it's *an object with `N` subdepartments* -- then we can make `N` recursive calls to get the sum for each of the subdeps and combine the results. +1. Either it's a "simple" department with an *array* of people -- then we can sum the salaries in a simple loop. +2. Or it's *an object* with `N` subdepartments -- then we can make `N` recursive calls to get the sum for each of the subdeps and combine the results. -The (1) is the base of recursion, the trivial case. +The 1st case is the base of recursion, the trivial case, when we get an array. -The (2) is the recursive step. A complex task is split into subtasks for smaller departments. They may in turn split again, but sooner or later the split will finish at (1). +The 2nd case when we get an object is the recursive step. A complex task is split into subtasks for smaller departments. They may in turn split again, but sooner or later the split will finish at (1). The algorithm is probably even easier to read from the code: ```js run let company = { // the same object, compressed for brevity - sales: [{name: 'John', salary: 1000}, {name: 'Alice', salary: 600 }], + sales: [{name: 'John', salary: 1000}, {name: 'Alice', salary: 1600 }], development: { sites: [{name: 'Peter', salary: 2000}, {name: 'Alex', salary: 1800 }], internals: [{name: 'Jack', salary: 1300}] @@ -366,7 +372,7 @@ function sumSalaries(department) { } */!* -alert(sumSalaries(company)); // 6700 +alert(sumSalaries(company)); // 7700 ``` The code is short and easy to understand (hopefully?). That's the power of recursion. It also works for any level of subdepartment nesting. @@ -416,7 +422,7 @@ let arr = [obj1, obj2, obj3]; ...But there's a problem with arrays. The "delete element" and "insert element" operations are expensive. For instance, `arr.unshift(obj)` operation has to renumber all elements to make room for a new `obj`, and if the array is big, it takes time. Same with `arr.shift()`. -The only structural modifications that do not require mass-renumbering are those that operate with the end of array: `arr.push/pop`. So an array can be quite slow for big queues. +The only structural modifications that do not require mass-renumbering are those that operate with the end of array: `arr.push/pop`. So an array can be quite slow for big queues, when we have to work with the beginning. Alternatively, if we really need fast insertion/deletion, we can choose another data structure called a [linked list](https://en.wikipedia.org/wiki/Linked_list). @@ -453,9 +459,10 @@ let list = { value: 1 }; list.next = { value: 2 }; list.next.next = { value: 3 }; list.next.next.next = { value: 4 }; +list.next.next.next.next = null; ``` -Here we can even more clearer see that there are multiple objects, each one has the `value` and `next` pointing to the neighbour. The `list` variable is the first object in the chain, so following `next` pointers from it we can reach any element. +Here we can even more clearly see that there are multiple objects, each one has the `value` and `next` pointing to the neighbour. The `list` variable is the first object in the chain, so following `next` pointers from it we can reach any element. The list can be easily split into multiple parts and later joined back: @@ -506,14 +513,17 @@ Naturally, lists are not always better than arrays. Otherwise everyone would use The main drawback is that we can't easily access an element by its number. In an array that's easy: `arr[n]` is a direct reference. But in the list we need to start from the first item and go `next` `N` times to get the Nth element. -...But we don't always need such operations. For instance, when we need a queue or even a [deque](https://en.wikipedia.org/wiki/Double-ended_queue) -- the ordered structure that must allow very fast adding/removing elements from both ends. +...But we don't always need such operations. For instance, when we need a queue or even a [deque](https://en.wikipedia.org/wiki/Double-ended_queue) -- the ordered structure that must allow very fast adding/removing elements from both ends, but access to its middle is not needed. -Sometimes it's worth to add another variable named `tail` to track the last element of the list (and update it when adding/removing elements from the end). For large sets of elements the speed difference versus arrays is huge. +Lists can be enhanced: +- We can add property `prev` in addition to `next` to reference the previous element, to move back easily. +- We can also add a variable named `tail` referencing the last element of the list (and update it when adding/removing elements from the end). +- ...The data structure may vary according to our needs. ## Summary Terms: -- *Recursion* is a programming term that means a "self-calling" function. Such functions can be used to solve certain tasks in elegant ways. +- *Recursion* is a programming term that means calling a function from itself. Recursive functions can be used to solve tasks in elegant ways. When a function calls itself, that's called a *recursion step*. The *basis* of recursion is function arguments that make the task so simple that the function does not make further calls. @@ -525,7 +535,7 @@ Terms: list = { value, next -> list } ``` - Trees like HTML elements tree or the department tree from this chapter are also naturally recursive: they branch and every branch can have other branches. + Trees like HTML elements tree or the department tree from this chapter are also naturally recursive: they have branches and every branch can have other branches. Recursive functions can be used to walk them as we've seen in the `sumSalary` example. diff --git a/1-js/06-advanced-functions/01-recursion/recursive-salaries.svg b/1-js/06-advanced-functions/01-recursion/recursive-salaries.svg index 61f32dbc0..34a832cc0 100644 --- a/1-js/06-advanced-functions/01-recursion/recursive-salaries.svg +++ b/1-js/06-advanced-functions/01-recursion/recursive-salaries.svg @@ -1 +1,5 @@ - \ No newline at end of file +<<<<<<< HEAD + +======= + +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/06-advanced-functions/02-rest-parameters-spread-operator/article.md b/1-js/06-advanced-functions/02-rest-parameters-spread/article.md similarity index 68% rename from 1-js/06-advanced-functions/02-rest-parameters-spread-operator/article.md rename to 1-js/06-advanced-functions/02-rest-parameters-spread/article.md index a98d8eddd..dbdfbd6c0 100644 --- a/1-js/06-advanced-functions/02-rest-parameters-spread-operator/article.md +++ b/1-js/06-advanced-functions/02-rest-parameters-spread/article.md @@ -1,4 +1,4 @@ -# Rest parameters and spread operator +# Rest parameters and spread syntax Many JavaScript built-in functions support an arbitrary number of arguments. @@ -8,7 +8,7 @@ For instance: - `Object.assign(dest, src1, ..., srcN)` -- copies properties from `src1..N` into `dest`. - ...and so on. -In this chapter we'll learn how to do the same. And, more importantly, how to feel comfortable working with such functions and arrays. +In this chapter we'll learn how to do the same. And also, how to pass arrays to such functions as parameters. ## Rest parameters `...` @@ -23,9 +23,9 @@ function sum(a, b) { alert( sum(1, 2, 3, 4, 5) ); ``` -There will be no error because of "excessive" arguments. But of course in the result only the first two will be counted. +There will be no error because of "excessive" arguments. But of course in the result only the first two will be counted, so the result in the code above is `3`. -The rest parameters can be mentioned in a function definition with three dots `...`. They literally mean "gather the remaining parameters into an array". +The rest of the parameters can be included in the function definition by using three dots `...` followed by the name of the array that will contain them. The dots literally mean "gather the remaining parameters into an array". For instance, to gather all arguments into array `args`: @@ -96,9 +96,7 @@ showName("Julius", "Caesar"); showName("Ilya"); ``` -In old times, rest parameters did not exist in the language, and using `arguments` was the only way to get all arguments of the function, no matter their total number. - -And it still works, we can use it today. +In old times, rest parameters did not exist in the language, and using `arguments` was the only way to get all arguments of the function. And it still works, we can find it in the old code. But the downside is that although `arguments` is both array-like and iterable, it's not an array. It does not support array methods, so we can't call `arguments.map(...)` for example. @@ -119,11 +117,12 @@ function f() { f(1); // 1 ``` -```` As we remember, arrow functions don't have their own `this`. Now we know they don't have the special `arguments` object either. +```` + -## Spread operator [#spread-operator] +## Spread syntax [#spread-syntax] We've just seen how to get an array from the list of parameters. @@ -149,7 +148,7 @@ alert( Math.max(arr) ); // NaN And surely we can't manually list items in the code `Math.max(arr[0], arr[1], arr[2])`, because we may be unsure how many there are. As our script executes, there could be a lot, or there could be none. And that would get ugly. -*Spread operator* to the rescue! It looks similar to rest parameters, also using `...`, but does quite the opposite. +*Spread syntax* to the rescue! It looks similar to rest parameters, also using `...`, but does quite the opposite. When `...arr` is used in the function call, it "expands" an iterable object `arr` into the list of arguments. @@ -170,7 +169,7 @@ let arr2 = [8, 3, -8, 1]; alert( Math.max(...arr1, ...arr2) ); // 8 ``` -We can even combine the spread operator with normal values: +We can even combine the spread syntax with normal values: ```js run @@ -180,7 +179,7 @@ let arr2 = [8, 3, -8, 1]; alert( Math.max(1, ...arr1, 2, ...arr2, 25) ); // 25 ``` -Also, the spread operator can be used to merge arrays: +Also, the spread syntax can be used to merge arrays: ```js run let arr = [3, 5, 1]; @@ -193,9 +192,9 @@ let merged = [0, ...arr, 2, ...arr2]; alert(merged); // 0,3,5,1,2,8,9,15 (0, then arr, then 2, then arr2) ``` -In the examples above we used an array to demonstrate the spread operator, but any iterable will do. +In the examples above we used an array to demonstrate the spread syntax, but any iterable will do. -For instance, here we use the spread operator to turn the string into array of characters: +For instance, here we use the spread syntax to turn the string into array of characters: ```js run let str = "Hello"; @@ -203,7 +202,7 @@ let str = "Hello"; alert( [...str] ); // H,e,l,l,o ``` -The spread operator internally uses iterators to gather elements, the same way as `for..of` does. +The spread syntax internally uses iterators to gather elements, the same way as `for..of` does. So, for a string, `for..of` returns characters and `...str` becomes `"H","e","l","l","o"`. The list of characters is passed to array initializer `[...str]`. @@ -221,24 +220,75 @@ The result is the same as `[...str]`. But there's a subtle difference between `Array.from(obj)` and `[...obj]`: - `Array.from` operates on both array-likes and iterables. -- The spread operator operates only on iterables. +- The spread syntax works only with iterables. So, for the task of turning something into an array, `Array.from` tends to be more universal. +## Copy an array/object + +Remember when we talked about `Object.assign()` [in the past](info:object-copy#cloning-and-merging-object-assign)? + +It is possible to do the same thing with the spread syntax. + +```js run +let arr = [1, 2, 3]; + +*!* +let arrCopy = [...arr]; // spread the array into a list of parameters + // then put the result into a new array +*/!* + +// do the arrays have the same contents? +alert(JSON.stringify(arr) === JSON.stringify(arrCopy)); // true + +// are the arrays equal? +alert(arr === arrCopy); // false (not same reference) + +// modifying our initial array does not modify the copy: +arr.push(4); +alert(arr); // 1, 2, 3, 4 +alert(arrCopy); // 1, 2, 3 +``` + +Note that it is possible to do the same thing to make a copy of an object: + +```js run +let obj = { a: 1, b: 2, c: 3 }; + +*!* +let objCopy = { ...obj }; // spread the object into a list of parameters + // then return the result in a new object +*/!* + +// do the objects have the same contents? +alert(JSON.stringify(obj) === JSON.stringify(objCopy)); // true + +// are the objects equal? +alert(obj === objCopy); // false (not same reference) + +// modifying our initial object does not modify the copy: +obj.d = 4; +alert(JSON.stringify(obj)); // {"a":1,"b":2,"c":3,"d":4} +alert(JSON.stringify(objCopy)); // {"a":1,"b":2,"c":3} +``` + +This way of copying an object is much shorter than `let objCopy = Object.assign({}, obj)` or for an array `let arrCopy = Object.assign([], arr)` so we prefer to use it whenever we can. + + ## Summary -When we see `"..."` in the code, it is either rest parameters or the spread operator. +When we see `"..."` in the code, it is either rest parameters or the spread syntax. There's an easy way to distinguish between them: - When `...` is at the end of function parameters, it's "rest parameters" and gathers the rest of the list of arguments into an array. -- When `...` occurs in a function call or alike, it's called a "spread operator" and expands an array into a list. +- When `...` occurs in a function call or alike, it's called a "spread syntax" and expands an array into a list. Use patterns: - Rest parameters are used to create functions that accept any number of arguments. -- The spread operator is used to pass an array to functions that normally require a list of many arguments. +- The spread syntax is used to pass an array to functions that normally require a list of many arguments. Together they help to travel between a list and an array of parameters with ease. diff --git a/1-js/06-advanced-functions/03-closure/1-closure-latest-changes/solution.md b/1-js/06-advanced-functions/03-closure/1-closure-latest-changes/solution.md new file mode 100644 index 000000000..7cbd85ab7 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/1-closure-latest-changes/solution.md @@ -0,0 +1,5 @@ +The answer is: **Pete**. + +A function gets outer variables as they are now, it uses the most recent values. + +Old variable values are not saved anywhere. When a function wants a variable, it takes the current value from its own Lexical Environment or the outer one. diff --git a/1-js/06-advanced-functions/03-closure/1-closure-latest-changes/task.md b/1-js/06-advanced-functions/03-closure/1-closure-latest-changes/task.md new file mode 100644 index 000000000..819189773 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/1-closure-latest-changes/task.md @@ -0,0 +1,23 @@ +importance: 5 + +--- + +# Does a function pickup latest changes? + +The function sayHi uses an external variable name. When the function runs, which value is it going to use? + +```js +let name = "John"; + +function sayHi() { + alert("Hi, " + name); +} + +name = "Pete"; + +sayHi(); // what will it show: "John" or "Pete"? +``` + +Such situations are common both in browser and server-side development. A function may be scheduled to execute later than it is created, for instance after a user action or a network request. + +So, the question is: does it pick up the latest changes? diff --git a/1-js/06-advanced-functions/03-closure/8-make-army/_js.view/solution.js b/1-js/06-advanced-functions/03-closure/10-make-army/_js.view/solution.js similarity index 100% rename from 1-js/06-advanced-functions/03-closure/8-make-army/_js.view/solution.js rename to 1-js/06-advanced-functions/03-closure/10-make-army/_js.view/solution.js diff --git a/1-js/06-advanced-functions/03-closure/8-make-army/_js.view/source.js b/1-js/06-advanced-functions/03-closure/10-make-army/_js.view/source.js similarity index 100% rename from 1-js/06-advanced-functions/03-closure/8-make-army/_js.view/source.js rename to 1-js/06-advanced-functions/03-closure/10-make-army/_js.view/source.js diff --git a/1-js/06-advanced-functions/03-closure/8-make-army/_js.view/test.js b/1-js/06-advanced-functions/03-closure/10-make-army/_js.view/test.js similarity index 100% rename from 1-js/06-advanced-functions/03-closure/8-make-army/_js.view/test.js rename to 1-js/06-advanced-functions/03-closure/10-make-army/_js.view/test.js diff --git a/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-empty.svg b/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-empty.svg new file mode 100644 index 000000000..f8c7bd6ac --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-empty.svg @@ -0,0 +1 @@ +outer<empty>makeArmy() LexicalEnvironmentwhile iteration LexicalEnvironment<empty><empty><empty>i: 10 \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-for-fixed.svg b/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-for-fixed.svg new file mode 100644 index 000000000..7611d0ef8 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-for-fixed.svg @@ -0,0 +1 @@ +outermakeArmy() LexicalEnvironmentfor iteration LexicalEnvironmenti: 0i: 1i: 2i: 10... \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-while-fixed.svg b/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-while-fixed.svg new file mode 100644 index 000000000..d83ecbe76 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy-while-fixed.svg @@ -0,0 +1 @@ +outerj: 0j: 1j: 2j: 10...makeArmy() LexicalEnvironmentwhile iteration LexicalEnvironment \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/8-make-army/lexenv-makearmy.svg b/1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy.svg similarity index 100% rename from 1-js/06-advanced-functions/03-closure/8-make-army/lexenv-makearmy.svg rename to 1-js/06-advanced-functions/03-closure/10-make-army/lexenv-makearmy.svg diff --git a/1-js/06-advanced-functions/03-closure/10-make-army/solution.md b/1-js/06-advanced-functions/03-closure/10-make-army/solution.md new file mode 100644 index 000000000..9d99aa717 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/10-make-army/solution.md @@ -0,0 +1,129 @@ + +Let's examine what exactly happens inside `makeArmy`, and the solution will become obvious. + +1. It creates an empty array `shooters`: + + ```js + let shooters = []; + ``` +2. Fills it with functions via `shooters.push(function)` in the loop. + + Every element is a function, so the resulting array looks like this: + + ```js no-beautify + shooters = [ + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); }, + function () { alert(i); } + ]; + ``` + +3. The array is returned from the function. + + Then, later, the call to any member, e.g. `army[5]()` will get the element `army[5]` from the array (which is a function) and calls it. + + Now why do all such functions show the same value, `10`? + + That's because there's no local variable `i` inside `shooter` functions. When such a function is called, it takes `i` from its outer lexical environment. + + Then, what will be the value of `i`? + + If we look at the source: + + ```js + function makeArmy() { + ... + let i = 0; + while (i < 10) { + let shooter = function() { // shooter function + alert( i ); // should show its number + }; + shooters.push(shooter); // add function to the array + i++; + } + ... + } + ``` + + We can see that all `shooter` functions are created in the lexical environment of `makeArmy()` function. But when `army[5]()` is called, `makeArmy` has already finished its job, and the final value of `i` is `10` (`while` stops at `i=10`). + + As the result, all `shooter` functions get the same value from the outer lexical environment and that is, the last value, `i=10`. + + ![](lexenv-makearmy-empty.svg) + + As you can see above, on each iteration of a `while {...}` block, a new lexical environment is created. So, to fix this, we can copy the value of `i` into a variable within the `while {...}` block, like this: + + ```js run + function makeArmy() { + let shooters = []; + + let i = 0; + while (i < 10) { + *!* + let j = i; + */!* + let shooter = function() { // shooter function + alert( *!*j*/!* ); // should show its number + }; + shooters.push(shooter); + i++; + } + + return shooters; + } + + let army = makeArmy(); + + // Now the code works correctly + army[0](); // 0 + army[5](); // 5 + ``` + + Here `let j = i` declares an "iteration-local" variable `j` and copies `i` into it. Primitives are copied "by value", so we actually get an independent copy of `i`, belonging to the current loop iteration. + + The shooters work correctly, because the value of `i` now lives a little bit closer. Not in `makeArmy()` Lexical Environment, but in the Lexical Environment that corresponds to the current loop iteration: + + ![](lexenv-makearmy-while-fixed.svg) + + Such a problem could also be avoided if we used `for` in the beginning, like this: + + ```js run demo + function makeArmy() { + + let shooters = []; + + *!* + for(let i = 0; i < 10; i++) { + */!* + let shooter = function() { // shooter function + alert( i ); // should show its number + }; + shooters.push(shooter); + } + + return shooters; + } + + let army = makeArmy(); + + army[0](); // 0 + army[5](); // 5 + ``` + + That's essentially the same, because `for` on each iteration generates a new lexical environment, with its own variable `i`. So `shooter` generated in every iteration references its own `i`, from that very iteration. + + ![](lexenv-makearmy-for-fixed.svg) + +Now, as you've put so much effort into reading this, and the final recipe is so simple - just use `for`, you may wonder -- was it worth that? + +Well, if you could easily answer the question, you wouldn't read the solution. So, hopefully this task must have helped you to understand things a bit better. + +Besides, there are indeed cases when one prefers `while` to `for`, and other scenarios, where such problems are real. + diff --git a/1-js/06-advanced-functions/03-closure/10-make-army/task.md b/1-js/06-advanced-functions/03-closure/10-make-army/task.md new file mode 100644 index 000000000..f50c7dc20 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/10-make-army/task.md @@ -0,0 +1,41 @@ +importance: 5 + +--- + +# Army of functions + +The following code creates an array of `shooters`. + +Every function is meant to output its number. But something is wrong... + +```js run +function makeArmy() { + let shooters = []; + + let i = 0; + while (i < 10) { + let shooter = function() { // create a shooter function, + alert( i ); // that should show its number + }; + shooters.push(shooter); // and add it to the array + i++; + } + + // ...and return the array of shooters + return shooters; +} + +let army = makeArmy(); + +*!* +// all shooters show 10 instead of their numbers 0, 1, 2, 3... +army[0](); // 10 from the shooter number 0 +army[1](); // 10 from the shooter number 1 +army[2](); // 10 ...and so on. +*/!* +``` + +Why do all of the shooters show the same value? + +Fix the code so that they work as intended. + diff --git a/1-js/06-advanced-functions/03-closure/2-closure-variable-access/lexenv-nested-work.svg b/1-js/06-advanced-functions/03-closure/2-closure-variable-access/lexenv-nested-work.svg new file mode 100644 index 000000000..8dfd8bd63 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/2-closure-variable-access/lexenv-nested-work.svg @@ -0,0 +1 @@ +makeWorker: function name: "John"<empty>outerouterouternullname: "Pete" \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/2-closure-variable-access/solution.md b/1-js/06-advanced-functions/03-closure/2-closure-variable-access/solution.md new file mode 100644 index 000000000..0a522132f --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/2-closure-variable-access/solution.md @@ -0,0 +1,9 @@ +The answer is: **Pete**. + +The `work()` function in the code below gets `name` from the place of its origin through the outer lexical environment reference: + +![](lexenv-nested-work.svg) + +So, the result is `"Pete"` here. + +But if there were no `let name` in `makeWorker()`, then the search would go outside and take the global variable as we can see from the chain above. In that case the result would be `"John"`. diff --git a/1-js/06-advanced-functions/03-closure/2-closure-variable-access/task.md b/1-js/06-advanced-functions/03-closure/2-closure-variable-access/task.md new file mode 100644 index 000000000..d12a385c8 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/2-closure-variable-access/task.md @@ -0,0 +1,29 @@ +importance: 5 + +--- + +# Which variables are available? + +The function `makeWorker` below makes another function and returns it. That new function can be called from somewhere else. + +Will it have access to the outer variables from its creation place, or the invocation place, or both? + +```js +function makeWorker() { + let name = "Pete"; + + return function() { + alert(name); + }; +} + +let name = "John"; + +// create a function +let work = makeWorker(); + +// call it +work(); // what will it show? +``` + +Which value it will show? "Pete" or "John"? diff --git a/1-js/06-advanced-functions/03-closure/1-counter-independent/solution.md b/1-js/06-advanced-functions/03-closure/3-counter-independent/solution.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/1-counter-independent/solution.md rename to 1-js/06-advanced-functions/03-closure/3-counter-independent/solution.md diff --git a/1-js/06-advanced-functions/03-closure/1-counter-independent/task.md b/1-js/06-advanced-functions/03-closure/3-counter-independent/task.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/1-counter-independent/task.md rename to 1-js/06-advanced-functions/03-closure/3-counter-independent/task.md diff --git a/1-js/06-advanced-functions/03-closure/2-counter-object-independent/solution.md b/1-js/06-advanced-functions/03-closure/4-counter-object-independent/solution.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/2-counter-object-independent/solution.md rename to 1-js/06-advanced-functions/03-closure/4-counter-object-independent/solution.md diff --git a/1-js/06-advanced-functions/03-closure/2-counter-object-independent/task.md b/1-js/06-advanced-functions/03-closure/4-counter-object-independent/task.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/2-counter-object-independent/task.md rename to 1-js/06-advanced-functions/03-closure/4-counter-object-independent/task.md diff --git a/1-js/06-advanced-functions/03-closure/3-function-in-if/solution.md b/1-js/06-advanced-functions/03-closure/5-function-in-if/solution.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/3-function-in-if/solution.md rename to 1-js/06-advanced-functions/03-closure/5-function-in-if/solution.md diff --git a/1-js/06-advanced-functions/03-closure/3-function-in-if/task.md b/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md similarity index 65% rename from 1-js/06-advanced-functions/03-closure/3-function-in-if/task.md rename to 1-js/06-advanced-functions/03-closure/5-function-in-if/task.md index d0dbbeb11..4e386eec5 100644 --- a/1-js/06-advanced-functions/03-closure/3-function-in-if/task.md +++ b/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md @@ -1,7 +1,9 @@ +importance: 5 +--- # Function in if -Look at the code. What will be result of the call at the last line? +Look at the code. What will be the result of the call at the last line? ```js run let phrase = "Hello"; diff --git a/1-js/06-advanced-functions/03-closure/4-closure-sum/solution.md b/1-js/06-advanced-functions/03-closure/6-closure-sum/solution.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/4-closure-sum/solution.md rename to 1-js/06-advanced-functions/03-closure/6-closure-sum/solution.md diff --git a/1-js/06-advanced-functions/03-closure/4-closure-sum/task.md b/1-js/06-advanced-functions/03-closure/6-closure-sum/task.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/4-closure-sum/task.md rename to 1-js/06-advanced-functions/03-closure/6-closure-sum/task.md diff --git a/1-js/06-advanced-functions/03-closure/7-let-scope/solution.md b/1-js/06-advanced-functions/03-closure/7-let-scope/solution.md new file mode 100644 index 000000000..b16b35290 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/7-let-scope/solution.md @@ -0,0 +1,40 @@ +The result is: **error**. + +Try running it: + +```js run +let x = 1; + +function func() { +*!* + console.log(x); // ReferenceError: Cannot access 'x' before initialization +*/!* + let x = 2; +} + +func(); +``` + +In this example we can observe the peculiar difference between a "non-existing" and "uninitialized" variable. + +As you may have read in the article [](info:closure), a variable starts in the "uninitialized" state from the moment when the execution enters a code block (or a function). And it stays uninitalized until the corresponding `let` statement. + +In other words, a variable technically exists, but can't be used before `let`. + +The code above demonstrates it. + +```js +function func() { +*!* + // the local variable x is known to the engine from the beginning of the function, + // but "uninitialized" (unusable) until let ("dead zone") + // hence the error +*/!* + + console.log(x); // ReferenceError: Cannot access 'x' before initialization + + let x = 2; +} +``` + +This zone of temporary unusability of a variable (from the beginning of the code block till `let`) is sometimes called the "dead zone". diff --git a/1-js/06-advanced-functions/03-closure/7-let-scope/task.md b/1-js/06-advanced-functions/03-closure/7-let-scope/task.md new file mode 100644 index 000000000..fb7445e66 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/7-let-scope/task.md @@ -0,0 +1,21 @@ +importance: 4 + +--- + +# Is variable visible? + +What will be the result of this code? + +```js +let x = 1; + +function func() { + console.log(x); // ? + + let x = 2; +} + +func(); +``` + +P.S. There's a pitfall in this task. The solution is not obvious. diff --git a/1-js/06-advanced-functions/03-closure/7-sort-by-field/solution.md b/1-js/06-advanced-functions/03-closure/7-sort-by-field/solution.md deleted file mode 100644 index bd57085ea..000000000 --- a/1-js/06-advanced-functions/03-closure/7-sort-by-field/solution.md +++ /dev/null @@ -1,22 +0,0 @@ - - -```js run -let users = [ - { name: "John", age: 20, surname: "Johnson" }, - { name: "Pete", age: 18, surname: "Peterson" }, - { name: "Ann", age: 19, surname: "Hathaway" } -]; - -*!* -function byField(field) { - return (a, b) => a[field] > b[field] ? 1 : -1; -} -*/!* - -users.sort(byField('name')); -users.forEach(user => alert(user.name)); // Ann, John, Pete - -users.sort(byField('age')); -users.forEach(user => alert(user.name)); // Pete, Ann, John -``` - diff --git a/1-js/06-advanced-functions/03-closure/6-filter-through-function/_js.view/solution.js b/1-js/06-advanced-functions/03-closure/8-filter-through-function/_js.view/solution.js similarity index 100% rename from 1-js/06-advanced-functions/03-closure/6-filter-through-function/_js.view/solution.js rename to 1-js/06-advanced-functions/03-closure/8-filter-through-function/_js.view/solution.js diff --git a/1-js/06-advanced-functions/03-closure/6-filter-through-function/_js.view/source.js b/1-js/06-advanced-functions/03-closure/8-filter-through-function/_js.view/source.js similarity index 100% rename from 1-js/06-advanced-functions/03-closure/6-filter-through-function/_js.view/source.js rename to 1-js/06-advanced-functions/03-closure/8-filter-through-function/_js.view/source.js diff --git a/1-js/06-advanced-functions/03-closure/6-filter-through-function/_js.view/test.js b/1-js/06-advanced-functions/03-closure/8-filter-through-function/_js.view/test.js similarity index 100% rename from 1-js/06-advanced-functions/03-closure/6-filter-through-function/_js.view/test.js rename to 1-js/06-advanced-functions/03-closure/8-filter-through-function/_js.view/test.js diff --git a/1-js/06-advanced-functions/03-closure/6-filter-through-function/solution.md b/1-js/06-advanced-functions/03-closure/8-filter-through-function/solution.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/6-filter-through-function/solution.md rename to 1-js/06-advanced-functions/03-closure/8-filter-through-function/solution.md diff --git a/1-js/06-advanced-functions/03-closure/6-filter-through-function/task.md b/1-js/06-advanced-functions/03-closure/8-filter-through-function/task.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/6-filter-through-function/task.md rename to 1-js/06-advanced-functions/03-closure/8-filter-through-function/task.md diff --git a/1-js/06-advanced-functions/03-closure/8-make-army/task.md b/1-js/06-advanced-functions/03-closure/8-make-army/task.md deleted file mode 100644 index ede8fd045..000000000 --- a/1-js/06-advanced-functions/03-closure/8-make-army/task.md +++ /dev/null @@ -1,35 +0,0 @@ -importance: 5 - ---- - -# Army of functions - -The following code creates an array of `shooters`. - -Every function is meant to output its number. But something is wrong... - -```js run -function makeArmy() { - let shooters = []; - - let i = 0; - while (i < 10) { - let shooter = function() { // shooter function - alert( i ); // should show its number - }; - shooters.push(shooter); - i++; - } - - return shooters; -} - -let army = makeArmy(); - -army[0](); // the shooter number 0 shows 10 -army[5](); // and number 5 also outputs 10... -// ... all shooters show 10 instead of their 0, 1, 2, 3... -``` - -Why all shooters show the same? Fix the code so that they work as intended. - diff --git a/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/solution.js b/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/solution.js new file mode 100644 index 000000000..8a71c869d --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/solution.js @@ -0,0 +1,3 @@ +function byField(fieldName){ + return (a, b) => a[fieldName] > b[fieldName] ? 1 : -1; +} diff --git a/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/source.js b/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/source.js new file mode 100644 index 000000000..23b433834 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/source.js @@ -0,0 +1,5 @@ +function byField(fieldName){ + + // Your code goes here. + +} diff --git a/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/test.js b/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/test.js new file mode 100644 index 000000000..802f28c4d --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/9-sort-by-field/_js.view/test.js @@ -0,0 +1,39 @@ +describe("byField", function(){ + + let users = [ + { name: "John", age: 20, surname: "Johnson" }, + { name: "Pete", age: 18, surname: "Peterson" }, + { name: "Ann", age: 19, surname: "Hathaway" }, + ]; + + it("sorts users by name", function(){ + let nameSortedKey = [ + { name: "Ann", age: 19, surname: "Hathaway" }, + { name: "John", age: 20, surname: "Johnson"}, + { name: "Pete", age: 18, surname: "Peterson" }, + ]; + let nameSortedAnswer = users.sort(byField("name")); + assert.deepEqual(nameSortedKey, nameSortedAnswer); + }); + + it("sorts users by age", function(){ + let ageSortedKey = [ + { name: "Pete", age: 18, surname: "Peterson" }, + { name: "Ann", age: 19, surname: "Hathaway" }, + { name: "John", age: 20, surname: "Johnson"}, + ]; + let ageSortedAnswer = users.sort(byField("age")); + assert.deepEqual(ageSortedKey, ageSortedAnswer); + }); + + it("sorts users by surname", function(){ + let surnameSortedKey = [ + { name: "Ann", age: 19, surname: "Hathaway" }, + { name: "John", age: 20, surname: "Johnson"}, + { name: "Pete", age: 18, surname: "Peterson" }, + ]; + let surnameSortedAnswer = users.sort(byField("surname")); + assert.deepEqual(surnameSortedAnswer, surnameSortedKey); + }); + +}); diff --git a/1-js/06-advanced-functions/03-closure/9-sort-by-field/solution.md b/1-js/06-advanced-functions/03-closure/9-sort-by-field/solution.md new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/9-sort-by-field/solution.md @@ -0,0 +1 @@ + diff --git a/1-js/06-advanced-functions/03-closure/7-sort-by-field/task.md b/1-js/06-advanced-functions/03-closure/9-sort-by-field/task.md similarity index 100% rename from 1-js/06-advanced-functions/03-closure/7-sort-by-field/task.md rename to 1-js/06-advanced-functions/03-closure/9-sort-by-field/task.md diff --git a/1-js/06-advanced-functions/03-closure/article.md b/1-js/06-advanced-functions/03-closure/article.md index e771b1cc4..ff6ca062d 100644 --- a/1-js/06-advanced-functions/03-closure/article.md +++ b/1-js/06-advanced-functions/03-closure/article.md @@ -1,25 +1,29 @@ -# Closure +# Variable scope, closure -JavaScript is a very function-oriented language. It gives us a lot of freedom. A function can be created at one moment, then copied to another variable or passed as an argument to another function and called from a totally different place later. +JavaScript is a very function-oriented language. It gives us a lot of freedom. A function can be created at any moment, passed as an argument to another function, and then called from a totally different place of code later. -We know that a function can access variables outside of it; this feature is used quite often. +We already know that a function can access variables outside of it ("outer" variables). -But what happens when an outer variable changes? Does a function get the most recent value or the one that existed when the function was created? +But what happens if outer variables change since a function is created? Will the function get newer values or the old ones? -Also, what happens when a function travels to another place in the code and is called from there -- does it get access to the outer variables of the new place? +And what if a function is passed along as an argument and called from another place of code, will it get access to outer variables at the new place? -Different languages behave differently here, and in this chapter we cover the behaviour of JavaScript. +Let's expand our knowledge to understand these scenarios and more complex ones. -## A couple of questions +```smart header="We'll talk about `let/const` variables here" +In JavaScript, there are 3 ways to declare a variable: `let`, `const` (the modern ones), and `var` (the remnant of the past). -Let's consider two situations to begin with, and then study the internal mechanics piece-by-piece, so that you'll be able to answer the following questions and more complex ones in the future. +- In this article we'll use `let` variables in examples. +- Variables, declared with `const`, behave the same, so this article is about `const` too. +- The old `var` has some notable differences, they will be covered in the article . +``` -1. The function `sayHi` uses an external variable `name`. When the function runs, which value is it going to use? +## Code blocks - ```js - let name = "John"; +If a variable is declared inside a code block `{...}`, it's only visible inside that block. +<<<<<<< HEAD function sayHi() { alert("Hi, " + name); } @@ -165,39 +169,82 @@ Now we can give the answer to the first question from the beginning of the chapt That's because of the described mechanism. Old variable values are not saved anywhere. When a function wants them, it takes the current values from its own or an outer Lexical Environment. So the answer to the first question is `Pete`: +======= +For example: +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ```js run -let name = "John"; +{ + // do some job with local variables that should not be seen outside + + let message = "Hello"; // only visible in this block -function sayHi() { - alert("Hi, " + name); + alert(message); // Hello } -name = "Pete"; // (*) +alert(message); // Error: message is not defined +``` + +We can use this to isolate a piece of code that does its own task, with variables that only belong to it: + +```js run +{ + // show message + let message = "Hello"; + alert(message); +} +{ + // show another message + let message = "Goodbye"; + alert(message); +} +``` + +````smart header="There'd be an error without blocks" +Please note, without separate blocks there would be an error, if we use `let` with the existing variable name: + +```js run +// show message +let message = "Hello"; +alert(message); + +// show another message *!* -sayHi(); // Pete +let message = "Goodbye"; // Error: variable already declared */!* +alert(message); ``` +```` +For `if`, `for`, `while` and so on, variables declared in `{...}` are also only visible inside: -The execution flow of the code above: +```js run +if (true) { + let phrase = "Hello!"; -1. The global Lexical Environment has `name: "John"`. -2. At the line `(*)` the global variable is changed, now it has `name: "Pete"`. -3. When the function `sayHi()`, is executed and takes `name` from outside. Here that's from the global Lexical Environment where it's already `"Pete"`. + alert(phrase); // Hello! +} +alert(phrase); // Error, no such variable! +``` -```smart header="One call -- one Lexical Environment" -Please note that a new function Lexical Environment is created each time a function runs. +Here, after `if` finishes, the `alert` below won't see the `phrase`, hence the error. -And if a function is called multiple times, then each invocation will have its own Lexical Environment, with local variables and parameters specific for that very run. -``` +That's great, as it allows us to create block-local variables, specific to an `if` branch. -```smart header="Lexical Environment is a specification object" -"Lexical Environment" is a specification object. We can't get this object in our code and manipulate it directly. JavaScript engines also may optimize it, discard variables that are unused to save memory and perform other internal tricks, but the visible behavior should be as described. +The similar thing holds true for `for` and `while` loops: + +```js run +for (let i = 0; i < 3; i++) { + // the variable i is only visible inside this for + alert(i); // 0, then 1, then 2 +} + +alert(i); // Error, no such variable ``` +Visually, `let i` is outside of `{...}`. But the `for` construct is special here: the variable, declared inside it, is considered a part of the block. ## Nested functions @@ -223,32 +270,16 @@ function sayHiBye(firstName, lastName) { Here the *nested* function `getFullName()` is made for convenience. It can access the outer variables and so can return the full name. Nested functions are quite common in JavaScript. -What's much more interesting, a nested function can be returned: either as a property of a new object (if the outer function creates an object with methods) or as a result by itself. It can then be used somewhere else. No matter where, it still has access to the same outer variables. +What's much more interesting, a nested function can be returned: either as a property of a new object or as a result by itself. It can then be used somewhere else. No matter where, it still has access to the same outer variables. -For instance, here the nested function is assigned to the new object by the [constructor function](info:constructor-new): - -```js run -// constructor function returns a new object -function User(name) { - - // the object method is created as a nested function - this.sayHi = function() { - alert(name); - }; -} - -let user = new User("John"); -user.sayHi(); // the method "sayHi" code has access to the outer "name" -``` - -And here we just create and return a "counting" function: +Below, `makeCounter` creates the "counter" function that returns the next number on each invocation: ```js run function makeCounter() { let count = 0; return function() { - return count++; // has access to the outer counter + return count++; }; } @@ -259,80 +290,171 @@ alert( counter() ); // 1 alert( counter() ); // 2 ``` -Let's go on with the `makeCounter` example. It creates the "counter" function that returns the next number on each invocation. Despite being simple, slightly modified variants of that code have practical uses, for instance, as a [pseudorandom number generator](https://en.wikipedia.org/wiki/Pseudorandom_number_generator), and more. +Despite being simple, slightly modified variants of that code have practical uses, for instance, as a [random number generator](https://en.wikipedia.org/wiki/Pseudorandom_number_generator) to generate random values for automated tests. -How does the counter work internally? +How does this work? If we create multiple counters, will they be independent? What's going on with the variables here? -When the inner function runs, the variable in `count++` is searched from inside out. For the example above, the order will be: +Understanding such things is great for the overall knowledge of JavaScript and beneficial for more complex scenarios. So let's go a bit in-depth. +<<<<<<< HEAD ![](lexical-search-order.svg) +======= +## Lexical Environment +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b -1. The locals of the nested function... -2. The variables of the outer function... -3. And so on until it reaches global variables. +```warn header="Here be dragons!" +The in-depth technical explanation lies ahead. -In this example `count` is found on step `2`. When an outer variable is modified, it's changed where it's found. So `count++` finds the outer variable and increases it in the Lexical Environment where it belongs. Like if we had `let count = 1`. +As far as I'd like to avoid low-level language details, any understanding without them would be lacking and incomplete, so get ready. +``` -Here are two questions to consider: +For clarity, the explanation is split into multiple steps. -1. Can we somehow reset the counter `count` from the code that doesn't belong to `makeCounter`? E.g. after `alert` calls in the example above. -2. If we call `makeCounter()` multiple times -- it returns many `counter` functions. Are they independent or do they share the same `count`? +### Step 1. Variables -Try to answer them before you continue reading. +In JavaScript, every running function, code block `{...}`, and the script as a whole have an internal (hidden) associated object known as the *Lexical Environment*. -... +The Lexical Environment object consists of two parts: -All done? +1. *Environment Record* -- an object that stores all local variables as its properties (and some other information like the value of `this`). +2. A reference to the *outer lexical environment*, the one associated with the outer code. -Okay, let's go over the answers. +**A "variable" is just a property of the special internal object, `Environment Record`. "To get or change a variable" means "to get or change a property of that object".** -1. There is no way: `count` is a local function variable, we can't access it from the outside. -2. For every call to `makeCounter()` a new function Lexical Environment is created, with its own `count`. So the resulting `counter` functions are independent. +In this simple code without functions, there is only one Lexical Environment: -Here's the demo: +![lexical environment](lexical-environment-global.svg) -```js run +This is the so-called *global* Lexical Environment, associated with the whole script. + +On the picture above, the rectangle means Environment Record (variable store) and the arrow means the outer reference. The global Lexical Environment has no outer reference, that's why the arrow points to `null`. + +As the code starts executing and goes on, the Lexical Environment changes. + +Here's a little bit longer code: + +![lexical environment](closure-variable-phrase.svg) + +Rectangles on the right-hand side demonstrate how the global Lexical Environment changes during the execution: + +1. When the script starts, the Lexical Environment is pre-populated with all declared variables. + - Initially, they are in the "Uninitialized" state. That's a special internal state, it means that the engine knows about the variable, but it cannot be referenced until it has been declared with `let`. It's almost the same as if the variable didn't exist. +2. Then `let phrase` definition appears. There's no assignment yet, so its value is `undefined`. We can use the variable from this point forward. +3. `phrase` is assigned a value. +4. `phrase` changes the value. + +Everything looks simple for now, right? + +- A variable is a property of a special internal object, associated with the currently executing block/function/script. +- Working with variables is actually working with the properties of that object. + +```smart header="Lexical Environment is a specification object" +"Lexical Environment" is a specification object: it only exists "theoretically" in the [language specification](https://tc39.es/ecma262/#sec-lexical-environments) to describe how things work. We can't get this object in our code and manipulate it directly. + +JavaScript engines also may optimize it, discard variables that are unused to save memory and perform other internal tricks, as long as the visible behavior remains as described. +``` + +### Step 2. Function Declarations + +A function is also a value, like a variable. + +**The difference is that a Function Declaration is instantly fully initialized.** + +When a Lexical Environment is created, a Function Declaration immediately becomes a ready-to-use function (unlike `let`, that is unusable till the declaration). + +That's why we can use a function, declared as Function Declaration, even before the declaration itself. + +For example, here's the initial state of the global Lexical Environment when we add a function: + +![](closure-function-declaration.svg) + +Naturally, this behavior only applies to Function Declarations, not Function Expressions where we assign a function to a variable, such as `let say = function(name)...`. + +### Step 3. Inner and outer Lexical Environment + +When a function runs, at the beginning of the call, a new Lexical Environment is created automatically to store local variables and parameters of the call. + +For instance, for `say("John")`, it looks like this (the execution is at the line, labelled with an arrow): + + + +![](lexical-environment-simple.svg) + +During the function call we have two Lexical Environments: the inner one (for the function call) and the outer one (global): + +- The inner Lexical Environment corresponds to the current execution of `say`. It has a single property: `name`, the function argument. We called `say("John")`, so the value of the `name` is `"John"`. +- The outer Lexical Environment is the global Lexical Environment. It has the `phrase` variable and the function itself. + +The inner Lexical Environment has a reference to the `outer` one. + +**When the code wants to access a variable -- the inner Lexical Environment is searched first, then the outer one, then the more outer one and so on until the global one.** + +If a variable is not found anywhere, that's an error in strict mode (without `use strict`, an assignment to a non-existing variable creates a new global variable, for compatibility with old code). + +In this example the search proceeds as follows: + +- For the `name` variable, the `alert` inside `say` finds it immediately in the inner Lexical Environment. +- When it wants to access `phrase`, then there is no `phrase` locally, so it follows the reference to the outer Lexical Environment and finds it there. + +![lexical environment lookup](lexical-environment-simple-lookup.svg) + + +### Step 4. Returning a function + +Let's return to the `makeCounter` example. + +```js function makeCounter() { let count = 0; + return function() { return count++; }; } -let counter1 = makeCounter(); -let counter2 = makeCounter(); - -alert( counter1() ); // 0 -alert( counter1() ); // 1 - -alert( counter2() ); // 0 (independent) +let counter = makeCounter(); ``` +At the beginning of each `makeCounter()` call, a new Lexical Environment object is created, to store variables for this `makeCounter` run. -Hopefully, the situation with outer variables is quite clear for you now. But in more complex situations a deeper understanding of internals may be required. So let's dive deeper. +So we have two nested Lexical Environments, just like in the example above: -## Environments in detail +![](closure-makecounter.svg) -Now that you understand how closures work generally, that's already very good. +What's different is that, during the execution of `makeCounter()`, a tiny nested function is created of only one line: `return count++`. We don't run it yet, only create. -Here's what's going on in the `makeCounter` example step-by-step, follow it to make sure that you know things in the very detail. +All functions remember the Lexical Environment in which they were made. Technically, there's no magic here: all functions have the hidden property named `[[Environment]]`, that keeps the reference to the Lexical Environment where the function was created: -Please note the additional `[[Environment]]` property is covered here. We didn't mention it before for simplicity. +![](closure-makecounter-environment.svg) -1. When the script has just started, there is only global Lexical Environment: +So, `counter.[[Environment]]` has the reference to `{count: 0}` Lexical Environment. That's how the function remembers where it was created, no matter where it's called. The `[[Environment]]` reference is set once and forever at function creation time. +<<<<<<< HEAD ![](lexenv-nested-makecounter-1.svg) +======= +Later, when `counter()` is called, a new Lexical Environment is created for the call, and its outer Lexical Environment reference is taken from `counter.[[Environment]]`: +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b - At that starting moment there is only `makeCounter` function, because it's a Function Declaration. It did not run yet. +![](closure-makecounter-nested-call.svg) - **All functions "on birth" receive a hidden property `[[Environment]]` with a reference to the Lexical Environment of their creation.** We didn't talk about it yet, but that's how the function knows where it was made. +Now when the code inside `counter()` looks for `count` variable, it first searches its own Lexical Environment (empty, as there are no local variables there), then the Lexical Environment of the outer `makeCounter()` call, where it finds and changes it. - Here, `makeCounter` is created in the global Lexical Environment, so `[[Environment]]` keeps a reference to it. +**A variable is updated in the Lexical Environment where it lives.** - In other words, a function is "imprinted" with a reference to the Lexical Environment where it was born. And `[[Environment]]` is the hidden function property that has that reference. +Here's the state after the execution: -2. The code runs on, the new global variable `counter` is declared and for its value `makeCounter()` is called. Here's a snapshot of the moment when the execution is on the first line inside `makeCounter()`: +![](closure-makecounter-nested-call-2.svg) +<<<<<<< HEAD ![](lexenv-nested-makecounter-2.svg) At the moment of the call of `makeCounter()`, the Lexical Environment is created, to hold its variables and arguments. @@ -390,15 +512,21 @@ So, the result is `"Pete"` here. But if there were no `let name` in `makeWorker()`, then the search would go outside and take the global variable as we can see from the chain above. In that case it would be `"John"`. ```smart header="Closures" +======= +If we call `counter()` multiple times, the `count` variable will be increased to `2`, `3` and so on, at the same place. + +```smart header="Closure" +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b There is a general programming term "closure", that developers generally should know. -A [closure](https://en.wikipedia.org/wiki/Closure_(computer_programming)) is a function that remembers its outer variables and can access them. In some languages, that's not possible, or a function should be written in a special way to make it happen. But as explained above, in JavaScript, all functions are naturally closures (there is only one exclusion, to be covered in ). +A [closure](https://en.wikipedia.org/wiki/Closure_(computer_programming)) is a function that remembers its outer variables and can access them. In some languages, that's not possible, or a function should be written in a special way to make it happen. But as explained above, in JavaScript, all functions are naturally closures (there is only one exception, to be covered in ). -That is: they automatically remember where they were created using a hidden `[[Environment]]` property, and all of them can access outer variables. +That is: they automatically remember where they were created using a hidden `[[Environment]]` property, and then their code can access outer variables. -When on an interview, a frontend developer gets a question about "what's a closure?", a valid answer would be a definition of the closure and an explanation that all functions in JavaScript are closures, and maybe few more words about technical details: the `[[Environment]]` property and how Lexical Environments work. +When on an interview, a frontend developer gets a question about "what's a closure?", a valid answer would be a definition of the closure and an explanation that all functions in JavaScript are closures, and maybe a few more words about technical details: the `[[Environment]]` property and how Lexical Environments work. ``` +<<<<<<< HEAD ## Code blocks and loops, IIFE The examples above concentrated on functions. But a Lexical Environment exists for any code block `{...}`. @@ -541,38 +669,32 @@ There exist other ways besides parentheses to tell JavaScript that we mean a Fun In all the above cases we declare a Function Expression and run it immediately. +======= +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ## Garbage collection -Usually, a Lexical Environment is cleaned up and deleted after the function run. For instance: - -```js -function f() { - let value1 = 123; - let value2 = 456; -} +Usually, a Lexical Environment is removed from memory with all the variables after the function call finishes. That's because there are no references to it. As any JavaScript object, it's only kept in memory while it's reachable. -f(); -``` +However, if there's a nested function that is still reachable after the end of a function, then it has `[[Environment]]` property that references the lexical environment. -Here two values are technically the properties of the Lexical Environment. But after `f()` finishes that Lexical Environment becomes unreachable, so it's deleted from the memory. +In that case the Lexical Environment is still reachable even after the completion of the function, so it stays alive. -...But if there's a nested function that is still reachable after the end of `f`, then its `[[Environment]]` reference keeps the outer lexical environment alive as well: +For example: ```js function f() { let value = 123; - function g() { alert(value); } - -*!* - return g; -*/!* + return function() { + alert(value); + } } -let g = f(); // g is reachable, and keeps the outer lexical environment in memory +let g = f(); // g.[[Environment]] stores a reference to the Lexical Environment +// of the corresponding f() call ``` -Please note that if `f()` is called many times, and resulting functions are saved, then the corresponding Lexical Environment objects will also be retained in memory. All 3 of them in the code below: +Please note that if `f()` is called many times, and resulting functions are saved, then all corresponding Lexical Environment objects will also be retained in memory. In the code below, all 3 of them: ```js function f() { @@ -583,25 +705,23 @@ function f() { // 3 functions in array, every one of them links to Lexical Environment // from the corresponding f() run -// LE LE LE let arr = [f(), f(), f()]; ``` A Lexical Environment object dies when it becomes unreachable (just like any other object). In other words, it exists only while there's at least one nested function referencing it. -In the code below, after `g` becomes unreachable, enclosing Lexical Environment (and hence the `value`) is cleaned from memory; +In the code below, after the nested function is removed, its enclosing Lexical Environment (and hence the `value`) is cleaned from memory: ```js function f() { let value = 123; - function g() { alert(value); } - - return g; + return function() { + alert(value); + } } -let g = f(); // while g is alive -// there corresponding Lexical Environment lives +let g = f(); // while g function exists, the value stays in memory g = null; // ...and now the memory is cleaned up ``` @@ -610,9 +730,9 @@ g = null; // ...and now the memory is cleaned up As we've seen, in theory while a function is alive, all outer variables are also retained. -But in practice, JavaScript engines try to optimize that. They analyze variable usage and if it's easy to see that an outer variable is not used -- it is removed. +But in practice, JavaScript engines try to optimize that. They analyze variable usage and if it's obvious from the code that an outer variable is not used -- it is removed. -**An important side effect in V8 (Chrome, Opera) is that such variable will become unavailable in debugging.** +**An important side effect in V8 (Chrome, Edge, Opera) is that such variable will become unavailable in debugging.** Try running the example below in Chrome with the Developer Tools open. @@ -623,7 +743,7 @@ function f() { let value = Math.random(); function g() { - debugger; // in console: type alert( value ); No such variable! + debugger; // in console: type alert(value); No such variable! } return g; @@ -644,7 +764,7 @@ function f() { let value = "the closest value"; function g() { - debugger; // in console: type alert( value ); Surprise! + debugger; // in console: type alert(value); Surprise! } return g; @@ -654,9 +774,6 @@ let g = f(); g(); ``` -```warn header="See ya!" -This feature of V8 is good to know. If you are debugging with Chrome/Opera, sooner or later you will meet it. +This feature of V8 is good to know. If you are debugging with Chrome/Edge/Opera, sooner or later you will meet it. -That is not a bug in the debugger, but rather a special feature of V8. Perhaps it will be changed sometime. -You always can check for it by running the examples on this page. -``` +That is not a bug in the debugger, but rather a special feature of V8. Perhaps it will be changed sometime. You can always check for it by running the examples on this page. diff --git a/1-js/06-advanced-functions/03-closure/closure-function-declaration.svg b/1-js/06-advanced-functions/03-closure/closure-function-declaration.svg new file mode 100644 index 000000000..3ef787875 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/closure-function-declaration.svg @@ -0,0 +1 @@ +outernullexecution startphrase: <uninitialized> say: function... \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/closure-makecounter-environment.svg b/1-js/06-advanced-functions/03-closure/closure-makecounter-environment.svg new file mode 100644 index 000000000..f78441712 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/closure-makecounter-environment.svg @@ -0,0 +1 @@ +null[[Environment]]makeCounter: function counter: undefinedcount: 0outerouter \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/closure-makecounter-nested-call-2.svg b/1-js/06-advanced-functions/03-closure/closure-makecounter-nested-call-2.svg new file mode 100644 index 000000000..3950a8faa --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/closure-makecounter-nested-call-2.svg @@ -0,0 +1 @@ +count: 1<empty>nullouterouteroutermakeCounter: function counter: functionmodified here \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/closure-makecounter-nested-call.svg b/1-js/06-advanced-functions/03-closure/closure-makecounter-nested-call.svg new file mode 100644 index 000000000..24315bf21 --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/closure-makecounter-nested-call.svg @@ -0,0 +1 @@ +count: 0<empty>nullouterouteroutermakeCounter: function counter: function \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/closure-makecounter.svg b/1-js/06-advanced-functions/03-closure/closure-makecounter.svg new file mode 100644 index 000000000..2ca06455a --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/closure-makecounter.svg @@ -0,0 +1 @@ +makeCounter: function counter: undefinedcount: 0nullglobal LexicalEnvironmentLexicalEnvironment of makeCounter() callouterouter \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/closure-variable-phrase.svg b/1-js/06-advanced-functions/03-closure/closure-variable-phrase.svg new file mode 100644 index 000000000..b9bb12fff --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/closure-variable-phrase.svg @@ -0,0 +1 @@ +phrase: "Bye"phrase: "Hello"phrase: undefinedphrase: <uninitialized>outernullexecution start \ No newline at end of file diff --git a/1-js/06-advanced-functions/03-closure/variable-scope-lookup.svg b/1-js/06-advanced-functions/03-closure/variable-scope-lookup.svg new file mode 100644 index 000000000..f1f1d3b1d --- /dev/null +++ b/1-js/06-advanced-functions/03-closure/variable-scope-lookup.svg @@ -0,0 +1 @@ +functionUser(name){this.sayHi=function(){alert(name);};}letuser=newUser("John");user.sayHi(); \ No newline at end of file diff --git a/1-js/06-advanced-functions/04-var/article.md b/1-js/06-advanced-functions/04-var/article.md index 0a3666641..28d7a76ec 100644 --- a/1-js/06-advanced-functions/04-var/article.md +++ b/1-js/06-advanced-functions/04-var/article.md @@ -1,41 +1,38 @@ # The old "var" +```smart header="This article is for understanding old scripts" +The information in this article is useful for understanding old scripts. + +That's not how we write new code. +``` + In the very first chapter about [variables](info:variables), we mentioned three ways of variable declaration: 1. `let` 2. `const` 3. `var` -`let` and `const` behave exactly the same way in terms of Lexical Environments. - -But `var` is a very different beast, that originates from very old times. It's generally not used in modern scripts, but still lurks in the old ones. - -If you don't plan on meeting such scripts you may even skip this chapter or postpone it, but then there's a chance that it bites you later. - -From the first sight, `var` behaves similar to `let`. That is, declares a variable: +The `var` declaration is similar to `let`. Most of the time we can replace `let` by `var` or vice-versa and expect things to work: ```js run -function sayHi() { - var phrase = "Hello"; // local variable, "var" instead of "let" +var message = "Hi"; +alert(message); // Hi +``` - alert(phrase); // Hello -} +But internally `var` is a very different beast, that originates from very old times. It's generally not used in modern scripts, but still lurks in the old ones. -sayHi(); +If you don't plan on meeting such scripts you may even skip this chapter or postpone it. -alert(phrase); // Error, phrase is not defined -``` - -...But here are the differences. +On the other hand, it's important to understand differences when migrating old scripts from `var` to `let`, to avoid odd errors. ## "var" has no block scope -`var` variables are either function-wide or global, they are visible through blocks. +Variables, declared with `var`, are either function-scoped or global-scoped. They are visible through blocks. For instance: -```js +```js run if (true) { var test = true; // use "var" instead of "let" } @@ -45,23 +42,37 @@ alert(test); // true, the variable lives after if */!* ``` -If we used `let test` on the 2nd line, then it wouldn't be visible to `alert`. But `var` ignores code blocks, so we've got a global `test`. +As `var` ignores code blocks, we've got a global variable `test`. + +If we used `let test` instead of `var test`, then the variable would only be visible inside `if`: + +```js run +if (true) { + let test = true; // use "let" +} + +*!* +alert(test); // ReferenceError: test is not defined +*/!* +``` The same thing for loops: `var` cannot be block- or loop-local: -```js +```js run for (var i = 0; i < 10; i++) { + var one = 1; // ... } *!* -alert(i); // 10, "i" is visible after loop, it's a global variable +alert(i); // 10, "i" is visible after loop, it's a global variable +alert(one); // 1, "one" is visible after loop, it's a global variable */!* ``` If a code block is inside a function, then `var` becomes a function-level variable: -```js +```js run function sayHi() { if (true) { var phrase = "Hello"; @@ -71,12 +82,32 @@ function sayHi() { } sayHi(); -alert(phrase); // Error: phrase is not defined +alert(phrase); // ReferenceError: phrase is not defined ``` -As we can see, `var` pierces through `if`, `for` or other code blocks. That's because a long time ago in JavaScript blocks had no Lexical Environments. And `var` is a remnant of that. +As we can see, `var` pierces through `if`, `for` or other code blocks. That's because a long time ago in JavaScript, blocks had no Lexical Environments, and `var` is a remnant of that. + +## "var" tolerates redeclarations + +If we declare the same variable with `let` twice in the same scope, that's an error: + +```js run +let user; +let user; // SyntaxError: 'user' has already been declared +``` -## "var" are processed at the function start +With `var`, we can redeclare a variable any number of times. If we use `var` with an already-declared variable, it's just ignored: + +```js run +var user = "Pete"; + +var user = "John"; // this "var" does nothing (already declared) +// ...it doesn't trigger an error + +alert(user); // John +``` + +## "var" variables can be declared below their use `var` declarations are processed when the function starts (or script starts for globals). @@ -84,7 +115,7 @@ In other words, `var` variables are defined from the beginning of the function, So this code: -```js +```js run function sayHi() { phrase = "Hello"; @@ -94,11 +125,12 @@ function sayHi() { var phrase; */!* } +sayHi(); ``` ...Is technically the same as this (moved `var phrase` above): -```js +```js run function sayHi() { *!* var phrase; @@ -108,11 +140,12 @@ function sayHi() { alert(phrase); } +sayHi(); ``` ...Or even as this (remember, code blocks are ignored): -```js +```js run function sayHi() { phrase = "Hello"; // (*) @@ -124,6 +157,7 @@ function sayHi() { alert(phrase); } +sayHi(); ``` People also call such behavior "hoisting" (raising), because all `var` are "hoisted" (raised) to the top of the function. @@ -132,11 +166,11 @@ So in the example above, `if (false)` branch never executes, but that doesn't ma **Declarations are hoisted, but assignments are not.** -That's better to demonstrate with an example, like this: +That's best demonstrated with an example: ```js run function sayHi() { - alert(phrase); + alert(phrase); *!* var phrase = "Hello"; @@ -171,15 +205,83 @@ sayHi(); Because all `var` declarations are processed at the function start, we can reference them at any place. But variables are undefined until the assignments. -In both examples above `alert` runs without an error, because the variable `phrase` exists. But its value is not yet assigned, so it shows `undefined`. +In both examples above, `alert` runs without an error, because the variable `phrase` exists. But its value is not yet assigned, so it shows `undefined`. + +## IIFE + +In the past, as there was only `var`, and it has no block-level visibility, programmers invented a way to emulate it. What they did was called "immediately-invoked function expressions" (abbreviated as IIFE). + +That's not something we should use nowadays, but you can find them in old scripts. + +An IIFE looks like this: + +```js run +(function() { + + var message = "Hello"; + + alert(message); // Hello + +})(); +``` + +Here, a Function Expression is created and immediately called. So the code executes right away and has its own private variables. + +The Function Expression is wrapped with parenthesis `(function {...})`, because when JavaScript engine encounters `"function"` in the main code, it understands it as the start of a Function Declaration. But a Function Declaration must have a name, so this kind of code will give an error: + +```js run +// Tries to declare and immediately call a function +function() { // <-- SyntaxError: Function statements require a function name + + var message = "Hello"; + + alert(message); // Hello + +}(); +``` + +Even if we say: "okay, let's add a name", that won't work, as JavaScript does not allow Function Declarations to be called immediately: + +```js run +// syntax error because of parentheses below +function go() { + +}(); // <-- can't call Function Declaration immediately +``` + +So, the parentheses around the function is a trick to show JavaScript that the function is created in the context of another expression, and hence it's a Function Expression: it needs no name and can be called immediately. + +There exist other ways besides parentheses to tell JavaScript that we mean a Function Expression: + +```js run +// Ways to create IIFE + +*!*(*/!*function() { + alert("Parentheses around the function"); +}*!*)*/!*(); + +*!*(*/!*function() { + alert("Parentheses around the whole thing"); +}()*!*)*/!*; + +*!*!*/!*function() { + alert("Bitwise NOT operator starts the expression"); +}(); + +*!*+*/!*function() { + alert("Unary plus starts the expression"); +}(); +``` + +In all the above cases we declare a Function Expression and run it immediately. Let's note again: nowadays there's no reason to write such code. ## Summary -There are two main differences of `var`: +There are two main differences of `var` compared to `let/const`: -1. Variables have no block scope, they are visible minimum at the function level. -2. Variable declarations are processed at function start. +1. `var` variables have no block scope, their visibility is scoped to current function, or global, if declared outside function. +2. `var` declarations are processed at function start (script start for globals). -There's one more minor difference related to the global object, we'll cover that in the next chapter. +There's one more very minor difference related to the global object, that we'll cover in the next chapter. -These differences are actually a bad thing most of the time. Block-level variables is such a great thing. That's why `let` was introduced in the standard long ago, and is now a major way (along with `const`) to declare a variable. +These differences make `var` worse than `let` most of the time. Block-level variables is such a great thing. That's why `let` was introduced in the standard long ago, and is now a major way (along with `const`) to declare a variable. diff --git a/1-js/06-advanced-functions/05-global-object/article.md b/1-js/06-advanced-functions/05-global-object/article.md index da4adc2b6..cf4839d94 100644 --- a/1-js/06-advanced-functions/05-global-object/article.md +++ b/1-js/06-advanced-functions/05-global-object/article.md @@ -1,155 +1,89 @@ # Global object -The global object provides variables and functions that are available anywhere. Mostly, the ones that are built into the language or the host environment. +The global object provides variables and functions that are available anywhere. By default, those that are built into the language or the environment. -In a browser it is named "window", for Node.js it is "global", for other environments it may have another name. +In a browser it is named `window`, for Node.js it is `global`, for other environments it may have another name. -For instance, we can call `alert` as a method of `window`: +Recently, `globalThis` was added to the language, as a standardized name for a global object, that should be supported across all environments. It's supported in all major browsers. + +We'll use `window` here, assuming that our environment is a browser. If your script may run in other environments, it's better to use `globalThis` instead. + +All properties of the global object can be accessed directly: ```js run alert("Hello"); - -// the same as +// is the same as window.alert("Hello"); ``` -We can reference other built-in functions like `Array` as `window.Array` and create our own properties on it. - -## Browser: the "window" object - -For historical reasons, in-browser `window` object is a bit messed up. - -1. It provides the "browser window" functionality, besides playing the role of a global object. - - We can use `window` to access properties and methods, specific to the browser window: - - ```js run - alert(window.innerHeight); // shows the browser window height - - window.open('http://google.com'); // opens a new browser window - ``` - -2. Top-level `var` variables and function declarations automatically become properties of `window`. - - For instance: - ```js untrusted run no-strict refresh - var x = 5; - - alert(window.x); // 5 (var x becomes a property of window) - - window.x = 0; - - alert(x); // 0, variable modified - ``` - - Please note, that doesn't happen with more modern `let/const` declarations: - - ```js untrusted run no-strict refresh - let x = 5; - - alert(window.x); // undefined ("let" doesn't create a window property) - ``` - -3. Also, all scripts share the same global scope, so variables declared in one ` +In a browser, global functions and variables declared with `var` (not `let/const`!) become the property of the global object: - - ``` +```js run untrusted refresh +var gVar = 5; -4. And, a minor thing, but still: the value of `this` in the global scope is `window`. - - ```js untrusted run no-strict refresh - alert(this); // window - ``` - -Why was it made like this? At the time of the language creation, the idea to merge multiple aspects into a single `window` object was to "make things simple". But since then many things changed. Tiny scripts became big applications that require proper architecture. - -Is it good that different scripts (possibly from different sources) see variables of each other? - -No, it's not, because it may lead to naming conflicts: the same variable name can be used in two scripts for different purposes, so they will conflict with each other. - -As of now, the multi-purpose `window` is considered a design mistake in the language. - -Luckily, there's a "road out of hell", called "JavaScript modules". - -If we set `type="module"` attribute on a ` - ``` +alert(window.gVar); // 5 (became a property of the global object) +``` -- Two modules that do not see variables of each other: +Function declarations have the same effect (statements with `function` keyword in the main code flow, not function expressions). - ```html run - +Please don't rely on that! This behavior exists for compatibility reasons. Modern scripts use [JavaScript modules](info:modules) where such a thing doesn't happen. - - ``` +If we used `let` instead, such thing wouldn't happen: -- And, the last minor thing, the top-level value of `this` in a module is `undefined` (why should it be `window` anyway?): +```js run untrusted refresh +let gLet = 5; - ```html run - - ``` +alert(window.gLet); // undefined (doesn't become a property of the global object) +``` -**Using ` -``` - -If you run it, the changes to `i` will show up after the whole count finishes. - -And if we use `setTimeout` to split it into pieces then changes are applied in-between the runs, so this looks better: - -```html run -
- - -``` - -Now the `
` shows increasing values of `i`. - ## Summary -- Methods `setInterval(func, delay, ...args)` and `setTimeout(func, delay, ...args)` allow to run the `func` regularly/once after `delay` milliseconds. -- To cancel the execution, we should call `clearInterval/clearTimeout` with the value returned by `setInterval/setTimeout`. -- Nested `setTimeout` calls is a more flexible alternative to `setInterval`. Also they can guarantee the minimal time *between* the executions. -- Zero-timeout scheduling `setTimeout(...,0)` is used to schedule the call "as soon as possible, but after the current code is complete". - -Some use cases of `setTimeout(...,0)`: -- To split CPU-hungry tasks into pieces, so that the script doesn't "hang" -- To let the browser do something else while the process is going on (paint the progress bar). +- Methods `setTimeout(func, delay, ...args)` and `setInterval(func, delay, ...args)` allow us to run the `func` once/regularly after `delay` milliseconds. +- To cancel the execution, we should call `clearTimeout/clearInterval` with the value returned by `setTimeout/setInterval`. +- Nested `setTimeout` calls are a more flexible alternative to `setInterval`, allowing us to set the time *between* executions more precisely. +- Zero delay scheduling with `setTimeout(func, 0)` (the same as `setTimeout(func)`) is used to schedule the call "as soon as possible, but after the current script is complete". +- The browser limits the minimal delay for five or more nested calls of `setTimeout` or for `setInterval` (after 5th call) to 4ms. That's for historical reasons. -Please note that all scheduling methods do not *guarantee* the exact delay. We should not rely on that in the scheduled code. +Please note that all scheduling methods do not *guarantee* the exact delay. For example, the in-browser timer may slow down for a lot of reasons: - The CPU is overloaded. - The browser tab is in the background mode. -- The laptop is on battery. +- The laptop is on battery saving mode. -All that may increase the minimal timer resolution (the minimal delay) to 300ms or even 1000ms depending on the browser and settings. +All that may increase the minimal timer resolution (the minimal delay) to 300ms or even 1000ms depending on the browser and OS-level performance settings. diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/_js.view/solution.js b/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/_js.view/solution.js index 9ef503703..d5a09efb3 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/_js.view/solution.js +++ b/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/_js.view/solution.js @@ -1,11 +1,12 @@ function spy(func) { function wrapper(...args) { + // using ...args instead of arguments to store "real" array in wrapper.calls wrapper.calls.push(args); - return func.apply(this, arguments); + return func.apply(this, args); } wrapper.calls = []; return wrapper; -} \ No newline at end of file +} diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/solution.md b/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/solution.md index 19a072014..0c8a211b4 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/solution.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/01-spy-decorator/solution.md @@ -1 +1 @@ -Here we can use `calls.push(args)` to store all arguments in the log and `f.apply(this, args)` to forward the call. +The wrapper returned by `spy(f)` should store all arguments and then use `f.apply` to forward the call. diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/solution.js b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/solution.js index 065a77d1f..661dd0cf4 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/solution.js +++ b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/solution.js @@ -1,15 +1,7 @@ -function debounce(f, ms) { - - let isCooldown = false; - +function debounce(func, ms) { + let timeout; return function() { - if (isCooldown) return; - - f.apply(this, arguments); - - isCooldown = true; - - setTimeout(() => isCooldown = false, ms); + clearTimeout(timeout); + timeout = setTimeout(() => func.apply(this, arguments), ms); }; - -} \ No newline at end of file +} diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/test.js b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/test.js index 16dc171e1..750e649f8 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/test.js +++ b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/_js.view/test.js @@ -1,41 +1,48 @@ -describe("debounce", function() { - before(function() { +describe('debounce', function () { + before(function () { this.clock = sinon.useFakeTimers(); }); - after(function() { + after(function () { this.clock.restore(); }); - it("calls the function at maximum once in ms milliseconds", function() { - let log = ''; + it('for one call - runs it after given ms', function () { + const f = sinon.spy(); + const debounced = debounce(f, 1000); - function f(a) { - log += a; - } + debounced('test'); + assert(f.notCalled, 'not called immediately'); + this.clock.tick(1000); + assert(f.calledOnceWith('test'), 'called after 1000ms'); + }); - f = debounce(f, 1000); + it('for 3 calls - runs the last one after given ms', function () { + const f = sinon.spy(); + const debounced = debounce(f, 1000); - f(1); // runs at once - f(2); // ignored + debounced('a'); + setTimeout(() => debounced('b'), 200); // ignored (too early) + setTimeout(() => debounced('c'), 500); // runs (1000 ms passed) + this.clock.tick(1000); - setTimeout(() => f(3), 100); // ignored (too early) - setTimeout(() => f(4), 1100); // runs (1000 ms passed) - setTimeout(() => f(5), 1500); // ignored (less than 1000 ms from the last run) + assert(f.notCalled, 'not called after 1000ms'); - this.clock.tick(5000); - assert.equal(log, "14"); + this.clock.tick(500); + + assert(f.calledOnceWith('c'), 'called after 1500ms'); }); - it("keeps the context of the call", function() { + it('keeps the context of the call', function () { let obj = { f() { assert.equal(this, obj); - } + }, }; obj.f = debounce(obj.f, 1000); - obj.f("test"); + obj.f('test'); + this.clock.tick(5000); }); - -}); \ No newline at end of file + +}); diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/debounce.svg b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/debounce.svg new file mode 100644 index 000000000..e624ce020 --- /dev/null +++ b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/debounce.svg @@ -0,0 +1 @@ +200ms1500ms1000ms0cf(a)f(b)f(c)500mstimecalls: after 1000ms \ No newline at end of file diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/debounce.view/index.html b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/debounce.view/index.html new file mode 100644 index 000000000..e3b4d5842 --- /dev/null +++ b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/debounce.view/index.html @@ -0,0 +1,24 @@ + + + +Function handler is called on this input: +
+ + +

+ +Debounced function debounce(handler, 1000) is called on this input: +
+ + +

+ + + \ No newline at end of file diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/solution.md b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/solution.md index 4f5867ded..83e75f315 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/solution.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/solution.md @@ -1,28 +1,13 @@ ```js demo -function debounce(f, ms) { - - let isCooldown = false; - +function debounce(func, ms) { + let timeout; return function() { - if (isCooldown) return; - - f.apply(this, arguments); - - isCooldown = true; - - setTimeout(() => isCooldown = false, ms); + clearTimeout(timeout); + timeout = setTimeout(() => func.apply(this, arguments), ms); }; - } -``` - -A call to `debounce` returns a wrapper. There may be two states: -- `isCooldown = false` -- ready to run. -- `isCooldown = true` -- waiting for the timeout. - -In the first call `isCooldown` is falsy, so the call proceeds, and the state changes to `true`. +``` -While `isCooldown` is true, all other calls are ignored. +A call to `debounce` returns a wrapper. When called, it schedules the original function call after given `ms` and cancels the previous such timeout. -Then `setTimeout` reverts it to `false` after the given delay. diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/task.md b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/task.md index 466c6bc3f..5b0fcc5f8 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/task.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/03-debounce/task.md @@ -4,21 +4,48 @@ importance: 5 # Debounce decorator -The result of `debounce(f, ms)` decorator should be a wrapper that passes the call to `f` at maximum once per `ms` milliseconds. +The result of `debounce(f, ms)` decorator is a wrapper that suspends calls to `f` until there's `ms` milliseconds of inactivity (no calls, "cooldown period"), then invokes `f` once with the latest arguments. -In other words, when we call a "debounced" function, it guarantees that all other future in the closest `ms` milliseconds will be ignored. +In other words, `debounce` is like a secretary that accepts "phone calls", and waits until there's `ms` milliseconds of being quiet. And only then it transfers the latest call information to "the boss" (calls the actual `f`). -For instance: +For instance, we had a function `f` and replaced it with `f = debounce(f, 1000)`. -```js no-beautify -let f = debounce(alert, 1000); +Then if the wrapped function is called at 0ms, 200ms and 500ms, and then there are no calls, then the actual `f` will be only called once, at 1500ms. That is: after the cooldown period of 1000ms from the last call. -f(1); // runs immediately -f(2); // ignored +![](debounce.svg) -setTimeout( () => f(3), 100); // ignored ( only 100 ms passed ) -setTimeout( () => f(4), 1100); // runs -setTimeout( () => f(5), 1500); // ignored (less than 1000 ms from the last run) +...And it will get the arguments of the very last call, other calls are ignored. + +Here's the code for it (uses the debounce decorator from the [Lodash library](https://lodash.com/docs/4.17.15#debounce)): + +```js +let f = _.debounce(alert, 1000); + +f("a"); +setTimeout( () => f("b"), 200); +setTimeout( () => f("c"), 500); +// debounced function waits 1000ms after the last call and then runs: alert("c") +``` + +Now a practical example. Let's say, the user types something, and we'd like to send a request to the server when the input is finished. + +There's no point in sending the request for every character typed. Instead we'd like to wait, and then process the whole result. + +In a web-browser, we can setup an event handler -- a function that's called on every change of an input field. Normally, an event handler is called very often, for every typed key. But if we `debounce` it by 1000ms, then it will be only called once, after 1000ms after the last input. + +```online + +In this live example, the handler puts the result into a box below, try it: + +[iframe border=1 src="debounce" height=200] + +See? The second input calls the debounced function, so its content is processed after 1000ms from the last input. ``` -In practice `debounce` is useful for functions that retrieve/update something when we know that nothing new can be done in such a short period of time, so it's better not to waste resources. \ No newline at end of file +So, `debounce` is a great way to process a sequence of events: be it a sequence of key presses, mouse movements or something else. + +It waits the given time after the last call, and then runs its function, that can process the result. + +The task is to implement `debounce` decorator. + +Hint: that's just a few lines if you think about it :) diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/_js.view/test.js b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/_js.view/test.js index 5339c8d11..e671438f6 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/_js.view/test.js +++ b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/_js.view/test.js @@ -7,8 +7,8 @@ describe("throttle(f, 1000)", function() { } before(function() { - f1000 = throttle(f, 1000); this.clock = sinon.useFakeTimers(); + f1000 = throttle(f, 1000); }); it("the first call runs now", function() { @@ -44,4 +44,20 @@ describe("throttle(f, 1000)", function() { this.clock.restore(); }); -}); \ No newline at end of file +}); + +describe('throttle', () => { + + it('runs a forwarded call once', done => { + let log = ''; + const f = str => log += str; + const f10 = throttle(f, 10); + f10('once'); + + setTimeout(() => { + assert.equal(log, 'once'); + done(); + }, 20); + }); + +}); diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/solution.md b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/solution.md index c844016d3..6950664be 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/solution.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/solution.md @@ -12,11 +12,10 @@ function throttle(func, ms) { savedThis = this; return; } + isThrottled = true; func.apply(this, arguments); // (1) - isThrottled = true; - setTimeout(function() { isThrottled = false; // (3) if (savedArgs) { @@ -33,7 +32,7 @@ function throttle(func, ms) { A call to `throttle(func, ms)` returns `wrapper`. 1. During the first call, the `wrapper` just runs `func` and sets the cooldown state (`isThrottled = true`). -2. In this state all calls memorized in `savedArgs/savedThis`. Please note that both the context and the arguments are equally important and should be memorized. We need them simultaneously to reproduce the call. -3. ...Then after `ms` milliseconds pass, `setTimeout` triggers. The cooldown state is removed (`isThrottled = false`). And if we had ignored calls, then `wrapper` is executed with last memorized arguments and context. +2. In this state all calls are memorized in `savedArgs/savedThis`. Please note that both the context and the arguments are equally important and should be memorized. We need them simultaneously to reproduce the call. +3. After `ms` milliseconds pass, `setTimeout` triggers. The cooldown state is removed (`isThrottled = false`) and, if we had ignored calls, `wrapper` is executed with the last memorized arguments and context. The 3rd step runs not `func`, but `wrapper`, because we not only need to execute `func`, but once again enter the cooldown state and setup the timeout to reset it. diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md index 8dd77368d..cbd473196 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md @@ -4,35 +4,40 @@ importance: 5 # Throttle decorator -Create a "throttling" decorator `throttle(f, ms)` -- that returns a wrapper, passing the call to `f` at maximum once per `ms` milliseconds. Those calls that fall into the "cooldown" period, are ignored. +Create a "throttling" decorator `throttle(f, ms)` -- that returns a wrapper. -**The difference with `debounce` -- if an ignored call is the last during the cooldown, then it executes at the end of the delay.** +When it's called multiple times, it passes the call to `f` at maximum once per `ms` milliseconds. + +Compared to the debounce decorator, the behavior is completely different: +- `debounce` runs the function once after the "cooldown" period. Good for processing the final result. +- `throttle` runs it not more often than given `ms` time. Good for regular updates that shouldn't be very often. + +In other words, `throttle` is like a secretary that accepts phone calls, but bothers the boss (calls the actual `f`) not more often than once per `ms` milliseconds. Let's check the real-life application to better understand that requirement and to see where it comes from. **For instance, we want to track mouse movements.** -In browser we can setup a function to run at every mouse movement and get the pointer location as it moves. During an active mouse usage, this function usually runs very frequently, can be something like 100 times per second (every 10 ms). - -**The tracking function should update some information on the web-page.** +In a browser we can setup a function to run at every mouse movement and get the pointer location as it moves. During an active mouse usage, this function usually runs very frequently, can be something like 100 times per second (every 10 ms). +**We'd like to update some information on the web-page when the pointer moves.** -Updating function `update()` is too heavy to do it on every micro-movement. There is also no sense in making it more often than once per 100ms. +...But updating function `update()` is too heavy to do it on every micro-movement. There is also no sense in updating more often than once per 100ms. -So we'll wrap it into the decorator: use `throttle(update, 100)` as the function to run on each mouse move instead of the original `update()`. The decorator will be called often, but `update()` will be called at maximum once per 100ms. +So we'll wrap it into the decorator: use `throttle(update, 100)` as the function to run on each mouse move instead of the original `update()`. The decorator will be called often, but forward the call to `update()` at maximum once per 100ms. Visually, it will look like this: -1. For the first mouse movement the decorated variant passes the call to `update`. That's important, the user sees our reaction to their move immediately. +1. For the first mouse movement the decorated variant immediately passes the call to `update`. That's important, the user sees our reaction to their move immediately. 2. Then as the mouse moves on, until `100ms` nothing happens. The decorated variant ignores calls. -3. At the end of `100ms` -- one more `update` happens with the last coordinates. -4. Then, finally, the mouse stops somewhere. The decorated variant waits until `100ms` expire and then runs `update` with last coordinates. So, perhaps the most important, the final mouse coordinates are processed. +3. At the end of `100ms` -- one more `update` happens with the last coordinates. +4. Then, finally, the mouse stops somewhere. The decorated variant waits until `100ms` expire and then runs `update` with last coordinates. So, quite important, the final mouse coordinates are processed. A code example: ```js function f(a) { - console.log(a) -}; + console.log(a); +} // f1000 passes calls to f at maximum once per 1000 ms let f1000 = throttle(f, 1000); diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/article.md b/1-js/06-advanced-functions/09-call-apply-decorators/article.md index f2182b6fd..c5d785493 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/article.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/article.md @@ -6,9 +6,9 @@ JavaScript gives exceptional flexibility when dealing with functions. They can b Let's say we have a function `slow(x)` which is CPU-heavy, but its results are stable. In other words, for the same `x` it always returns the same result. -If the function is called often, we may want to cache (remember) the results for different `x` to avoid spending extra-time on recalculations. +If the function is called often, we may want to cache (remember) the results to avoid spending extra-time on recalculations. -But instead of adding that functionality into `slow()` we'll create a wrapper. As we'll see, there are many benefits of doing so. +But instead of adding that functionality into `slow()` we'll create a wrapper function, that adds caching. As we'll see, there are many benefits of doing so. Here's the code, and explanations follow: @@ -23,24 +23,24 @@ function cachingDecorator(func) { let cache = new Map(); return function(x) { - if (cache.has(x)) { // if the result is in the map - return cache.get(x); // return it + if (cache.has(x)) { // if there's such key in cache + return cache.get(x); // read the result from it } - let result = func(x); // otherwise call func + let result = func(x); // otherwise call func - cache.set(x, result); // and cache (remember) the result + cache.set(x, result); // and cache (remember) the result return result; }; } slow = cachingDecorator(slow); -alert( slow(1) ); // slow(1) is cached -alert( "Again: " + slow(1) ); // the same +alert( slow(1) ); // slow(1) is cached and the result returned +alert( "Again: " + slow(1) ); // slow(1) result returned from cache -alert( slow(2) ); // slow(2) is cached -alert( "Again: " + slow(2) ); // the same as the previous line +alert( slow(2) ); // slow(2) is cached and the result returned +alert( "Again: " + slow(2) ); // slow(2) result returned from cache ``` In the code above `cachingDecorator` is a *decorator*: a special function that takes another function and alters its behavior. @@ -49,21 +49,18 @@ The idea is that we can call `cachingDecorator` for any function, and it will re By separating caching from the main function code we also keep the main code simpler. -Now let's get into details of how it works. - The result of `cachingDecorator(func)` is a "wrapper": `function(x)` that "wraps" the call of `func(x)` into caching logic: ![](decorator-makecaching-wrapper.svg) -As we can see, the wrapper returns the result of `func(x)` "as is". From an outside code, the wrapped `slow` function still does the same. It just got a caching aspect added to its behavior. +From an outside code, the wrapped `slow` function still does the same. It just got a caching aspect added to its behavior. To summarize, there are several benefits of using a separate `cachingDecorator` instead of altering the code of `slow` itself: - The `cachingDecorator` is reusable. We can apply it to another function. -- The caching logic is separate, it did not increase the complexity of `slow` itself (if there were any). +- The caching logic is separate, it did not increase the complexity of `slow` itself (if there was any). - We can combine multiple decorators if needed (other decorators will follow). - ## Using "func.call" for the context The caching decorator mentioned above is not suited to work with object methods. @@ -78,7 +75,7 @@ let worker = { }, slow(x) { - // actually, there can be a scary CPU-heavy task here + // scary CPU-heavy task here alert("Called with " + x); return x * this.someMethod(); // (*) } @@ -152,8 +149,8 @@ let user = { name: "John" }; let admin = { name: "Admin" }; // use call to pass different objects as "this" -sayHi.call( user ); // this = John -sayHi.call( admin ); // this = Admin +sayHi.call( user ); // John +sayHi.call( admin ); // Admin ``` And here we use `call` to call `say` with the given context and phrase: @@ -170,10 +167,8 @@ let user = { name: "John" }; say.call( user, "Hello" ); // John: Hello ``` - In our case, we can use `call` in the wrapper to pass the context to the original function: - ```js run let worker = { someMethod() { @@ -214,7 +209,7 @@ To make it all clear, let's see more deeply how `this` is passed along: 2. So when `worker.slow(2)` is executed, the wrapper gets `2` as an argument and `this=worker` (it's the object before dot). 3. Inside the wrapper, assuming the result is not yet cached, `func.call(this, x)` passes the current `this` (`=worker`) and the current argument (`=2`) to the original method. -## Going multi-argument with "func.apply" +## Going multi-argument Now let's make `cachingDecorator` even more universal. Till now it was working only with single-argument functions. @@ -231,9 +226,7 @@ let worker = { worker.slow = cachingDecorator(worker.slow); ``` -We have two tasks to solve here. - -First is how to use both arguments `min` and `max` for the key in `cache` map. Previously, for a single argument `x` we could just `cache.set(x, result)` to save the result and `cache.get(x)` to retrieve it. But now we need to remember the result for a *combination of arguments* `(min,max)`. The native `Map` takes single value only as the key. +Previously, for a single argument `x` we could just `cache.set(x, result)` to save the result and `cache.get(x)` to retrieve it. But now we need to remember the result for a *combination of arguments* `(min,max)`. The native `Map` takes single value only as the key. There are many solutions possible: @@ -241,85 +234,11 @@ There are many solutions possible: 2. Use nested maps: `cache.set(min)` will be a `Map` that stores the pair `(max, result)`. So we can get `result` as `cache.get(min).get(max)`. 3. Join two values into one. In our particular case we can just use a string `"min,max"` as the `Map` key. For flexibility, we can allow to provide a *hashing function* for the decorator, that knows how to make one value from many. - For many practical applications, the 3rd variant is good enough, so we'll stick to it. -The second task to solve is how to pass many arguments to `func`. Currently, the wrapper `function(x)` assumes a single argument, and `func.call(this, x)` passes it. - -Here we can use another built-in method [func.apply](mdn:js/Function/apply). - -The syntax is: - -```js -func.apply(context, args) -``` - -It runs the `func` setting `this=context` and using an array-like object `args` as the list of arguments. - - -For instance, these two calls are almost the same: - -```js -func(1, 2, 3); -func.apply(context, [1, 2, 3]) -``` - -Both run `func` giving it arguments `1,2,3`. But `apply` also sets `this=context`. - -For instance, here `say` is called with `this=user` and `messageData` as a list of arguments: - -```js run -function say(time, phrase) { - alert(`[${time}] ${this.name}: ${phrase}`); -} - -let user = { name: "John" }; - -let messageData = ['10:00', 'Hello']; // become time and phrase - -*!* -// user becomes this, messageData is passed as a list of arguments (time, phrase) -say.apply(user, messageData); // [10:00] John: Hello (this=user) -*/!* -``` - -The only syntax difference between `call` and `apply` is that `call` expects a list of arguments, while `apply` takes an array-like object with them. - -We already know the spread operator `...` from the chapter that can pass an array (or any iterable) as a list of arguments. So if we use it with `call`, we can achieve almost the same as `apply`. - -These two calls are almost equivalent: - -```js -let args = [1, 2, 3]; - -*!* -func.call(context, ...args); // pass an array as list with spread operator -func.apply(context, args); // is same as using apply -*/!* -``` - -If we look more closely, there's a minor difference between such uses of `call` and `apply`. - -- The spread operator `...` allows to pass *iterable* `args` as the list to `call`. -- The `apply` accepts only *array-like* `args`. - -So, these calls complement each other. Where we expect an iterable, `call` works, where we expect an array-like, `apply` works. - -And if `args` is both iterable and array-like, like a real array, then we technically could use any of them, but `apply` will probably be faster, because it's a single operation. Most JavaScript engines internally optimize it better than a pair `call + spread`. - -One of the most important uses of `apply` is passing the call to another function, like this: - -```js -let wrapper = function() { - return anotherFunction.apply(this, arguments); -}; -``` - -That's called *call forwarding*. The `wrapper` passes everything it gets: the context `this` and arguments to `anotherFunction` and returns back its result. +Also we need to pass not just `x`, but all arguments in `func.call`. Let's recall that in a `function()` we can get a pseudo-array of its arguments as `arguments`, so `func.call(this, x)` should be replaced with `func.call(this, ...arguments)`. -When an external code calls such `wrapper`, it is indistinguishable from the call of the original function. - -Now let's bake it all into the more powerful `cachingDecorator`: +Here's a more powerful `cachingDecorator`: ```js run let worker = { @@ -340,7 +259,7 @@ function cachingDecorator(func, hash) { } *!* - let result = func.apply(this, arguments); // (**) + let result = func.call(this, ...arguments); // (**) */!* cache.set(key, result); @@ -358,13 +277,54 @@ alert( worker.slow(3, 5) ); // works alert( "Again " + worker.slow(3, 5) ); // same (cached) ``` -Now the wrapper operates with any number of arguments. +Now it works with any number of arguments (though the hash function would also need to be adjusted to allow any number of arguments. An interesting way to handle this will be covered below). There are two changes: - In the line `(*)` it calls `hash` to create a single key from `arguments`. Here we use a simple "joining" function that turns arguments `(3, 5)` into the key `"3,5"`. More complex cases may require other hashing functions. -- Then `(**)` uses `func.apply` to pass both the context and all arguments the wrapper got (no matter how many) to the original function. +- Then `(**)` uses `func.call(this, ...arguments)` to pass both the context and all arguments the wrapper got (not just the first one) to the original function. + +## func.apply + +Instead of `func.call(this, ...arguments)` we could use `func.apply(this, arguments)`. + +The syntax of built-in method [func.apply](mdn:js/Function/apply) is: + +```js +func.apply(context, args) +``` + +It runs the `func` setting `this=context` and using an array-like object `args` as the list of arguments. + +The only syntax difference between `call` and `apply` is that `call` expects a list of arguments, while `apply` takes an array-like object with them. + +So these two calls are almost equivalent: + +```js +func.call(context, ...args); +func.apply(context, args); +``` + +They perform the same call of `func` with given context and arguments. + +There's only a subtle difference regarding `args`: + +- The spread syntax `...` allows to pass *iterable* `args` as the list to `call`. +- The `apply` accepts only *array-like* `args`. +...And for objects that are both iterable and array-like, such as a real array, we can use any of them, but `apply` will probably be faster, because most JavaScript engines internally optimize it better. + +Passing all arguments along with the context to another function is called *call forwarding*. + +That's the simplest form of it: + +```js +let wrapper = function() { + return func.apply(this, arguments); +}; +``` + +When an external code calls such `wrapper`, it is indistinguishable from the call of the original function `func`. ## Borrowing a method [#method-borrowing] @@ -386,7 +346,7 @@ function hash(args) { } ``` -...Unfortunately, that won't work. Because we are calling `hash(arguments)` and `arguments` object is both iterable and array-like, but not a real array. +...Unfortunately, that won't work. Because we are calling `hash(arguments)`, and `arguments` object is both iterable and array-like, but not a real array. So calling `join` on it would fail, as we can see below: @@ -414,7 +374,7 @@ hash(1, 2); The trick is called *method borrowing*. -We take (borrow) a join method from a regular array `[].join`. And use `[].join.call` to run it in the context of `arguments`. +We take (borrow) a join method from a regular array (`[].join`) and use `[].join.call` to run it in the context of `arguments`. Why does it work? @@ -432,12 +392,20 @@ Taken from the specification almost "as-is": So, technically it takes `this` and joins `this[0]`, `this[1]` ...etc together. It's intentionally written in a way that allows any array-like `this` (not a coincidence, many methods follow this practice). That's why it also works with `this=arguments`. +## Decorators and function properties + +It is generally safe to replace a function or a method with a decorated one, except for one little thing. If the original function had properties on it, like `func.calledCount` or whatever, then the decorated one will not provide them. Because that is a wrapper. So one needs to be careful if one uses them. + +E.g. in the example above if `slow` function had any properties on it, then `cachingDecorator(slow)` is a wrapper without them. + +Some decorators may provide their own properties. E.g. a decorator may count how many times a function was invoked and how much time it took, and expose this information via wrapper properties. + +There exists a way to create decorators that keep access to function properties, but this requires using a special `Proxy` object to wrap a function. We'll discuss it later in the article . + ## Summary *Decorator* is a wrapper around a function that alters its behavior. The main job is still carried out by the function. -It is generally safe to replace a function or a method with a decorated one, except for one little thing. If the original function had properties on it, like `func.calledCount` or whatever, then the decorated one will not provide them. Because that is a wrapper. So one needs to be careful if one uses them. Some decorators provide their own properties. - Decorators can be seen as "features" or "aspects" that can be added to a function. We can add one or add many. And all this without changing its code! To implement `cachingDecorator`, we studied methods: @@ -450,10 +418,9 @@ The generic *call forwarding* is usually done with `apply`: ```js let wrapper = function() { return original.apply(this, arguments); -} +}; ``` -We also saw an example of *method borrowing* when we take a method from an object and `call` it in the context of another object. It is quite common to take array methods and apply them to arguments. The alternative is to use rest parameters object that is a real array. - +We also saw an example of *method borrowing* when we take a method from an object and `call` it in the context of another object. It is quite common to take array methods and apply them to `arguments`. The alternative is to use rest parameters object that is a real array. There are many decorators there in the wild. Check how well you got them by solving the tasks of this chapter. diff --git a/1-js/06-advanced-functions/10-bind/4-function-property-after-bind/task.md b/1-js/06-advanced-functions/10-bind/4-function-property-after-bind/task.md index 8cd18ec56..d6cfb44bf 100644 --- a/1-js/06-advanced-functions/10-bind/4-function-property-after-bind/task.md +++ b/1-js/06-advanced-functions/10-bind/4-function-property-after-bind/task.md @@ -4,7 +4,7 @@ importance: 5 # Function property after bind -There's a value in the property of a function. Will it change after `bind`? Why, elaborate? +There's a value in the property of a function. Will it change after `bind`? Why, or why not? ```js run function sayHi() { diff --git a/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md b/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md index 0cb673b12..4a381c0b4 100644 --- a/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md +++ b/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md @@ -1,5 +1,5 @@ -The error occurs because `ask` gets functions `loginOk/loginFail` without the object. +The error occurs because `askPassword` gets functions `loginOk/loginFail` without the object. When it calls them, they naturally assume `this=undefined`. @@ -38,6 +38,6 @@ An alternative solution could be: askPassword(() => user.loginOk(), () => user.loginFail()); ``` -Usually that also works, but may fail in more complex situations where `user` has a chance of being overwritten between the moments of asking and running `() => user.loginOk()`. - +Usually that also works and looks good. +It's a bit less reliable though in more complex situations where `user` variable might change *after* `askPassword` is called, but *before* the visitor answers and calls `() => user.loginOk()`. diff --git a/1-js/06-advanced-functions/10-bind/5-question-use-bind/task.md b/1-js/06-advanced-functions/10-bind/5-question-use-bind/task.md index eb19e6644..fe6a9b4eb 100644 --- a/1-js/06-advanced-functions/10-bind/5-question-use-bind/task.md +++ b/1-js/06-advanced-functions/10-bind/5-question-use-bind/task.md @@ -2,7 +2,7 @@ importance: 5 --- -# Ask losing this +# Fix a function that loses "this" The call to `askPassword()` in the code below should check the password and then call `user.loginOk/loginFail` depending on the answer. @@ -34,5 +34,3 @@ let user = { askPassword(user.loginOk, user.loginFail); */!* ``` - - diff --git a/1-js/06-advanced-functions/11-currying-partials/1-ask-currying/solution.md b/1-js/06-advanced-functions/10-bind/6-ask-partial/solution.md similarity index 100% rename from 1-js/06-advanced-functions/11-currying-partials/1-ask-currying/solution.md rename to 1-js/06-advanced-functions/10-bind/6-ask-partial/solution.md diff --git a/1-js/06-advanced-functions/11-currying-partials/1-ask-currying/task.md b/1-js/06-advanced-functions/10-bind/6-ask-partial/task.md similarity index 82% rename from 1-js/06-advanced-functions/11-currying-partials/1-ask-currying/task.md rename to 1-js/06-advanced-functions/10-bind/6-ask-partial/task.md index f8b83d7a2..c90851c2b 100644 --- a/1-js/06-advanced-functions/11-currying-partials/1-ask-currying/task.md +++ b/1-js/06-advanced-functions/10-bind/6-ask-partial/task.md @@ -8,7 +8,7 @@ The task is a little more complex variant of . The `user` object was modified. Now instead of two functions `loginOk/loginFail`, it has a single function `user.login(true/false)`. -What to pass `askPassword` in the code below, so that it calls `user.login(true)` as `ok` and `user.login(false)` as `fail`? +What should we pass `askPassword` in the code below, so that it calls `user.login(true)` as `ok` and `user.login(false)` as `fail`? ```js function askPassword(ok, fail) { diff --git a/1-js/06-advanced-functions/10-bind/article.md b/1-js/06-advanced-functions/10-bind/article.md index 06e2000ff..7a6e47b90 100644 --- a/1-js/06-advanced-functions/10-bind/article.md +++ b/1-js/06-advanced-functions/10-bind/article.md @@ -5,13 +5,13 @@ libs: # Function binding -When using `setTimeout` with object methods or passing object methods along, there's a known problem: "losing `this`". +When passing object methods as callbacks, for instance to `setTimeout`, there's a known problem: "losing `this`". -Suddenly, `this` just stops working right. The situation is typical for novice developers, but happens with experienced ones as well. +In this chapter we'll see the ways to fix it. ## Losing "this" -We already know that in JavaScript it's easy to lose `this`. Once a method is passed somewhere separately from the object -- `this` is lost. +We've already seen examples of losing `this`. Once a method is passed somewhere separately from the object -- `this` is lost. Here's how it may happen with `setTimeout`: @@ -37,7 +37,7 @@ let f = user.sayHi; setTimeout(f, 1000); // lost user context ``` -The method `setTimeout` in-browser is a little special: it sets `this=window` for the function call (for Node.js, `this` becomes the timer object, but doesn't really matter here). So for `this.firstName` it tries to get `window.firstName`, which does not exist. In other similar cases as we'll see, usually `this` just becomes `undefined`. +The method `setTimeout` in-browser is a little special: it sets `this=window` for the function call (for Node.js, `this` becomes the timer object, but doesn't really matter here). So for `this.firstName` it tries to get `window.firstName`, which does not exist. In other similar cases, usually `this` just becomes `undefined`. The task is quite typical -- we want to pass an object method somewhere else (here -- to the scheduler) where it will be called. How to make sure that it will be called in the right context? @@ -83,10 +83,12 @@ let user = { setTimeout(() => user.sayHi(), 1000); -// ...within 1 second -user = { sayHi() { alert("Another user in setTimeout!"); } }; +// ...the value of user changes within 1 second +user = { + sayHi() { alert("Another user in setTimeout!"); } +}; -// Another user in setTimeout?!? +// Another user in setTimeout! ``` The next solution guarantees that such thing won't happen. @@ -98,7 +100,7 @@ Functions provide a built-in method [bind](mdn:js/Function/bind) that allows to The basic syntax is: ```js -// more complex syntax will be little later +// more complex syntax will come a little later let boundFunc = func.bind(context); ``` @@ -123,7 +125,7 @@ funcUser(); // John */!* ``` -Here `func.bind(user)` as a "bound variant" of `func`, with fixed `this=user`. +Here `func.bind(user)` is a "bound variant" of `func`, with fixed `this=user`. All arguments are passed to the original `func` "as is", for instance: @@ -159,9 +161,16 @@ let user = { let sayHi = user.sayHi.bind(user); // (*) */!* +// can run it without an object sayHi(); // Hello, John! setTimeout(sayHi, 1000); // Hello, John! + +// even if the value of user changes within 1 second +// sayHi uses the pre-bound value which is reference to the old user object +user = { + sayHi() { alert("Another user in setTimeout!"); } +}; ``` In the line `(*)` we take the method `user.sayHi` and bind it to `user`. The `sayHi` is a "bound" function, that can be called alone or passed to `setTimeout` -- doesn't matter, the context will be right. @@ -178,8 +187,8 @@ let user = { let say = user.say.bind(user); -say("Hello"); // Hello, John ("Hello" argument is passed to say) -say("Bye"); // Bye, John ("Bye" is passed to say) +say("Hello"); // Hello, John! ("Hello" argument is passed to say) +say("Bye"); // Bye, John! ("Bye" is passed to say) ``` ````smart header="Convenience method: `bindAll`" @@ -193,11 +202,127 @@ for (let key in user) { } ``` -JavaScript libraries also provide functions for convenient mass binding , e.g. [_.bindAll(obj)](http://lodash.com/docs#bindAll) in lodash. +JavaScript libraries also provide functions for convenient mass binding , e.g. [_.bindAll(object, methodNames)](https://lodash.com/docs#bindAll) in lodash. ```` +## Partial functions + +Until now we have only been talking about binding `this`. Let's take it a step further. + +We can bind not only `this`, but also arguments. That's rarely done, but sometimes can be handy. + +The full syntax of `bind`: + +```js +let bound = func.bind(context, [arg1], [arg2], ...); +``` + +It allows to bind context as `this` and starting arguments of the function. + +For instance, we have a multiplication function `mul(a, b)`: + +```js +function mul(a, b) { + return a * b; +} +``` + +Let's use `bind` to create a function `double` on its base: + +```js run +function mul(a, b) { + return a * b; +} + +*!* +let double = mul.bind(null, 2); +*/!* + +alert( double(3) ); // = mul(2, 3) = 6 +alert( double(4) ); // = mul(2, 4) = 8 +alert( double(5) ); // = mul(2, 5) = 10 +``` + +The call to `mul.bind(null, 2)` creates a new function `double` that passes calls to `mul`, fixing `null` as the context and `2` as the first argument. Further arguments are passed "as is". + +That's called [partial function application](https://en.wikipedia.org/wiki/Partial_application) -- we create a new function by fixing some parameters of the existing one. + +Please note that we actually don't use `this` here. But `bind` requires it, so we must put in something like `null`. + +The function `triple` in the code below triples the value: + +```js run +function mul(a, b) { + return a * b; +} + +*!* +let triple = mul.bind(null, 3); +*/!* + +alert( triple(3) ); // = mul(3, 3) = 9 +alert( triple(4) ); // = mul(3, 4) = 12 +alert( triple(5) ); // = mul(3, 5) = 15 +``` + +Why do we usually make a partial function? + +The benefit is that we can create an independent function with a readable name (`double`, `triple`). We can use it and not provide the first argument every time as it's fixed with `bind`. + +In other cases, partial application is useful when we have a very generic function and want a less universal variant of it for convenience. + +For instance, we have a function `send(from, to, text)`. Then, inside a `user` object we may want to use a partial variant of it: `sendTo(to, text)` that sends from the current user. + +## Going partial without context + +What if we'd like to fix some arguments, but not the context `this`? For example, for an object method. + +The native `bind` does not allow that. We can't just omit the context and jump to arguments. + +Fortunately, a function `partial` for binding only arguments can be easily implemented. + +Like this: + +```js run +*!* +function partial(func, ...argsBound) { + return function(...args) { // (*) + return func.call(this, ...argsBound, ...args); + } +} +*/!* + +// Usage: +let user = { + firstName: "John", + say(time, phrase) { + alert(`[${time}] ${this.firstName}: ${phrase}!`); + } +}; + +// add a partial method with fixed time +user.sayNow = partial(user.say, new Date().getHours() + ':' + new Date().getMinutes()); + +user.sayNow("Hello"); +// Something like: +// [10:00] John: Hello! +``` + +The result of `partial(func[, arg1, arg2...])` call is a wrapper `(*)` that calls `func` with: +- Same `this` as it gets (for `user.sayNow` call it's `user`) +- Then gives it `...argsBound` -- arguments from the `partial` call (`"10:00"`) +- Then gives it `...args` -- arguments given to the wrapper (`"Hello"`) + +So easy to do it with the spread syntax, right? + +Also there's a ready [_.partial](https://lodash.com/docs#partial) implementation from lodash library. + ## Summary Method `func.bind(context, ...args)` returns a "bound variant" of function `func` that fixes the context `this` and first arguments if given. -Usually we apply `bind` to fix `this` in an object method, so that we can pass it somewhere. For example, to `setTimeout`. There are more reasons to `bind` in the modern development, we'll meet them later. +Usually we apply `bind` to fix `this` for an object method, so that we can pass it somewhere. For example, to `setTimeout`. + +When we fix some arguments of an existing function, the resulting (less universal) function is called *partially applied* or *partial*. + +Partials are convenient when we don't want to repeat the same argument over and over again. Like if we have a `send(from, to)` function, and `from` should always be the same for our task, we can get a partial and go on with it. diff --git a/1-js/06-advanced-functions/11-currying-partials/article.md b/1-js/06-advanced-functions/11-currying-partials/article.md deleted file mode 100644 index b97e6a5fc..000000000 --- a/1-js/06-advanced-functions/11-currying-partials/article.md +++ /dev/null @@ -1,309 +0,0 @@ -libs: - - lodash - ---- - -# Currying and partials - -Until now we have only been talking about binding `this`. Let's take it a step further. - -We can bind not only `this`, but also arguments. That's rarely done, but sometimes can be handy. - -The full syntax of `bind`: - -```js -let bound = func.bind(context, arg1, arg2, ...); -``` - -It allows to bind context as `this` and starting arguments of the function. - -For instance, we have a multiplication function `mul(a, b)`: - -```js -function mul(a, b) { - return a * b; -} -``` - -Let's use `bind` to create a function `double` on its base: - -```js run -function mul(a, b) { - return a * b; -} - -*!* -let double = mul.bind(null, 2); -*/!* - -alert( double(3) ); // = mul(2, 3) = 6 -alert( double(4) ); // = mul(2, 4) = 8 -alert( double(5) ); // = mul(2, 5) = 10 -``` - -The call to `mul.bind(null, 2)` creates a new function `double` that passes calls to `mul`, fixing `null` as the context and `2` as the first argument. Further arguments are passed "as is". - -That's called [partial function application](https://en.wikipedia.org/wiki/Partial_application) -- we create a new function by fixing some parameters of the existing one. - -Please note that here we actually don't use `this` here. But `bind` requires it, so we must put in something like `null`. - -The function `triple` in the code below triples the value: - -```js run -function mul(a, b) { - return a * b; -} - -*!* -let triple = mul.bind(null, 3); -*/!* - -alert( triple(3) ); // = mul(3, 3) = 9 -alert( triple(4) ); // = mul(3, 4) = 12 -alert( triple(5) ); // = mul(3, 5) = 15 -``` - -Why do we usually make a partial function? - -The benefit is that we can create an independent function with a readable name (`double`, `triple`). We can use it and not provide first argument of every time as it's fixed with `bind`. - -In other cases, partial application is useful when we have a very generic function and want a less universal variant of it for convenience. - -For instance, we have a function `send(from, to, text)`. Then, inside a `user` object we may want to use a partial variant of it: `sendTo(to, text)` that sends from the current user. - -## Going partial without context - -What if we'd like to fix some arguments, but not bind `this`? - -The native `bind` does not allow that. We can't just omit the context and jump to arguments. - -Fortunately, a `partial` function for binding only arguments can be easily implemented. - -Like this: - -```js run -*!* -function partial(func, ...argsBound) { - return function(...args) { // (*) - return func.call(this, ...argsBound, ...args); - } -} -*/!* - -// Usage: -let user = { - firstName: "John", - say(time, phrase) { - alert(`[${time}] ${this.firstName}: ${phrase}!`); - } -}; - -// add a partial method that says something now by fixing the first argument -user.sayNow = partial(user.say, new Date().getHours() + ':' + new Date().getMinutes()); - -user.sayNow("Hello"); -// Something like: -// [10:00] John: Hello! -``` - -The result of `partial(func[, arg1, arg2...])` call is a wrapper `(*)` that calls `func` with: -- Same `this` as it gets (for `user.sayNow` call it's `user`) -- Then gives it `...argsBound` -- arguments from the `partial` call (`"10:00"`) -- Then gives it `...args` -- arguments given to the wrapper (`"Hello"`) - -So easy to do it with the spread operator, right? - -Also there's a ready [_.partial](https://lodash.com/docs#partial) implementation from lodash library. - -## Currying - -Sometimes people mix up partial function application mentioned above with another thing named "currying". That's another interesting technique of working with functions that we just have to mention here. - -[Currying](https://en.wikipedia.org/wiki/Currying) is a transformation of functions that translates a function from callable as `f(a, b, c)` into callable as `f(a)(b)(c)`. In JavaScript, we usually make a wrapper to keep the original function. - -Currying doesn't call a function. It just transforms it. - -Let's create a helper `curry(f)` function that performs currying for a two-argument `f`. In other words, `curry(f)` for two-argument `f(a, b)` translates it into `f(a)(b)` - -```js run -*!* -function curry(f) { // curry(f) does the currying transform - return function(a) { - return function(b) { - return f(a, b); - }; - }; -} -*/!* - -// usage -function sum(a, b) { - return a + b; -} - -let carriedSum = curry(sum); - -alert( carriedSum(1)(2) ); // 3 -``` - -As you can see, the implementation is a series of wrappers. - -- The result of `curry(func)` is a wrapper `function(a)`. -- When it is called like `sum(1)`, the argument is saved in the Lexical Environment, and a new wrapper is returned `function(b)`. -- Then `sum(1)(2)` finally calls `function(b)` providing `2`, and it passes the call to the original multi-argument `sum`. - -More advanced implementations of currying like [_.curry](https://lodash.com/docs#curry) from lodash library do something more sophisticated. They return a wrapper that allows a function to be called normally when all arguments are supplied *or* returns a partial otherwise. - -```js -function curry(f) { - return function(...args) { - // if args.length == f.length (as many arguments as f has), - // then pass the call to f - // otherwise return a partial function that fixes args as first arguments - }; -} -``` - -## Currying? What for? - -To understand the benefits we definitely need a worthy real-life example. - -Advanced currying allows the function to be both callable normally and partially. - -For instance, we have the logging function `log(date, importance, message)` that formats and outputs the information. In real projects such functions also have many other useful features like sending logs over the network: - -```js -function log(date, importance, message) { - alert(`[${date.getHours()}:${date.getMinutes()}] [${importance}] ${message}`); -} -``` - -Let's curry it! - -```js -log = _.curry(log); -``` - -After that `log` still works the normal way: - -```js -log(new Date(), "DEBUG", "some debug"); -``` - -...But also can be called in the curried form: - -```js -log(new Date())("DEBUG")("some debug"); // log(a)(b)(c) -``` - -Let's get a convenience function for today's logs: - -```js -// todayLog will be the partial of log with fixed first argument -let todayLog = log(new Date()); - -// use it -todayLog("INFO", "message"); // [HH:mm] INFO message -``` - -And now a convenience function for today's debug messages: - -```js -let todayDebug = todayLog("DEBUG"); - -todayDebug("message"); // [HH:mm] DEBUG message -``` - -So: -1. We didn't lose anything after currying: `log` is still callable normally. -2. We were able to generate partial functions such as for today's logs. - -## Advanced curry implementation - -In case you'd like to get in details (not obligatory!), here's the "advanced" curry implementation that we could use above. - -It's pretty short: - -```js -function curry(func) { - - return function curried(...args) { - if (args.length >= func.length) { - return func.apply(this, args); - } else { - return function(...args2) { - return curried.apply(this, args.concat(args2)); - } - } - }; - -} -``` - -Usage examples: - -```js -function sum(a, b, c) { - return a + b + c; -} - -let curriedSum = curry(sum); - -alert( curriedSum(1, 2, 3) ); // 6, still callable normally -alert( curriedSum(1)(2,3) ); // 6, currying of 1st arg -alert( curriedSum(1)(2)(3) ); // 6, full currying -``` - -The new `curry` may look complicated, but it's actually easy to understand. - -The result of `curry(func)` is the wrapper `curried` that looks like this: - -```js -// func is the function to transform -function curried(...args) { - if (args.length >= func.length) { // (1) - return func.apply(this, args); - } else { - return function pass(...args2) { // (2) - return curried.apply(this, args.concat(args2)); - } - } -}; -``` - -When we run it, there are two branches: - -1. Call now: if passed `args` count is the same as the original function has in its definition (`func.length`) or longer, then just pass the call to it. -2. Get a partial: otherwise, `func` is not called yet. Instead, another wrapper `pass` is returned, that will re-apply `curried` providing previous arguments together with the new ones. Then on a new call, again, we'll get either a new partial (if not enough arguments) or, finally, the result. - -For instance, let's see what happens in the case of `sum(a, b, c)`. Three arguments, so `sum.length = 3`. - -For the call `curried(1)(2)(3)`: - -1. The first call `curried(1)` remembers `1` in its Lexical Environment, and returns a wrapper `pass`. -2. The wrapper `pass` is called with `(2)`: it takes previous args (`1`), concatenates them with what it got `(2)` and calls `curried(1, 2)` with them together. - - As the argument count is still less than 3, `curry` returns `pass`. -3. The wrapper `pass` is called again with `(3)`, for the next call `pass(3)` takes previous args (`1`, `2`) and adds `3` to them, making the call `curried(1, 2, 3)` -- there are `3` arguments at last, they are given to the original function. - -If that's still not obvious, just trace the calls sequence in your mind or on the paper. - -```smart header="Fixed-length functions only" -The currying requires the function to have a known fixed number of arguments. -``` - -```smart header="A little more than currying" -By definition, currying should convert `sum(a, b, c)` into `sum(a)(b)(c)`. - -But most implementations of currying in JavaScript are advanced, as described: they also keep the function callable in the multi-argument variant. -``` - -## Summary - -- When we fix some arguments of an existing function, the resulting (less universal) function is called *a partial*. We can use `bind` to get a partial, but there are other ways also. - - Partials are convenient when we don't want to repeat the same argument over and over again. Like if we have a `send(from, to)` function, and `from` should always be the same for our task, we can get a partial and go on with it. - -- *Currying* is a transform that makes `f(a,b,c)` callable as `f(a)(b)(c)`. JavaScript implementations usually both keep the function callable normally and return the partial if arguments count is not enough. - - Currying is great when we want easy partials. As we've seen in the logging example: the universal function `log(date, importance, message)` after currying gives us partials when called with one argument like `log(date)` or two arguments `log(date, importance)`. diff --git a/1-js/06-advanced-functions/12-arrow-functions/article.md b/1-js/06-advanced-functions/12-arrow-functions/article.md index 1ade1a419..8730277ad 100644 --- a/1-js/06-advanced-functions/12-arrow-functions/article.md +++ b/1-js/06-advanced-functions/12-arrow-functions/article.md @@ -2,9 +2,9 @@ Let's revisit arrow functions. -Arrow functions are not just a "shorthand" for writing small stuff. +Arrow functions are not just a "shorthand" for writing small stuff. They have some very specific and useful features. -JavaScript is full of situations where we need to write a small function, that's executed somewhere else. +JavaScript is full of situations where we need to write a small function that's executed somewhere else. For instance: @@ -14,7 +14,7 @@ For instance: It's in the very spirit of JavaScript to create a function and pass it somewhere. -And in such functions we usually don't want to leave the current context. +And in such functions we usually don't want to leave the current context. That's where arrow functions come in handy. ## Arrow functions have no "this" @@ -52,7 +52,7 @@ let group = { *!* this.students.forEach(function(student) { // Error: Cannot read property 'title' of undefined - alert(this.title + ': ' + student) + alert(this.title + ': ' + student); }); */!* } @@ -87,7 +87,7 @@ For instance, `defer(f, ms)` gets a function and returns a wrapper around it tha ```js run function defer(f, ms) { return function() { - setTimeout(() => f.apply(this, arguments), ms) + setTimeout(() => f.apply(this, arguments), ms); }; } @@ -118,9 +118,9 @@ Here we had to create additional variables `args` and `ctx` so that the function Arrow functions: -- Do not have `this`. -- Do not have `arguments`. -- Can't be called with `new`. -- (They also don't have `super`, but we didn't study it. Will be in the chapter ). +- Do not have `this` +- Do not have `arguments` +- Can't be called with `new` +- They also don't have `super`, but we didn't study it yet. We will on the chapter -That's because they are meant for short pieces of code that do not have their own "context", but rather works in the current one. And they really shine in that use case. +That's because they are meant for short pieces of code that do not have their own "context", but rather work in the current one. And they really shine in that use case. diff --git a/1-js/07-object-properties/01-property-descriptors/article.md b/1-js/07-object-properties/01-property-descriptors/article.md index 7768b3557..0a945b377 100644 --- a/1-js/07-object-properties/01-property-descriptors/article.md +++ b/1-js/07-object-properties/01-property-descriptors/article.md @@ -3,7 +3,7 @@ As we know, objects can store properties. -Till now, a property was a simple "key-value" pair to us. But an object property is actually a more flexible and powerful thing. +Until now, a property was a simple "key-value" pair to us. But an object property is actually a more flexible and powerful thing. In this chapter we'll study additional configuration options, and in the next we'll see how to invisibly turn them into getter/setter functions. @@ -11,7 +11,7 @@ In this chapter we'll study additional configuration options, and in the next we Object properties, besides a **`value`**, have three special attributes (so-called "flags"): -- **`writable`** -- if `true`, can be changed, otherwise it's read-only. +- **`writable`** -- if `true`, the value can be changed, otherwise it's read-only. - **`enumerable`** -- if `true`, then listed in loops, otherwise not listed. - **`configurable`** -- if `true`, the property can be deleted and these attributes can be modified, otherwise not. @@ -19,7 +19,7 @@ We didn't see them yet, because generally they do not show up. When we create a First, let's see how to get those flags. -The method [Object.getOwnPropertyDescriptor](mdn:js/Object/getOwnPropertyDescriptor) allows to query the *full* information about a property. +The method [Object.getOwnPropertyDescriptor](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor) allows to query the *full* information about a property. The syntax is: ```js @@ -54,7 +54,7 @@ alert( JSON.stringify(descriptor, null, 2 ) ); */ ``` -To change the flags, we can use [Object.defineProperty](mdn:js/Object/defineProperty). +To change the flags, we can use [Object.defineProperty](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty). The syntax is: @@ -63,10 +63,10 @@ Object.defineProperty(obj, propertyName, descriptor) ``` `obj`, `propertyName` -: The object and property to work on. +: The object and its property to apply the descriptor. `descriptor` -: Property descriptor to apply. +: Property descriptor object to apply. If the property exists, `defineProperty` updates its flags. Otherwise, it creates the property with the given value and flags; in that case, if a flag is not supplied, it is assumed `false`. @@ -100,9 +100,9 @@ Compare it with "normally created" `user.name` above: now all flags are falsy. I Now let's see effects of the flags by example. -## Read-only +## Non-writable -Let's make `user.name` read-only by changing `writable` flag: +Let's make `user.name` non-writable (can't be reassigned) by changing `writable` flag: ```js run let user = { @@ -116,36 +116,39 @@ Object.defineProperty(user, "name", { }); *!* -user.name = "Pete"; // Error: Cannot assign to read only property 'name'... +user.name = "Pete"; // Error: Cannot assign to read only property 'name' */!* ``` Now no one can change the name of our user, unless they apply their own `defineProperty` to override ours. -Here's the same operation, but for the case when a property doesn't exist: +```smart header="Errors appear only in strict mode" +In non-strict mode, no errors occur when writing to non-writable properties and such. But the operation still won't succeed. Flag-violating actions are just silently ignored in non-strict. +``` + +Here's the same example, but the property is created from scratch: ```js run let user = { }; Object.defineProperty(user, "name", { *!* - value: "Pete", - // for new properties need to explicitly list what's true + value: "John", + // for new properties we need to explicitly list what's true enumerable: true, configurable: true */!* }); -alert(user.name); // Pete -user.name = "Alice"; // Error +alert(user.name); // John +user.name = "Pete"; // Error ``` - ## Non-enumerable Now let's add a custom `toString` to `user`. -Normally, a built-in `toString` for objects is non-enumerable, it does not show up in `for..in`. But if we add `toString` of our own, then by default it shows up in `for..in`, like this: +Normally, a built-in `toString` for objects is non-enumerable, it does not show up in `for..in`. But if we add a `toString` of our own, then by default it shows up in `for..in`, like this: ```js run let user = { @@ -159,7 +162,7 @@ let user = { for (let key in user) alert(key); // name, toString ``` -If we don't like it, then we can set `enumerable:false`. Then it won't appear in `for..in` loop, just like the built-in one: +If we don't like it, then we can set `enumerable:false`. Then it won't appear in a `for..in` loop, just like the built-in one: ```js run let user = { @@ -191,9 +194,9 @@ alert(Object.keys(user)); // name The non-configurable flag (`configurable:false`) is sometimes preset for built-in objects and properties. -A non-configurable property can not be deleted or altered with `defineProperty`. +A non-configurable property can't be deleted, its attributes can't be modified. -For instance, `Math.PI` is read-only, non-enumerable and non-configurable: +For instance, `Math.PI` is non-writable, non-enumerable and non-configurable: ```js run let descriptor = Object.getOwnPropertyDescriptor(Math, 'PI'); @@ -211,41 +214,67 @@ alert( JSON.stringify(descriptor, null, 2 ) ); So, a programmer is unable to change the value of `Math.PI` or overwrite it. ```js run -Math.PI = 3; // Error +Math.PI = 3; // Error, because it has writable: false // delete Math.PI won't work either ``` -Making a property non-configurable is a one-way road. We cannot change it back, because `defineProperty` doesn't work on non-configurable properties. +We also can't change `Math.PI` to be `writable` again: + +```js run +// Error, because of configurable: false +Object.defineProperty(Math, "PI", { writable: true }); +``` + +There's absolutely nothing we can do with `Math.PI`. -Here we are making `user.name` a "forever sealed" constant: +Making a property non-configurable is a one-way road. We cannot change it back with `defineProperty`. + +**Please note: `configurable: false` prevents changes of property flags and its deletion, while allowing to change its value.** + +Here `user.name` is non-configurable, but we can still change it (as it's writable): ```js run -let user = { }; +let user = { + name: "John" +}; + +Object.defineProperty(user, "name", { + configurable: false +}); + +user.name = "Pete"; // works fine +delete user.name; // Error +``` + +And here we make `user.name` a "forever sealed" constant, just like the built-in `Math.PI`: + +```js run +let user = { + name: "John" +}; Object.defineProperty(user, "name", { - value: "John", writable: false, configurable: false }); -*!* // won't be able to change user.name or its flags // all this won't work: -// user.name = "Pete" -// delete user.name -// defineProperty(user, "name", ...) -Object.defineProperty(user, "name", {writable: true}); // Error -*/!* +user.name = "Pete"; +delete user.name; +Object.defineProperty(user, "name", { value: "Pete" }); ``` -```smart header="Errors appear only in use strict" -In the non-strict mode, no errors occur when writing to read-only properties and such. But the operation still won't succeed. Flag-violating actions are just silently ignored in non-strict. +```smart header="The only attribute change possible: writable true -> false" +There's a minor exception about changing flags. + +We can change `writable: true` to `false` for a non-configurable property, thus preventing its value modification (to add another layer of protection). Not the other way around though. ``` ## Object.defineProperties -There's a method [Object.defineProperties(obj, descriptors)](mdn:js/Object/defineProperties) that allows to define many properties at once. +There's a method [Object.defineProperties(obj, descriptors)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperties) that allows to define many properties at once. The syntax is: @@ -271,7 +300,7 @@ So, we can set many properties at once. ## Object.getOwnPropertyDescriptors -To get all property descriptors at once, we can use the method [Object.getOwnPropertyDescriptors(obj)](mdn:js/Object/getOwnPropertyDescriptors). +To get all property descriptors at once, we can use the method [Object.getOwnPropertyDescriptors(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptors). Together with `Object.defineProperties` it can be used as a "flags-aware" way of cloning an object: @@ -289,7 +318,7 @@ for (let key in user) { ...But that does not copy flags. So if we want a "better" clone then `Object.defineProperties` is preferred. -Another difference is that `for..in` ignores symbolic properties, but `Object.getOwnPropertyDescriptors` returns *all* property descriptors including symbolic ones. +Another difference is that `for..in` ignores symbolic and non-enumerable properties, but `Object.getOwnPropertyDescriptors` returns *all* property descriptors including symbolic and non-enumerable ones. ## Sealing an object globally @@ -297,23 +326,24 @@ Property descriptors work at the level of individual properties. There are also methods that limit access to the *whole* object: -[Object.preventExtensions(obj)](mdn:js/Object/preventExtensions) +[Object.preventExtensions(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions) : Forbids the addition of new properties to the object. -[Object.seal(obj)](mdn:js/Object/seal) +[Object.seal(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/seal) : Forbids adding/removing of properties. Sets `configurable: false` for all existing properties. -[Object.freeze(obj)](mdn:js/Object/freeze) +[Object.freeze(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze) : Forbids adding/removing/changing of properties. Sets `configurable: false, writable: false` for all existing properties. + And also there are tests for them: -[Object.isExtensible(obj)](mdn:js/Object/isExtensible) +[Object.isExtensible(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/isExtensible) : Returns `false` if adding properties is forbidden, otherwise `true`. -[Object.isSealed(obj)](mdn:js/Object/isSealed) +[Object.isSealed(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/isSealed) : Returns `true` if adding/removing properties is forbidden, and all existing properties have `configurable: false`. -[Object.isFrozen(obj)](mdn:js/Object/isFrozen) +[Object.isFrozen(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/isFrozen) : Returns `true` if adding/removing/changing properties is forbidden, and all current properties are `configurable: false, writable: false`. These methods are rarely used in practice. diff --git a/1-js/07-object-properties/02-property-accessors/article.md b/1-js/07-object-properties/02-property-accessors/article.md index 43cd5ae6d..c2aa35d53 100644 --- a/1-js/07-object-properties/02-property-accessors/article.md +++ b/1-js/07-object-properties/02-property-accessors/article.md @@ -1,11 +1,11 @@ # Property getters and setters -There are two kinds of properties. +There are two kinds of object properties. -The first kind is *data properties*. We already know how to work with them. Actually, all properties that we've been using till now were data properties. +The first kind is *data properties*. We already know how to work with them. All properties that we've been using until now were data properties. -The second type of properties is something new. It's *accessor properties*. They are essentially functions that work on getting and setting a value, but look like regular properties to an external code. +The second type of property is something new. It's an *accessor property*. They are essentially functions that execute on getting and setting a value, but look like regular properties to an external code. ## Getters and setters @@ -27,14 +27,14 @@ The getter works when `obj.propName` is read, the setter -- when it is assigned. For instance, we have a `user` object with `name` and `surname`: -```js run +```js let user = { name: "John", surname: "Smith" }; ``` -Now we want to add a "fullName" property, that should be "John Smith". Of course, we don't want to copy-paste existing information, so we can implement it as an accessor: +Now we want to add a `fullName` property, that should be `"John Smith"`. Of course, we don't want to copy-paste existing information, so we can implement it as an accessor: ```js run let user = { @@ -53,9 +53,21 @@ alert(user.fullName); // John Smith */!* ``` -From outside, an accessor property looks like a regular one. That's the idea of accessor properties. We don't *call* `user.fullName` as a function, we *read* it normally: the getter runs behind the scenes. +From the outside, an accessor property looks like a regular one. That's the idea of accessor properties. We don't *call* `user.fullName` as a function, we *read* it normally: the getter runs behind the scenes. + +As of now, `fullName` has only a getter. If we attempt to assign `user.fullName=`, there will be an error: -As of now, `fullName` has only a getter. If we attempt to assign `user.fullName=`, there will be an error. +```js run +let user = { + get fullName() { + return `...`; + } +}; + +*!* +user.fullName = "Test"; // Error (property has only a getter) +*/!* +``` Let's fix it by adding a setter for `user.fullName`: @@ -82,25 +94,15 @@ alert(user.name); // Alice alert(user.surname); // Cooper ``` -Now we have a "virtual" property. It is readable and writable, but in fact does not exist. - -```smart header="Accessor properties are only accessible with get/set" -Once a property is defined with `get prop()` or `set prop()`, it's an accessor property, not a data properety any more. - -- If there's a getter -- we can read `object.prop`, othrewise we can't. -- If there's a setter -- we can set `object.prop=...`, othrewise we can't. - -And in either case we can't `delete` an accessor property. -``` - +As the result, we have a "virtual" property `fullName`. It is readable and writable. ## Accessor descriptors -Descriptors for accessor properties are different -- as compared with data properties. +Descriptors for accessor properties are different from those for data properties. -For accessor properties, there is no `value` and `writable`, but instead there are `get` and `set` functions. +For accessor properties, there is no `value` or `writable`, but instead there are `get` and `set` functions. -So an accessor descriptor may have: +That is, an accessor descriptor may have: - **`get`** -- a function without arguments, that works when a property is read, - **`set`** -- a function with one argument, that is called when the property is set, @@ -132,7 +134,7 @@ alert(user.fullName); // John Smith for(let key in user) alert(key); // name, surname ``` -Please note once again that a property can be either an accessor or a data property, not both. +Please note that a property can be either an accessor (has `get/set` methods) or a data property (has a `value`), not both. If we try to supply both `get` and `value` in the same descriptor, there will be an error: @@ -151,9 +153,9 @@ Object.defineProperty({}, 'prop', { ## Smarter getters/setters -Getters/setters can be used as wrappers over "real" property values to gain more control over them. +Getters/setters can be used as wrappers over "real" property values to gain more control over operations with them. -For instance, if we want to forbid too short names for `user`, we can store `name` in a special property `_name`. And filter assignments in the setter: +For instance, if we want to forbid too short names for `user`, we can have a setter `name` and keep the value in a separate property `_name`: ```js run let user = { @@ -176,14 +178,16 @@ alert(user.name); // Pete user.name = ""; // Name is too short... ``` -Technically, the external code may still access the name directly by using `user._name`. But there is a widely known agreement that properties starting with an underscore `"_"` are internal and should not be touched from outside the object. +So, the name is stored in `_name` property, and the access is done via getter and setter. + +Technically, external code is able to access the name directly by using `user._name`. But there is a widely known convention that properties starting with an underscore `"_"` are internal and should not be touched from outside the object. ## Using for compatibility -One of the great ideas behind getters and setters -- they allow to take control over a "normal" data property and tweak it at any moment. +One of the great uses of accessors is that they allow to take control over a "regular" data property at any moment by replacing it with a getter and a setter and tweak its behavior. -For instance, we started implementing user objects using data properties `name` and `age`: +Imagine we started implementing user objects using data properties `name` and `age`: ```js function User(name, age) { @@ -209,9 +213,11 @@ let john = new User("John", new Date(1992, 6, 1)); Now what to do with the old code that still uses `age` property? -We can try to find all such places and fix them, but that takes time and can be hard to do if that code is written by other people. And besides, `age` is a nice thing to have in `user`, right? In some places it's just what we want. +We can try to find all such places and fix them, but that takes time and can be hard to do if that code is used by many other people. And besides, `age` is a nice thing to have in `user`, right? + +Let's keep it. -Adding a getter for `age` mitigates the problem: +Adding a getter for `age` solves the problem: ```js run no-beautify function User(name, birthday) { diff --git a/1-js/08-prototypes/01-prototype-inheritance/2-search-algorithm/task.md b/1-js/08-prototypes/01-prototype-inheritance/2-search-algorithm/task.md index 002b24b8a..bc2db47fe 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/2-search-algorithm/task.md +++ b/1-js/08-prototypes/01-prototype-inheritance/2-search-algorithm/task.md @@ -6,7 +6,7 @@ importance: 5 The task has two parts. -We have an object: +Given the following objects: ```js let head = { diff --git a/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/solution.md b/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/solution.md index c7d147b9c..4d6ea2653 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/solution.md +++ b/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/solution.md @@ -3,4 +3,5 @@ That's because `this` is an object before the dot, so `rabbit.eat()` modifies `rabbit`. Property lookup and execution are two different things. -The method `rabbit.eat` is first found in the prototype, then executed with `this=rabbit` + +The method `rabbit.eat` is first found in the prototype, then executed with `this=rabbit`. diff --git a/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/task.md b/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/task.md index b37499bad..ed8482c07 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/task.md +++ b/1-js/08-prototypes/01-prototype-inheritance/3-proto-and-this/task.md @@ -2,7 +2,7 @@ importance: 5 --- -# Where it writes? +# Where does it write? We have `rabbit` inheriting from `animal`. diff --git a/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/solution.md b/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/solution.md index fad4b8860..c141b2ecd 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/solution.md +++ b/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/solution.md @@ -10,7 +10,7 @@ Let's look carefully at what's going on in the call `speedy.eat("apple")`. So all hamsters share a single stomach! -Every time the `stomach` is taken from the prototype, then `stomach.push` modifies it "at place". +Both for `lazy.stomach.push(...)` and `speedy.stomach.push()`, the property `stomach` is found in the prototype (as it's not in the object itself), then the new data is pushed into it. Please note that such thing doesn't happen in case of a simple assignment `this.stomach=`: @@ -44,7 +44,7 @@ alert( lazy.stomach ); // Now all works fine, because `this.stomach=` does not perform a lookup of `stomach`. The value is written directly into `this` object. -Also we can totally evade the problem by making sure that each hamster has their own stomach: +Also we can totally avoid the problem by making sure that each hamster has their own stomach: ```js run let hamster = { @@ -77,4 +77,4 @@ alert( speedy.stomach ); // apple alert( lazy.stomach ); // ``` -As a common solution, all properties that describe the state of a particular object, like `stomach` above, are usually written into that object. That prevents such problems. +As a common solution, all properties that describe the state of a particular object, like `stomach` above, should be written into that object. That prevents such problems. diff --git a/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/task.md b/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/task.md index 6f9fb279e..50171123d 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/task.md +++ b/1-js/08-prototypes/01-prototype-inheritance/4-hamster-proto/task.md @@ -2,11 +2,11 @@ importance: 5 --- -# Why two hamsters are full? +# Why are both hamsters full? We have two hamsters: `speedy` and `lazy` inheriting from the general `hamster` object. -When we feed one of them, the other one is also full. Why? How to fix it? +When we feed one of them, the other one is also full. Why? How can we fix it? ```js run let hamster = { diff --git a/1-js/08-prototypes/01-prototype-inheritance/article.md b/1-js/08-prototypes/01-prototype-inheritance/article.md index 7c106b1f7..ef6c7ffeb 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/article.md +++ b/1-js/08-prototypes/01-prototype-inheritance/article.md @@ -12,11 +12,11 @@ In JavaScript, objects have a special hidden property `[[Prototype]]` (as named ![prototype](object-prototype-empty.svg) -That `[[Prototype]]` has a "magical" meaning. When we want to read a property from `object`, and it's missing, JavaScript automatically takes it from the prototype. In programming, such thing is called "prototypal inheritance". Many cool language features and programming techniques are based on it. +When we read a property from `object`, and it's missing, JavaScript automatically takes it from the prototype. In programming, this is called "prototypal inheritance". And soon we'll study many examples of such inheritance, as well as cooler language features built upon it. The property `[[Prototype]]` is internal and hidden, but there are many ways to set it. -One of them is to use `__proto__`, like this: +One of them is to use the special name `__proto__`, like this: ```js run let animal = { @@ -27,23 +27,15 @@ let rabbit = { }; *!* -rabbit.__proto__ = animal; +rabbit.__proto__ = animal; // sets rabbit.[[Prototype]] = animal */!* ``` -```smart header="`__proto__` is a historical getter/setter for `[[Prototype]]`" -Please note that `__proto__` is *not the same* as `[[Prototype]]`. That's a getter/setter for it. - -It exists for historical reasons, in modern language it is replaced with functions `Object.getPrototypeOf/Object.setPrototypeOf` that also get/set the prototype. We'll study the reasons for that and these functions later. - -By the specification, `__proto__` must only be supported by browsers, but in fact all environments including server-side support it. For now, as `__proto__` notation is a little bit more intuitively obvious, we'll use it in the examples. -``` - -If we look for a property in `rabbit`, and it's missing, JavaScript automatically takes it from `animal`. +Now if we read a property from `rabbit`, and it's missing, JavaScript will automatically take it from `animal`. For instance: -```js run +```js let animal = { eats: true }; @@ -62,7 +54,7 @@ alert( rabbit.eats ); // true (**) alert( rabbit.jumps ); // true ``` -Here the line `(*)` sets `animal` to be a prototype of `rabbit`. +Here the line `(*)` sets `animal` to be the prototype of `rabbit`. Then, when `alert` tries to read property `rabbit.eats` `(**)`, it's not in `rabbit`, so JavaScript follows the `[[Prototype]]` reference and finds it in `animal` (look from the bottom up): @@ -101,7 +93,6 @@ The method is automatically taken from the prototype, like this: The prototype chain can be longer: - ```js run let animal = { eats: true, @@ -131,13 +122,27 @@ alert(longEar.jumps); // true (from rabbit) ![](proto-animal-rabbit-chain.svg) -There are actually only two limitations: +Now if we read something from `longEar`, and it's missing, JavaScript will look for it in `rabbit`, and then in `animal`. + +There are only two limitations: 1. The references can't go in circles. JavaScript will throw an error if we try to assign `__proto__` in a circle. -2. The value of `__proto__` can be either an object or `null`, other types (like primitives) are ignored. +2. The value of `__proto__` can be either an object or `null`. Other types are ignored. Also it may be obvious, but still: there can be only one `[[Prototype]]`. An object may not inherit from two others. +```smart header="`__proto__` is a historical getter/setter for `[[Prototype]]`" +It's a common mistake of novice developers not to know the difference between these two. + +Please note that `__proto__` is *not the same* as the internal `[[Prototype]]` property. It's a getter/setter for `[[Prototype]]`. Later we'll see situations where it matters, for now let's just keep it in mind, as we build our understanding of JavaScript language. + +The `__proto__` property is a bit outdated. It exists for historical reasons, modern JavaScript suggests that we should use `Object.getPrototypeOf/Object.setPrototypeOf` functions instead that get/set the prototype. We'll also cover these functions later. + +By the specification, `__proto__` must only be supported by browsers. In fact though, all environments including server-side support `__proto__`, so we're quite safe using it. + +As the `__proto__` notation is a bit more intuitively obvious, we use it in the examples. +``` + ## Writing doesn't use prototype The prototype is only used for reading properties. @@ -171,7 +176,7 @@ From now on, `rabbit.walk()` call finds the method immediately in the object and ![](proto-animal-rabbit-walk-2.svg) -That's for data properties only, not for accessors. If a property is a getter/setter, then it behaves like a function: getters/setters are looked up in the prototype. +Accessor properties are an exception, as assignment is handled by a setter function. So writing to such a property is actually the same as calling a function. For that reason `admin.fullName` works correctly in the code below: @@ -198,13 +203,16 @@ alert(admin.fullName); // John Smith (*) // setter triggers! admin.fullName = "Alice Cooper"; // (**) + +alert(admin.fullName); // Alice Cooper, state of admin modified +alert(user.fullName); // John Smith, state of user protected ``` Here in the line `(*)` the property `admin.fullName` has a getter in the prototype `user`, so it is called. And in the line `(**)` the property has a setter in the prototype, so it is called. ## The value of "this" -An interesting question may arise in the example above: what's the value of `this` inside `set fullName(value)`? Where the properties `this.name` and `this.surname` are written: into `user` or `admin`? +An interesting question may arise in the example above: what's the value of `this` inside `set fullName(value)`? Where are the properties `this.name` and `this.surname` written: into `user` or `admin`? The answer is simple: `this` is not affected by prototypes at all. @@ -212,7 +220,7 @@ The answer is simple: `this` is not affected by prototypes at all. So, the setter call `admin.fullName=` uses `admin` as `this`, not `user`. -That is actually a super-important thing, because we may have a big object with many methods and inherit from it. Then inherited objects can run its methods, and they will modify the state of these objects, not the big one. +That is actually a super-important thing, because we may have a big object with many methods, and have objects that inherit from it. And when the inheriting objects run the inherited methods, they will modify only their own states, not the state of the big object. For instance, here `animal` represents a "method storage", and `rabbit` makes use of it. @@ -247,14 +255,84 @@ The resulting picture: ![](proto-animal-rabbit-walk-3.svg) -If we had other objects like `bird`, `snake` etc inheriting from `animal`, they would also gain access to methods of `animal`. But `this` in each method would be the corresponding object, evaluated at the call-time (before dot), not `animal`. So when we write data into `this`, it is stored into these objects. +If we had other objects, like `bird`, `snake`, etc., inheriting from `animal`, they would also gain access to methods of `animal`. But `this` in each method call would be the corresponding object, evaluated at the call-time (before dot), not `animal`. So when we write data into `this`, it is stored into these objects. As a result, methods are shared, but the object state is not. +## for..in loop + +The `for..in` loop iterates over inherited properties too. + +For instance: + +```js run +let animal = { + eats: true +}; + +let rabbit = { + jumps: true, + __proto__: animal +}; + +*!* +// Object.keys only returns own keys +alert(Object.keys(rabbit)); // jumps +*/!* + +*!* +// for..in loops over both own and inherited keys +for(let prop in rabbit) alert(prop); // jumps, then eats +*/!* +``` + +If that's not what we want, and we'd like to exclude inherited properties, there's a built-in method [obj.hasOwnProperty(key)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty): it returns `true` if `obj` has its own (not inherited) property named `key`. + +So we can filter out inherited properties (or do something else with them): + +```js run +let animal = { + eats: true +}; + +let rabbit = { + jumps: true, + __proto__: animal +}; + +for(let prop in rabbit) { + let isOwn = rabbit.hasOwnProperty(prop); + + if (isOwn) { + alert(`Our: ${prop}`); // Our: jumps + } else { + alert(`Inherited: ${prop}`); // Inherited: eats + } +} +``` + +Here we have the following inheritance chain: `rabbit` inherits from `animal`, that inherits from `Object.prototype` (because `animal` is a literal object `{...}`, so it's by default), and then `null` above it: + +![](rabbit-animal-object.svg) + +Note, there's one funny thing. Where is the method `rabbit.hasOwnProperty` coming from? We did not define it. Looking at the chain we can see that the method is provided by `Object.prototype.hasOwnProperty`. In other words, it's inherited. + +...But why does `hasOwnProperty` not appear in the `for..in` loop like `eats` and `jumps` do, if `for..in` lists inherited properties? + +The answer is simple: it's not enumerable. Just like all other properties of `Object.prototype`, it has `enumerable:false` flag. And `for..in` only lists enumerable properties. That's why it and the rest of the `Object.prototype` properties are not listed. + +```smart header="Almost all other key/value-getting methods ignore inherited properties" +Almost all other key/value-getting methods, such as `Object.keys`, `Object.values` and so on ignore inherited properties. + +They only operate on the object itself. Properties from the prototype are *not* taken into account. +``` + ## Summary - In JavaScript, all objects have a hidden `[[Prototype]]` property that's either another object or `null`. - We can use `obj.__proto__` to access it (a historical getter/setter, there are other ways, to be covered soon). - The object referenced by `[[Prototype]]` is called a "prototype". -- If we want to read a property of `obj` or call a method, and it doesn't exist, then JavaScript tries to find it in the prototype. Write/delete operations work directly on the object, they don't use the prototype (unless the property is actually a setter). +- If we want to read a property of `obj` or call a method, and it doesn't exist, then JavaScript tries to find it in the prototype. +- Write/delete operations act directly on the object, they don't use the prototype (assuming it's a data property, not a setter). - If we call `obj.method()`, and the `method` is taken from the prototype, `this` still references `obj`. So methods always work with the current object even if they are inherited. +- The `for..in` loop iterates over both its own and its inherited properties. All other key/value-getting methods only operate on the object itself. diff --git a/1-js/08-prototypes/01-prototype-inheritance/rabbit-animal-object.svg b/1-js/08-prototypes/01-prototype-inheritance/rabbit-animal-object.svg new file mode 100644 index 000000000..32a9858f8 --- /dev/null +++ b/1-js/08-prototypes/01-prototype-inheritance/rabbit-animal-object.svg @@ -0,0 +1 @@ +toString: function hasOwnProperty: function ...Object.prototypeanimal[[Prototype]][[Prototype]][[Prototype]]nulleats: truerabbitjumps: true \ No newline at end of file diff --git a/1-js/08-prototypes/02-function-prototype/1-changing-prototype/solution.md b/1-js/08-prototypes/02-function-prototype/1-changing-prototype/solution.md index 771e3061c..ebbdf3a7c 100644 --- a/1-js/08-prototypes/02-function-prototype/1-changing-prototype/solution.md +++ b/1-js/08-prototypes/02-function-prototype/1-changing-prototype/solution.md @@ -7,7 +7,7 @@ Answers: 2. `false`. - Objects are assigned by reference. The object from `Rabbit.prototype` is not duplicated, it's still a single object is referenced both by `Rabbit.prototype` and by the `[[Prototype]]` of `rabbit`. + Objects are assigned by reference. The object from `Rabbit.prototype` is not duplicated, it's still a single object referenced both by `Rabbit.prototype` and by the `[[Prototype]]` of `rabbit`. So when we change its content through one reference, it is visible through the other one. diff --git a/1-js/08-prototypes/02-function-prototype/1-changing-prototype/task.md b/1-js/08-prototypes/02-function-prototype/1-changing-prototype/task.md index 4b8522d3d..2838c125a 100644 --- a/1-js/08-prototypes/02-function-prototype/1-changing-prototype/task.md +++ b/1-js/08-prototypes/02-function-prototype/1-changing-prototype/task.md @@ -20,7 +20,7 @@ alert( rabbit.eats ); // true ``` -1. We added one more string (emphasized), what `alert` shows now? +1. We added one more string (emphasized). What will `alert` show now? ```js function Rabbit() {} @@ -54,7 +54,7 @@ alert( rabbit.eats ); // true alert( rabbit.eats ); // ? ``` -3. Like this (replaced one line)? +3. And like this (replaced one line)? ```js function Rabbit() {} diff --git a/1-js/08-prototypes/02-function-prototype/4-new-object-same-constructor/solution.md b/1-js/08-prototypes/02-function-prototype/4-new-object-same-constructor/solution.md index 43190e163..372d50dd6 100644 --- a/1-js/08-prototypes/02-function-prototype/4-new-object-same-constructor/solution.md +++ b/1-js/08-prototypes/02-function-prototype/4-new-object-same-constructor/solution.md @@ -15,7 +15,7 @@ alert( user2.name ); // Pete (worked!) It worked, because `User.prototype.constructor == User`. -..But if someone, so to say, overwrites `User.prototype` and forgets to recreate `"constructor"`, then it would fail. +..But if someone, so to speak, overwrites `User.prototype` and forgets to recreate `constructor` to reference `User`, then it would fail. For instance: @@ -38,7 +38,12 @@ Why `user2.name` is `undefined`? Here's how `new user.constructor('Pete')` works: 1. First, it looks for `constructor` in `user`. Nothing. -2. Then it follows the prototype chain. The prototype of `user` is `User.prototype`, and it also has nothing. -3. The value of `User.prototype` is a plain object `{}`, its prototype is `Object.prototype`. And there is `Object.prototype.constructor == Object`. So it is used. +2. Then it follows the prototype chain. The prototype of `user` is `User.prototype`, and it also has no `constructor` (because we "forgot" to set it right!). +3. Going further up the chain, `User.prototype` is a plain object, its prototype is the built-in `Object.prototype`. +4. Finally, for the built-in `Object.prototype`, there's a built-in `Object.prototype.constructor == Object`. So it is used. -At the end, we have `let user2 = new Object('Pete')`. The built-in `Object` constructor ignores arguments, it always creates an empty object -- that's what we have in `user2` after all. +Finally, at the end, we have `let user2 = new Object('Pete')`. + +Probably, that's not what we want. We'd like to create `new User`, not `new Object`. That's the outcome of the missing `constructor`. + +(Just in case you're curious, the `new Object(...)` call converts its argument to an object. That's a theoretical thing, in practice no one calls `new Object` with a value, and generally we don't use `new Object` to make objects at all). \ No newline at end of file diff --git a/1-js/08-prototypes/02-function-prototype/article.md b/1-js/08-prototypes/02-function-prototype/article.md index 5511c8ee0..b1ef51826 100644 --- a/1-js/08-prototypes/02-function-prototype/article.md +++ b/1-js/08-prototypes/02-function-prototype/article.md @@ -2,7 +2,7 @@ Remember, new objects can be created with a constructor function, like `new F()`. -If `F.prototype` is an object, then `new` operator uses it to set `[[Prototype]]` for the new object. +If `F.prototype` is an object, then the `new` operator uses it to set `[[Prototype]]` for the new object. ```smart JavaScript had prototypal inheritance from the beginning. It was one of the core features of the language. @@ -41,7 +41,7 @@ That's the resulting picture: On the picture, `"prototype"` is a horizontal arrow, meaning a regular property, and `[[Prototype]]` is vertical, meaning the inheritance of `rabbit` from `animal`. ```smart header="`F.prototype` only used at `new F` time" -`F.prototype` property is only used when `new F` is called, it assigns `[[Prototype]]` of the new object. After that, there's no connection between `F.prototype` and the new object. Think of it as a "one-time gift". +`F.prototype` property is only used when `new F` is called, it assigns `[[Prototype]]` of the new object. If, after the creation, `F.prototype` property changes (`F.prototype = `), then new objects created by `new F` will have another object as `[[Prototype]]`, but already existing objects keep the old one. ``` @@ -158,11 +158,11 @@ Rabbit.prototype = { In this chapter we briefly described the way of setting a `[[Prototype]]` for objects created via a constructor function. Later we'll see more advanced programming patterns that rely on it. -Everything is quite simple, just few notes to make things clear: +Everything is quite simple, just a few notes to make things clear: -- The `F.prototype` property is not the same as `[[Prototype]]`. The only thing `F.prototype` does: it sets `[[Prototype]]` of new objects when `new F()` is called. -- The value of `F.prototype` should be either an object or null: other values won't work. -- The `"prototype"` property only has such a special effect when is set to a constructor function, and invoked with `new`. +- The `F.prototype` property (don't mistake it for `[[Prototype]]`) sets `[[Prototype]]` of new objects when `new F()` is called. +- The value of `F.prototype` should be either an object or `null`: other values won't work. +- The `"prototype"` property only has such a special effect when set on a constructor function, and invoked with `new`. On regular objects the `prototype` is nothing special: ```js diff --git a/1-js/08-prototypes/03-native-prototypes/2-defer-to-prototype-extended/solution.md b/1-js/08-prototypes/03-native-prototypes/2-defer-to-prototype-extended/solution.md index e3651683f..99c358c9b 100644 --- a/1-js/08-prototypes/03-native-prototypes/2-defer-to-prototype-extended/solution.md +++ b/1-js/08-prototypes/03-native-prototypes/2-defer-to-prototype-extended/solution.md @@ -15,3 +15,27 @@ function f(a, b) { f.defer(1000)(1, 2); // shows 3 after 1 sec ``` + +Please note: we use `this` in `f.apply` to make our decoration work for object methods. + +So if the wrapper function is called as an object method, then `this` is passed to the original method `f`. + +```js run +Function.prototype.defer = function(ms) { + let f = this; + return function(...args) { + setTimeout(() => f.apply(this, args), ms); + } +}; + +let user = { + name: "John", + sayHi() { + alert(this.name); + } +} + +user.sayHi = user.sayHi.defer(1000); + +user.sayHi(); +``` diff --git a/1-js/08-prototypes/03-native-prototypes/article.md b/1-js/08-prototypes/03-native-prototypes/article.md index c5e0dbd60..bdfc86dd8 100644 --- a/1-js/08-prototypes/03-native-prototypes/article.md +++ b/1-js/08-prototypes/03-native-prototypes/article.md @@ -2,7 +2,7 @@ The `"prototype"` property is widely used by the core of JavaScript itself. All built-in constructor functions use it. -We'll see how it is for plain objects first, and then for more complex ones. +First we'll look at the details, and then how to use it for adding new capabilities to built-in objects. ## Object.prototype @@ -33,10 +33,12 @@ We can check it like this: let obj = {}; alert(obj.__proto__ === Object.prototype); // true -// obj.toString === obj.__proto__.toString == Object.prototype.toString + +alert(obj.toString === obj.__proto__.toString); //true +alert(obj.toString === Object.prototype.toString); //true ``` -Please note that there is no additional `[[Prototype]]` in the chain above `Object.prototype`: +Please note that there is no more `[[Prototype]]` in the chain above `Object.prototype`: ```js run alert(Object.prototype.__proto__); // null @@ -46,9 +48,9 @@ alert(Object.prototype.__proto__); // null Other built-in objects such as `Array`, `Date`, `Function` and others also keep methods in prototypes. -For instance, when we create an array `[1, 2, 3]`, the default `new Array()` constructor is used internally. So the array data is written into the new object, and `Array.prototype` becomes its prototype and provides methods. That's very memory-efficient. +For instance, when we create an array `[1, 2, 3]`, the default `new Array()` constructor is used internally. So `Array.prototype` becomes its prototype and provides methods. That's very memory-efficient. -By specification, all of the built-in prototypes have `Object.prototype` on the top. Sometimes people say that "everything inherits from objects". +By specification, all of the built-in prototypes have `Object.prototype` on the top. That's why some people say that "everything inherits from objects". Here's the overall picture (for 3 built-ins to fit): @@ -99,12 +101,12 @@ alert(f.__proto__.__proto__ == Object.prototype); // true, inherit from objects The most intricate thing happens with strings, numbers and booleans. -As we remember, they are not objects. But if we try to access their properties, then temporary wrapper objects are created using built-in constructors `String`, `Number`, `Boolean`, they provide the methods and disappear. +As we remember, they are not objects. But if we try to access their properties, temporary wrapper objects are created using built-in constructors `String`, `Number` and `Boolean`. They provide the methods and disappear. These objects are created invisibly to us and most engines optimize them out, but the specification describes it exactly this way. Methods of these objects also reside in prototypes, available as `String.prototype`, `Number.prototype` and `Boolean.prototype`. ```warn header="Values `null` and `undefined` have no object wrappers" -Special values `null` and `undefined` stand apart. They have no object wrappers, so methods and properties are not available for them. And there are no corresponding prototypes too. +Special values `null` and `undefined` stand apart. They have no object wrappers, so methods and properties are not available for them. And there are no corresponding prototypes either. ``` ## Changing native prototypes [#native-prototype-change] @@ -122,16 +124,16 @@ String.prototype.show = function() { During the process of development, we may have ideas for new built-in methods we'd like to have, and we may be tempted to add them to native prototypes. But that is generally a bad idea. ```warn -Prototypes are global, so it's easy to get a conflict. If two libraries add a method `String.prototype.show`, then one of them will be overwriting the other. +Prototypes are global, so it's easy to get a conflict. If two libraries add a method `String.prototype.show`, then one of them will be overwriting the method of the other. So, generally, modifying a native prototype is considered a bad idea. ``` **In modern programming, there is only one case where modifying native prototypes is approved. That's polyfilling.** -Polyfilling is a term for making a substitute for a method that exists in JavaScript specification, but not yet supported by current JavaScript engine. +Polyfilling is a term for making a substitute for a method that exists in the JavaScript specification, but is not yet supported by a particular JavaScript engine. -Then we may implement it manually and populate the built-in prototype with it. +We may then implement it manually and populate the built-in prototype with it. For instance: @@ -161,7 +163,7 @@ That's when we take a method from one object and copy it into another. Some methods of native prototypes are often borrowed. -For instance, if we're making an array-like object, we may want to copy some array methods to it. +For instance, if we're making an array-like object, we may want to copy some `Array` methods to it. E.g. @@ -179,18 +181,18 @@ obj.join = Array.prototype.join; alert( obj.join(',') ); // Hello,world! ``` -It works, because the internal algorithm of the built-in `join` method only cares about the correct indexes and the `length` property, it doesn't check that the object is indeed the array. And many built-in methods are like that. +It works because the internal algorithm of the built-in `join` method only cares about the correct indexes and the `length` property. It doesn't check if the object is indeed an array. Many built-in methods are like that. Another possibility is to inherit by setting `obj.__proto__` to `Array.prototype`, so all `Array` methods are automatically available in `obj`. But that's impossible if `obj` already inherits from another object. Remember, we only can inherit from one object at a time. -Borrowing methods is flexible, it allows to mix functionality from different objects if needed. +Borrowing methods is flexible, it allows to mix functionalities from different objects if needed. ## Summary - All built-in objects follow the same pattern: - - The methods are stored in the prototype (`Array.prototype`, `Object.prototype`, `Date.prototype` etc). - - The object itself stores only the data (array items, object properties, the date). -- Primitives also store methods in prototypes of wrapper objects: `Number.prototype`, `String.prototype`, `Boolean.prototype`. Only `undefined` and `null` do not have wrapper objects. -- Built-in prototypes can be modified or populated with new methods. But it's not recommended to change them. Probably the only allowable cause is when we add-in a new standard, but not yet supported by the engine JavaScript method. + - The methods are stored in the prototype (`Array.prototype`, `Object.prototype`, `Date.prototype`, etc.) + - The object itself stores only the data (array items, object properties, the date) +- Primitives also store methods in prototypes of wrapper objects: `Number.prototype`, `String.prototype` and `Boolean.prototype`. Only `undefined` and `null` do not have wrapper objects +- Built-in prototypes can be modified or populated with new methods. But it's not recommended to change them. The only allowable case is probably when we add-in a new standard, but it's not yet supported by the JavaScript engine diff --git a/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md b/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md index a92e17900..f3c9cf0e5 100644 --- a/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md +++ b/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md @@ -28,4 +28,4 @@ alert(dictionary); // "apple,__proto__" When we create a property using a descriptor, its flags are `false` by default. So in the code above, `dictionary.toString` is non-enumerable. -See the the chapter [](info:property-descriptors) for review. +See the chapter [](info:property-descriptors) for review. diff --git a/1-js/08-prototypes/04-prototype-methods/article.md b/1-js/08-prototypes/04-prototype-methods/article.md index a0bf20735..e2e9e9416 100644 --- a/1-js/08-prototypes/04-prototype-methods/article.md +++ b/1-js/08-prototypes/04-prototype-methods/article.md @@ -3,15 +3,18 @@ In the first chapter of this section, we mentioned that there are modern methods to setup a prototype. -The `__proto__` is considered outdated and somewhat deprecated (in browser-only part of the JavaScript standard). +Setting or reading the prototype with `obj.__proto__` is considered outdated and somewhat deprecated (moved to the so-called "Annex B" of the JavaScript standard, meant for browsers only). -The modern methods are: +The modern methods to get/set a prototype are: -- [Object.create(proto[, descriptors])](mdn:js/Object/create) -- creates an empty object with given `proto` as `[[Prototype]]` and optional property descriptors. - [Object.getPrototypeOf(obj)](mdn:js/Object/getPrototypeOf) -- returns the `[[Prototype]]` of `obj`. - [Object.setPrototypeOf(obj, proto)](mdn:js/Object/setPrototypeOf) -- sets the `[[Prototype]]` of `obj` to `proto`. -These should be used instead of `__proto__`. +The only usage of `__proto__`, that's not frowned upon, is as a property when creating a new object: `{ __proto__: ... }`. + +Although, there's a special method for this too: + +- [Object.create(proto[, descriptors])](mdn:js/Object/create) -- creates an empty object with given `proto` as `[[Prototype]]` and optional property descriptors. For instance: @@ -22,12 +25,13 @@ let animal = { // create a new object with animal as a prototype *!* -let rabbit = Object.create(animal); +let rabbit = Object.create(animal); // same as {__proto__: animal} */!* alert(rabbit.eats); // true + *!* -alert(Object.getPrototypeOf(rabbit) === animal); // get the prototype of rabbit +alert(Object.getPrototypeOf(rabbit) === animal); // true */!* *!* @@ -35,7 +39,9 @@ Object.setPrototypeOf(rabbit, {}); // change the prototype of rabbit to {} */!* ``` -`Object.create` has an optional second argument: property descriptors. We can provide additional properties to the new object there, like this: +The `Object.create` method is a bit more powerful, as it has an optional second argument: property descriptors. + +We can provide additional properties to the new object there, like this: ```js run let animal = { @@ -56,35 +62,42 @@ The descriptors are in the same format as described in the chapter >>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ![](object-prototype-2.svg) So, if `obj.__proto__` is read or set, the corresponding getter/setter is called from its prototype, and it gets/sets `[[Prototype]]`. As it was said in the beginning of this tutorial section: `__proto__` is a way to access `[[Prototype]]`, it is not `[[Prototype]]` itself. -Now, if we want to use an object as an associative array, we can do it with a little trick: +Now, if we intend to use an object as an associative array and be free of such problems, we can do it with a little trick: ```js run *!* let obj = Object.create(null); +// or: obj = { __proto__: null } */!* let key = prompt("What's the key?", "__proto__"); @@ -146,7 +174,7 @@ alert(obj[key]); // "some value" So, there is no inherited getter/setter for `__proto__`. Now it is processed as a regular data property, so the example above works right. -We can call such object "very plain" or "pure dictionary objects", because they are even simpler than regular plain object `{...}`. +We can call such objects "very plain" or "pure dictionary" objects, because they are even simpler than the regular plain object `{...}`. A downside is that such objects lack any built-in object methods, e.g. `toString`: @@ -160,7 +188,7 @@ alert(obj); // Error (no toString) ...But that's usually fine for associative arrays. -Please note that most object-related methods are `Object.something(...)`, like `Object.keys(obj)` -- they are not in the prototype, so they will keep working on such objects: +Note that most object-related methods are `Object.something(...)`, like `Object.keys(obj)` -- they are not in the prototype, so they will keep working on such objects: ```js run @@ -173,31 +201,26 @@ alert(Object.keys(chineseDictionary)); // hello,bye ## Summary -Modern methods to setup and directly access the prototype are: - -- [Object.create(proto[, descriptors])](mdn:js/Object/create) -- creates an empty object with given `proto` as `[[Prototype]]` (can be `null`) and optional property descriptors. -- [Object.getPrototypeOf(obj)](mdn:js/Object.getPrototypeOf) -- returns the `[[Prototype]]` of `obj` (same as `__proto__` getter). -- [Object.setPrototypeOf(obj, proto)](mdn:js/Object.setPrototypeOf) -- sets the `[[Prototype]]` of `obj` to `proto` (same as `__proto__` setter). +- To create an object with the given prototype, use: -The built-in `__proto__` getter/setter is unsafe if we'd want to put user-generated keys in to an object. Just because a user may enter "__proto__" as the key, and there'll be an error with hopefully easy, but generally unpredictable consequences. + - literal syntax: `{ __proto__: ... }`, allows to specify multiple properties + - or [Object.create(proto[, descriptors])](mdn:js/Object/create), allows to specify property descriptors. -So we can either use `Object.create(null)` to create a "very plain" object without `__proto__`, or stick to `Map` objects for that. + The `Object.create` provides an easy way to shallow-copy an object with all descriptors: -Also, `Object.create` provides an easy way to shallow-copy an object with all descriptors: + ```js + let clone = Object.create(Object.getPrototypeOf(obj), Object.getOwnPropertyDescriptors(obj)); + ``` -```js -let clone = Object.create(Object.getPrototypeOf(obj), Object.getOwnPropertyDescriptors(obj)); -``` +- Modern methods to get/set the prototype are: + - [Object.getPrototypeOf(obj)](mdn:js/Object/getPrototypeOf) -- returns the `[[Prototype]]` of `obj` (same as `__proto__` getter). + - [Object.setPrototypeOf(obj, proto)](mdn:js/Object/setPrototypeOf) -- sets the `[[Prototype]]` of `obj` to `proto` (same as `__proto__` setter). -- [Object.keys(obj)](mdn:js/Object/keys) / [Object.values(obj)](mdn:js/Object/values) / [Object.entries(obj)](mdn:js/Object/entries) -- returns an array of enumerable own string property names/values/key-value pairs. -- [Object.getOwnPropertySymbols(obj)](mdn:js/Object/getOwnPropertySymbols) -- returns an array of all own symbolic property names. -- [Object.getOwnPropertyNames(obj)](mdn:js/Object/getOwnPropertyNames) -- returns an array of all own string property names. -- [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) -- returns an array of all own property names. -- [obj.hasOwnProperty(key)](mdn:js/Object/hasOwnProperty): it returns `true` if `obj` has its own (not inherited) property named `key`. +- Getting/setting the prototype using the built-in `__proto__` getter/setter isn't recommended, it's now in the Annex B of the specification. -We also made it clear that `__proto__` is a getter/setter for `[[Prototype]]` and resides in `Object.prototype`, just as other methods. +- We also covered prototype-less objects, created with `Object.create(null)` or `{__proto__: null}`. -We can create an object without a prototype by `Object.create(null)`. Such objects are used as "pure dictionaries", they have no issues with `"__proto__"` as the key. + These objects are used as dictionaries, to store any (possibly user-generated) keys. -All methods that return object properties (like `Object.keys` and others) -- return "own" properties. If we want inherited ones, then we can use `for..in`. + Normally, objects inherit built-in methods and `__proto__` getter/setter from `Object.prototype`, making corresponding keys "occupied" and potentially causing side effects. With `null` prototype, objects are truly empty. diff --git a/1-js/09-classes/01-class/1-rewrite-to-class/task.md b/1-js/09-classes/01-class/1-rewrite-to-class/task.md index 05365e410..4477de679 100644 --- a/1-js/09-classes/01-class/1-rewrite-to-class/task.md +++ b/1-js/09-classes/01-class/1-rewrite-to-class/task.md @@ -4,6 +4,6 @@ importance: 5 # Rewrite to class -The `Clock` class is written in functional style. Rewrite it the "class" syntax. +The `Clock` class (see the sandbox) is written in functional style. Rewrite it in the "class" syntax. P.S. The clock ticks in the console, open it to see. diff --git a/1-js/09-classes/01-class/article.md b/1-js/09-classes/01-class/article.md index b8bd4f339..c33873af6 100644 --- a/1-js/09-classes/01-class/article.md +++ b/1-js/09-classes/01-class/article.md @@ -25,7 +25,7 @@ class MyClass { } ``` -Then `new MyClass()` creates a new object with all the listed methods. +Then use `new MyClass()` to create a new object with all the listed methods. The `constructor()` method is called automatically by `new`, so we can initialize the object there. @@ -51,9 +51,9 @@ user.sayHi(); When `new User("John")` is called: 1. A new object is created. -2. The `constructor` runs with the given argument and assigns `this.name` to it. +2. The `constructor` runs with the given argument and assigns it to `this.name`. -...Then we can call methods, such as `user.sayHi`. +...Then we can call object methods, such as `user.sayHi()`. ```warn header="No comma between class methods" @@ -64,11 +64,11 @@ The notation here is not to be confused with object literals. Within the class, ## What is a class? -So, what exactly is a `class`? That's not an entirely new language-level entity, as one might think. +So, what exactly is a `class`? That's not an entirely new language-level entity, as one might think. Let's unveil any magic and see what a class really is. That'll help in understanding many complex aspects. -In JavaScript, a class is a kind of a function. +In JavaScript, a class is a kind of function. Here, take a look: @@ -85,19 +85,21 @@ alert(typeof User); // function ``` What `class User {...}` construct really does is: -1. Creates a function named `User`, that becomes the result of the class declaration. - - The function code is taken from the `constructor` method (assumed empty if we don't write such method). -3. Stores all methods, such as `sayHi`, in `User.prototype`. -Afterwards, for new objects, when we call a method, it's taken from the prototype, just as described in the chapter . So `new User` object has access to class methods. +1. Creates a function named `User`, that becomes the result of the class declaration. The function code is taken from the `constructor` method (assumed empty if we don't write such method). +2. Stores class methods, such as `sayHi`, in `User.prototype`. -We can illustrate the result of `class User` as: +After `new User` object is created, when we call its method, it's taken from the prototype, just as described in the chapter . So the object has access to class methods. +<<<<<<< HEAD +======= +We can illustrate the result of `class User` declaration as: + +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b ![](class-user.svg) Here's the code to introspect it: - ```js run class User { constructor(name) { this.name = name; } @@ -111,15 +113,15 @@ alert(typeof User); // function alert(User === User.prototype.constructor); // true // The methods are in User.prototype, e.g: -alert(User.prototype.sayHi); // alert(this.name); +alert(User.prototype.sayHi); // the code of the sayHi method // there are exactly two methods in the prototype alert(Object.getOwnPropertyNames(User.prototype)); // constructor, sayHi ``` -## Not just a syntax sugar +## Not just a syntactic sugar -Sometimes people say that `class` is a "syntax sugar" in JavaScript, because we could actually declare the same without `class` keyword at all: +Sometimes people say that `class` is a "syntactic sugar" (syntax that is designed to make things easier to read, but doesn't introduce anything new), because we could actually declare the same thing without using the `class` keyword at all: ```js run // rewriting class User in pure functions @@ -128,7 +130,7 @@ Sometimes people say that `class` is a "syntax sugar" in JavaScript, because we function User(name) { this.name = name; } -// any function prototype has constructor property by default, +// a function prototype has "constructor" property by default, // so we don't need to create it // 2. Add the method to prototype @@ -141,13 +143,13 @@ let user = new User("John"); user.sayHi(); ``` -The result of this definition is about the same. So, there are indeed reasons why `class` can be considered a syntax sugar to define a constructor together with its prototype methods. +The result of this definition is about the same. So, there are indeed reasons why `class` can be considered a syntactic sugar to define a constructor together with its prototype methods. -Although, there are important differences. +Still, there are important differences. -1. First, a function created by `class` is labelled by a special internal property `[[FunctionKind]]:"classConstructor"`. So it's not entirely the same as creating it manually. +1. First, a function created by `class` is labelled by a special internal property `[[IsClassConstructor]]: true`. So it's not entirely the same as creating it manually. - Unlike a regular function, a class constructor can't be called without `new`: + The language checks for that property in a variety of places. For example, unlike a regular function, it must be called with `new`: ```js run class User { @@ -167,21 +169,21 @@ Although, there are important differences. alert(User); // class User { ... } ``` + There are other differences, we'll see them soon. -2. Class methods are non-enumerable +2. Class methods are non-enumerable. A class definition sets `enumerable` flag to `false` for all methods in the `"prototype"`. That's good, because if we `for..in` over an object, we usually don't want its class methods. -3. Classes always `use strict` +3. Classes always `use strict`. All code inside the class construct is automatically in strict mode. - -Also, in addition to its basic operation, the `class` syntax brings many other features with it which we'll explore later. +Besides, `class` syntax brings many other features that we'll explore later. ## Class Expression -Just like functions, classes can be defined inside another expression, passed around, returned, assigned etc. +Just like functions, classes can be defined inside another expression, passed around, returned, assigned, etc. Here's an example of a class expression: @@ -193,24 +195,24 @@ let User = class { }; ``` -Similar to Named Function Expressions, class expressions may or may not have a name. +Similar to Named Function Expressions, class expressions may have a name. If a class expression has a name, it's visible inside the class only: ```js run -// "Named Class Expression" (alas, no such term, but that's what's going on) +// "Named Class Expression" +// (no such term in the spec, but that's similar to Named Function Expression) let User = class *!*MyClass*/!* { sayHi() { - alert(MyClass); // MyClass is visible only inside the class + alert(MyClass); // MyClass name is visible only inside the class } }; new User().sayHi(); // works, shows MyClass definition -alert(MyClass); // error, MyClass not visible outside of the class +alert(MyClass); // error, MyClass name isn't visible outside of the class ``` - We can even make classes dynamically "on-demand", like this: ```js run @@ -219,7 +221,7 @@ function makeClass(phrase) { return class { sayHi() { alert(phrase); - }; + } }; } @@ -230,9 +232,9 @@ new User().sayHi(); // Hello ``` -## Getters/setters, other shorthands +## Getters/setters -Classes also include getters/setters, generators, computed properties etc. +Just like literal objects, classes may include getters/setters, computed properties etc. Here's an example for `user.name` implemented using `get/set`: @@ -241,7 +243,7 @@ class User { constructor(name) { // invokes the setter - this._name = name; + this.name = name; } *!* @@ -265,31 +267,21 @@ class User { let user = new User("John"); alert(user.name); // John -user = new User(""); // Name too short. +user = new User(""); // Name is too short. ``` -Internally, getters and setters are created on `User.prototype`, like this: +Technically, such class declaration works by creating getters and setters in `User.prototype`. -```js -Object.defineProperties(User.prototype, { - name: { - get() { - return this._name - }, - set(name) { - // ... - } - } -}); -``` +## Computed names [...] -Here's an example with computed properties: +Here's an example with a computed method name using brackets `[...]`: ```js run -function f() { return "sayHi"; } - class User { - [f()]() { + +*!* + ['say' + 'Hi']() { +*/!* alert("Hello"); } @@ -298,56 +290,127 @@ class User { new User().sayHi(); ``` -For a generator method, similarly, prepend it with `*`. +Such features are easy to remember, as they resemble that of literal objects. -## Class properties +## Class fields ```warn header="Old browsers may need a polyfill" -Class-level properties are a recent addition to the language. +Class fields are a recent addition to the language. ``` -In the example above, `User` only had methods. Let's add a property: +Previously, our classes only had methods. + +"Class fields" is a syntax that allows to add any properties. + +For instance, let's add `name` property to `class User`: ```js run class User { - name = "Anonymous"; +*!* + name = "John"; +*/!* sayHi() { alert(`Hello, ${this.name}!`); } } -new User().sayHi(); +new User().sayHi(); // Hello, John! ``` -The property is not placed into `User.prototype`. Instead, it is created by `new`, separately for every object. So, the property will never be shared between different objects of the same class. +So, we just write " = " in the declaration, and that's it. +The important difference of class fields is that they are set on individual objects, not `User.prototype`: -## Summary +```js run +class User { +*!* + name = "John"; +*/!* +} -JavaScript provides many ways to create a class. +let user = new User(); +alert(user.name); // John +alert(User.prototype.name); // undefined +``` -First, as per the general object-oriented terminology, a class is something that provides "object templates", allows to create same-structured objects. +We can also assign values using more complex expressions and function calls: -When we say "a class", that doesn't necessary means the `class` keyword. +```js run +class User { +*!* + name = prompt("Name, please?", "John"); +*/!* +} -This is a class: +let user = new User(); +alert(user.name); // John +``` -```js -function User(name) { - this.sayHi = function() { - alert(name); + +### Making bound methods with class fields + +As demonstrated in the chapter functions in JavaScript have a dynamic `this`. It depends on the context of the call. + +So if an object method is passed around and called in another context, `this` won't be a reference to its object any more. + +For instance, this code will show `undefined`: + +```js run +class Button { + constructor(value) { + this.value = value; + } + + click() { + alert(this.value); + } +} + +let button = new Button("hello"); + +*!* +setTimeout(button.click, 1000); // undefined +*/!* +``` + +The problem is called "losing `this`". + +There are two approaches to fixing it, as discussed in the chapter : + +1. Pass a wrapper-function, such as `setTimeout(() => button.click(), 1000)`. +2. Bind the method to object, e.g. in the constructor. + +Class fields provide another, quite elegant syntax: + +```js run +class Button { + constructor(value) { + this.value = value; } +*!* + click = () => { + alert(this.value); + } +*/!* } + +let button = new Button("hello"); + +setTimeout(button.click, 1000); // hello ``` -...But in most cases `class` keyword is used, as it provides great syntax and many additional features. +The class field `click = () => {...}` is created on a per-object basis, there's a separate function for each `Button` object, with `this` inside it referencing that object. We can pass `button.click` around anywhere, and the value of `this` will always be correct. + +That's especially useful in browser environment, for event listeners. + +## Summary The basic class syntax looks like this: ```js class MyClass { - prop = value; // field + prop = value; // property constructor(...) { // constructor // ... @@ -358,11 +421,11 @@ class MyClass { get something(...) {} // getter method set something(...) {} // setter method - [Symbol.iterator]() {} // method with computed name/symbol name + [Symbol.iterator]() {} // method with computed name (symbol here) // ... } ``` -`MyClass` is technically a function, while methods are written to `MyClass.prototype`. +`MyClass` is technically a function (the one that we provide as `constructor`), while methods, getters and setters are written to `MyClass.prototype`. In the next chapters we'll learn more about classes, including inheritance and other features. diff --git a/1-js/09-classes/02-class-inheritance/2-clock-class-extended/solution.view/extended-clock.js b/1-js/09-classes/02-class-inheritance/2-clock-class-extended/solution.view/extended-clock.js index ca613ca5e..be2053cfc 100644 --- a/1-js/09-classes/02-class-inheritance/2-clock-class-extended/solution.view/extended-clock.js +++ b/1-js/09-classes/02-class-inheritance/2-clock-class-extended/solution.view/extended-clock.js @@ -1,7 +1,7 @@ class ExtendedClock extends Clock { constructor(options) { super(options); - let { precision=1000 } = options; + let { precision = 1000 } = options; this.precision = precision; } diff --git a/1-js/09-classes/02-class-inheritance/article.md b/1-js/09-classes/02-class-inheritance/article.md index 4b281bafe..b917c3bb9 100644 --- a/1-js/09-classes/02-class-inheritance/article.md +++ b/1-js/09-classes/02-class-inheritance/article.md @@ -1,9 +1,13 @@ # Class inheritance -Let's say we have two classes. +Class inheritance is a way for one class to extend another class. -`Animal`: +So we can create new functionality on top of the existing. + +## The "extends" keyword + +Let's say we have class `Animal`: ```js class Animal { @@ -12,24 +16,36 @@ class Animal { this.name = name; } run(speed) { - this.speed += speed; + this.speed = speed; alert(`${this.name} runs with speed ${this.speed}.`); } stop() { this.speed = 0; - alert(`${this.name} stopped.`); + alert(`${this.name} stands still.`); } } let animal = new Animal("My animal"); ``` +<<<<<<< HEAD ![](rabbit-animal-independent-animal.svg) +======= +Here's how we can represent `animal` object and `Animal` class graphically: +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b + +![](rabbit-animal-independent-animal.svg) + +...And we would like to create another `class Rabbit`. +As rabbits are animals, `Rabbit` class should be based on `Animal`, have access to animal methods, so that rabbits can do what "generic" animals can do. -...And `Rabbit`: +The syntax to extend another class is: `class Child extends Parent`. + +Let's create `class Rabbit` that inherits from `Animal`: ```js +<<<<<<< HEAD class Rabbit { constructor(name) { this.name = name; @@ -70,6 +86,8 @@ class Animal { } // Inherit from Animal by specifying "extends Animal" +======= +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b *!* class Rabbit extends Animal { */!* @@ -84,15 +102,18 @@ rabbit.run(5); // White Rabbit runs with speed 5. rabbit.hide(); // White Rabbit hides! ``` -Now the `Rabbit` code became a bit shorter, as it uses `Animal` constructor by default, and it also can `run`, as animals do. +Object of `Rabbit` class have access both to `Rabbit` methods, such as `rabbit.hide()`, and also to `Animal` methods, such as `rabbit.run()`. -Internally, `extends` keyword adds `[[Prototype]]` reference from `Rabbit.prototype` to `Animal.prototype`: +Internally, `extends` keyword works using the good old prototype mechanics. It sets `Rabbit.prototype.[[Prototype]]` to `Animal.prototype`. So, if a method is not found in `Rabbit.prototype`, JavaScript takes it from `Animal.prototype`. ![](animal-rabbit-extends.svg) -So, if a method is not found in `Rabbit.prototype`, JavaScript takes it from `Animal.prototype`. +For instance, to find `rabbit.run` method, the engine checks (bottom-up on the picture): +1. The `rabbit` object (has no `run`). +2. Its prototype, that is `Rabbit.prototype` (has `hide`, but not `run`). +3. Its prototype, that is (due to `extends`) `Animal.prototype`, that finally has the `run` method. -As we can recall from the chapter , JavaScript uses the same prototypal inheritance for build-in objects. E.g. `Date.prototype.[[Prototype]]` is `Object.prototype`, so dates have generic object methods. +As we can recall from the chapter , JavaScript itself uses prototypal inheritance for built-in objects. E.g. `Date.prototype.[[Prototype]]` is `Object.prototype`. That's why dates have access to generic object methods. ````smart header="Any expression is allowed after `extends`" Class syntax allows to specify not just a class, but any expression after `extends`. @@ -102,8 +123,8 @@ For instance, a function call that generates the parent class: ```js run function f(phrase) { return class { - sayHi() { alert(phrase) } - } + sayHi() { alert(phrase); } + }; } *!* @@ -119,20 +140,20 @@ That may be useful for advanced programming patterns when we use functions to ge ## Overriding a method -Now let's move forward and override a method. As of now, `Rabbit` inherits the `stop` method that sets `this.speed = 0` from `Animal`. +Now let's move forward and override a method. By default, all methods that are not specified in `class Rabbit` are taken directly "as is" from `class Animal`. -If we specify our own `stop` in `Rabbit`, then it will be used instead: +But if we specify our own method in `Rabbit`, such as `stop()` then it will be used instead: ```js class Rabbit extends Animal { stop() { - // ...this will be used for rabbit.stop() + // ...now this will be used for rabbit.stop() + // instead of stop() from class Animal } } ``` - -...But usually we don't want to totally replace a parent method, but rather to build on top of it, tweak or extend its functionality. We do something in our method, but call the parent method before/after it or in the process. +Usually, however, we don't want to totally replace a parent method, but rather to build on top of it to tweak or extend its functionality. We do something in our method, but call the parent method before/after it or in the process. Classes provide `"super"` keyword for that. @@ -150,13 +171,13 @@ class Animal { } run(speed) { - this.speed += speed; + this.speed = speed; alert(`${this.name} runs with speed ${this.speed}.`); } stop() { this.speed = 0; - alert(`${this.name} stopped.`); + alert(`${this.name} stands still.`); } } @@ -177,7 +198,7 @@ class Rabbit extends Animal { let rabbit = new Rabbit("White Rabbit"); rabbit.run(5); // White Rabbit runs with speed 5. -rabbit.stop(); // White Rabbit stopped. White rabbit hides! +rabbit.stop(); // White Rabbit stands still. White Rabbit hides! ``` Now `Rabbit` has the `stop` method that calls the parent `super.stop()` in the process. @@ -186,6 +207,7 @@ Now `Rabbit` has the `stop` method that calls the parent `super.stop()` in the p As was mentioned in the chapter , arrow functions do not have `super`. If accessed, it's taken from the outer function. For instance: + ```js class Rabbit extends Animal { stop() { @@ -202,14 +224,13 @@ setTimeout(function() { super.stop() }, 1000); ``` ```` - ## Overriding constructor With constructors it gets a little bit tricky. -Till now, `Rabbit` did not have its own `constructor`. +Until now, `Rabbit` did not have its own `constructor`. -According to the [specification](https://tc39.github.io/ecma262/#sec-runtime-semantics-classdefinitionevaluation), if a class extends another class and has no `constructor`, then the following `constructor` is generated: +According to the [specification](https://tc39.github.io/ecma262/#sec-runtime-semantics-classdefinitionevaluation), if a class extends another class and has no `constructor`, then the following "empty" `constructor` is generated: ```js class Rabbit extends Animal { @@ -256,22 +277,24 @@ let rabbit = new Rabbit("White Rabbit", 10); // Error: this is not defined. Whoops! We've got an error. Now we can't create rabbits. What went wrong? -The short answer is: constructors in inheriting classes must call `super(...)`, and (!) do it before using `this`. +The short answer is: + +- **Constructors in inheriting classes must call `super(...)`, and (!) do it before using `this`.** ...But why? What's going on here? Indeed, the requirement seems strange. -Of course, there's an explanation. Let's get into details, so you'd really understand what's going on. +Of course, there's an explanation. Let's get into details, so you'll really understand what's going on. -In JavaScript, there's a distinction between a "constructor function of an inheriting class" and all others. In an inheriting class, the corresponding constructor function is labelled with a special internal property `[[ConstructorKind]]:"derived"`. +In JavaScript, there's a distinction between a constructor function of an inheriting class (so-called "derived constructor") and other functions. A derived constructor has a special internal property `[[ConstructorKind]]:"derived"`. That's a special internal label. -The difference is: +That label affects its behavior with `new`. -- When a normal constructor runs, it creates an empty object as `this` and continues with it. -- But when a derived constructor runs, it doesn't do it. It expects the parent constructor to do this job. +- When a regular function is executed with `new`, it creates an empty object and assigns it to `this`. +- But when a derived constructor runs, it doesn't do this. It expects the parent constructor to do this job. -So if we're making a constructor of our own, then we must call `super`, because otherwise the object with `this` reference to it won't be created. And we'll get an error. +So a derived constructor must call `super` in order to execute its parent (base) constructor, otherwise the object for `this` won't be created. And we'll get an error. -For `Rabbit` to work, we need to call `super()` before using `this`, like here: +For the `Rabbit` constructor to work, it needs to call `super()` before using `this`, like here: ```js run class Animal { @@ -304,20 +327,121 @@ alert(rabbit.earLength); // 10 */!* ``` +### Overriding class fields: a tricky note + +```warn header="Advanced note" +This note assumes you have a certain experience with classes, maybe in other programming languages. + +It provides better insight into the language and also explains the behavior that might be a source of bugs (but not very often). + +If you find it difficult to understand, just go on, continue reading, then return to it some time later. +``` + +We can override not only methods, but also class fields. + +Although, there's a tricky behavior when we access an overridden field in parent constructor, quite different from most other programming languages. + +Consider this example: + +```js run +class Animal { + name = 'animal'; + + constructor() { + alert(this.name); // (*) + } +} + +class Rabbit extends Animal { + name = 'rabbit'; +} + +new Animal(); // animal +*!* +new Rabbit(); // animal +*/!* +``` + +Here, class `Rabbit` extends `Animal` and overrides the `name` field with its own value. + +There's no own constructor in `Rabbit`, so `Animal` constructor is called. + +What's interesting is that in both cases: `new Animal()` and `new Rabbit()`, the `alert` in the line `(*)` shows `animal`. + +**In other words, the parent constructor always uses its own field value, not the overridden one.** + +What's odd about it? + +If it's not clear yet, please compare with methods. + +Here's the same code, but instead of `this.name` field we call `this.showName()` method: + +```js run +class Animal { + showName() { // instead of this.name = 'animal' + alert('animal'); + } + + constructor() { + this.showName(); // instead of alert(this.name); + } +} + +class Rabbit extends Animal { + showName() { + alert('rabbit'); + } +} + +new Animal(); // animal +*!* +new Rabbit(); // rabbit +*/!* +``` + +Please note: now the output is different. + +And that's what we naturally expect. When the parent constructor is called in the derived class, it uses the overridden method. + +...But for class fields it's not so. As said, the parent constructor always uses the parent field. + +Why is there a difference? + +Well, the reason is the field initialization order. The class field is initialized: +- Before constructor for the base class (that doesn't extend anything), +- Immediately after `super()` for the derived class. + +In our case, `Rabbit` is the derived class. There's no `constructor()` in it. As said previously, that's the same as if there was an empty constructor with only `super(...args)`. + +So, `new Rabbit()` calls `super()`, thus executing the parent constructor, and (per the rule for derived classes) only after that its class fields are initialized. At the time of the parent constructor execution, there are no `Rabbit` class fields yet, that's why `Animal` fields are used. + +This subtle difference between fields and methods is specific to JavaScript. + +Luckily, this behavior only reveals itself if an overridden field is used in the parent constructor. Then it may be difficult to understand what's going on, so we're explaining it here. + +If it becomes a problem, one can fix it by using methods or getters/setters instead of fields. ## Super: internals, [[HomeObject]] -Let's get a little deeper under the hood of `super`. We'll see some interesting things by the way. +```warn header="Advanced information" +If you're reading the tutorial for the first time - this section may be skipped. -First to say, from all that we've learned till now, it's impossible for `super` to work. +It's about the internal mechanisms behind inheritance and `super`. +``` -Yeah, indeed, let's ask ourselves, how it could technically work? When an object method runs, it gets the current object as `this`. If we call `super.method()` then, how to retrieve the `method`? Naturally, we need to take the `method` from the prototype of the current object. How, technically, we (or a JavaScript engine) can do it? +Let's get a little deeper under the hood of `super`. We'll see some interesting things along the way. -Maybe we can get the method from `[[Prototype]]` of `this`, as `this.__proto__.method`? Unfortunately, that doesn't work. +First to say, from all that we've learned till now, it's impossible for `super` to work at all! -Let's try to do it. Without classes, using plain objects for the sake of simplicity. +Yeah, indeed, let's ask ourselves, how it should technically work? When an object method runs, it gets the current object as `this`. If we call `super.method()` then, the engine needs to get the `method` from the prototype of the current object. But how? -Here, `rabbit.eat()` should call `animal.eat()` method of the parent object: +The task may seem simple, but it isn't. The engine knows the current object `this`, so it could get the parent `method` as `this.__proto__.method`. Unfortunately, such a "naive" solution won't work. + +Let's demonstrate the problem. Without classes, using plain objects for the sake of simplicity. + +You may skip this part and go below to the `[[HomeObject]]` subsection if you don't want to know the details. That won't harm. Or read on if you're interested in understanding things in-depth. + +In the example below, `rabbit.__proto__ = animal`. Now let's try: in `rabbit.eat()` we'll call `animal.eat()`, using `this.__proto__`: ```js run let animal = { @@ -414,18 +538,16 @@ The problem can't be solved by using `this` alone. To provide the solution, JavaScript adds one more special internal property for functions: `[[HomeObject]]`. -**When a function is specified as a class or object method, its `[[HomeObject]]` property becomes that object.** - -This actually violates the idea of "unbound" functions, because methods remember their objects. And `[[HomeObject]]` can't be changed, so this bound is forever. So that's a very important change in the language. +When a function is specified as a class or object method, its `[[HomeObject]]` property becomes that object. -But this change is safe. `[[HomeObject]]` is used only for calling parent methods in `super`, to resolve the prototype. So it doesn't break compatibility. +Then `super` uses it to resolve the parent prototype and its methods. -Let's see how it works for `super` -- again, using plain objects: +Let's see how it works, first with plain objects: ```js run let animal = { name: "Animal", - eat() { // [[HomeObject]] == animal + eat() { // animal.eat.[[HomeObject]] == animal alert(`${this.name} eats.`); } }; @@ -433,7 +555,7 @@ let animal = { let rabbit = { __proto__: animal, name: "Rabbit", - eat() { // [[HomeObject]] == rabbit + eat() { // rabbit.eat.[[HomeObject]] == rabbit super.eat(); } }; @@ -441,25 +563,85 @@ let rabbit = { let longEar = { __proto__: rabbit, name: "Long Ear", - eat() { // [[HomeObject]] == longEar + eat() { // longEar.eat.[[HomeObject]] == longEar super.eat(); } }; *!* +// works correctly longEar.eat(); // Long Ear eats. */!* ``` -Every method remembers its object in the internal `[[HomeObject]]` property. Then `super` uses it to resolve the parent prototype. +It works as intended, due to `[[HomeObject]]` mechanics. A method, such as `longEar.eat`, knows its `[[HomeObject]]` and takes the parent method from its prototype. Without any use of `this`. + +### Methods are not "free" + +As we've known before, generally functions are "free", not bound to objects in JavaScript. So they can be copied between objects and called with another `this`. + +The very existence of `[[HomeObject]]` violates that principle, because methods remember their objects. `[[HomeObject]]` can't be changed, so this bond is forever. -`[[HomeObject]]` is defined for methods defined both in classes and in plain objects. But for objects, methods must be specified exactly the given way: as `method()`, not as `"method: function()"`. +The only place in the language where `[[HomeObject]]` is used -- is `super`. So, if a method does not use `super`, then we can still consider it free and copy between objects. But with `super` things may go wrong. + +Here's the demo of a wrong `super` result after copying: + +```js run +let animal = { + sayHi() { + alert(`I'm an animal`); + } +}; + +// rabbit inherits from animal +let rabbit = { + __proto__: animal, + sayHi() { + super.sayHi(); + } +}; + +let plant = { + sayHi() { + alert("I'm a plant"); + } +}; + +// tree inherits from plant +let tree = { + __proto__: plant, +*!* + sayHi: rabbit.sayHi // (*) +*/!* +}; + +*!* +tree.sayHi(); // I'm an animal (?!?) +*/!* +``` + +A call to `tree.sayHi()` shows "I'm an animal". Definitely wrong. + +The reason is simple: +- In the line `(*)`, the method `tree.sayHi` was copied from `rabbit`. Maybe we just wanted to avoid code duplication? +- Its `[[HomeObject]]` is `rabbit`, as it was created in `rabbit`. There's no way to change `[[HomeObject]]`. +- The code of `tree.sayHi()` has `super.sayHi()` inside. It goes up from `rabbit` and takes the method from `animal`. + +Here's the diagram of what happens: + +![](super-homeobject-wrong.svg) + +### Methods, not function properties + +`[[HomeObject]]` is defined for methods both in classes and in plain objects. But for objects, methods must be specified exactly as `method()`, not as `"method: function()"`. + +The difference may be non-essential for us, but it's important for JavaScript. In the example below a non-method syntax is used for comparison. `[[HomeObject]]` property is not set and the inheritance doesn't work: ```js run let animal = { - eat: function() { // should be the short syntax: eat() {...} + eat: function() { // intentionally writing like this instead of eat() {... // ... } }; @@ -475,3 +657,18 @@ let rabbit = { rabbit.eat(); // Error calling super (because there's no [[HomeObject]]) */!* ``` + +## Summary + +1. To extend a class: `class Child extends Parent`: + - That means `Child.prototype.__proto__` will be `Parent.prototype`, so methods are inherited. +2. When overriding a constructor: + - We must call parent constructor as `super()` in `Child` constructor before using `this`. +3. When overriding another method: + - We can use `super.method()` in a `Child` method to call `Parent` method. +4. Internals: + - Methods remember their class/object in the internal `[[HomeObject]]` property. That's how `super` resolves parent methods. + - So it's not safe to copy a method with `super` from one object to another. + +Also: +- Arrow functions don't have their own `this` or `super`, so they transparently fit into the surrounding context. diff --git a/1-js/09-classes/02-class-inheritance/super-homeobject-wrong.svg b/1-js/09-classes/02-class-inheritance/super-homeobject-wrong.svg new file mode 100644 index 000000000..f6450ddc4 --- /dev/null +++ b/1-js/09-classes/02-class-inheritance/super-homeobject-wrong.svg @@ -0,0 +1 @@ +sayHiplantsayHitreesayHianimalrabbit[[HomeObject]]sayHi \ No newline at end of file diff --git a/1-js/09-classes/02-class-inheritance/3-class-extend-object/rabbit-extends-object.svg b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/rabbit-extends-object.svg similarity index 54% rename from 1-js/09-classes/02-class-inheritance/3-class-extend-object/rabbit-extends-object.svg rename to 1-js/09-classes/03-static-properties-methods/3-class-extend-object/rabbit-extends-object.svg index 8ab568291..8f948e447 100644 --- a/1-js/09-classes/02-class-inheritance/3-class-extend-object/rabbit-extends-object.svg +++ b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/rabbit-extends-object.svg @@ -1,3 +1,4 @@ +<<<<<<< HEAD:1-js/09-classes/02-class-inheritance/3-class-extend-object/rabbit-extends-object.svg @@ -64,4 +65,7 @@ - \ No newline at end of file + +======= +call: function bind: function ...Function.prototypeconstructorObjectRabbit[[Prototype]][[Prototype]]constructorcall: function bind: function ...Function.prototypeRabbit[[Prototype]]constructorclass Rabbitclass Rabbit extends Object +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b:1-js/09-classes/03-static-properties-methods/3-class-extend-object/rabbit-extends-object.svg diff --git a/1-js/09-classes/02-class-inheritance/3-class-extend-object/solution.md b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md similarity index 76% rename from 1-js/09-classes/02-class-inheritance/3-class-extend-object/solution.md rename to 1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md index fa26ec834..cb9829ce0 100644 --- a/1-js/09-classes/02-class-inheritance/3-class-extend-object/solution.md +++ b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md @@ -21,14 +21,14 @@ alert( rabbit.hasOwnProperty('name') ); // true But that's not all yet. -Even after the fix, there's still important difference in `"class Rabbit extends Object"` versus `class Rabbit`. +Even after the fix, there's still an important difference between `"class Rabbit extends Object"` and `class Rabbit`. As we know, the "extends" syntax sets up two prototypes: 1. Between `"prototype"` of the constructor functions (for methods). -2. Between the constructor functions itself (for static methods). +2. Between the constructor functions themselves (for static methods). -In our case, for `class Rabbit extends Object` it means: +In the case of `class Rabbit extends Object` it means: ```js run class Rabbit extends Object {} @@ -37,7 +37,7 @@ alert( Rabbit.prototype.__proto__ === Object.prototype ); // (1) true alert( Rabbit.__proto__ === Object ); // (2) true ``` -So `Rabbit` now provides access to static methods of `Object` via `Rabbit`, like this: +So `Rabbit` now provides access to the static methods of `Object` via `Rabbit`, like this: ```js run class Rabbit extends Object {} @@ -67,7 +67,7 @@ alert ( Rabbit.getOwnPropertyNames({a: 1, b: 2})); // Error So `Rabbit` doesn't provide access to static methods of `Object` in that case. -By the way, `Function.prototype` has "generic" function methods, like `call`, `bind` etc. They are ultimately available in both cases, because for the built-in `Object` constructor, `Object.__proto__ === Function.prototype`. +By the way, `Function.prototype` also has "generic" function methods, like `call`, `bind` etc. They are ultimately available in both cases, because for the built-in `Object` constructor, `Object.__proto__ === Function.prototype`. Here's the picture: diff --git a/1-js/09-classes/02-class-inheritance/3-class-extend-object/task.md b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/task.md similarity index 88% rename from 1-js/09-classes/02-class-inheritance/3-class-extend-object/task.md rename to 1-js/09-classes/03-static-properties-methods/3-class-extend-object/task.md index ca6628edf..1d0f98a74 100644 --- a/1-js/09-classes/02-class-inheritance/3-class-extend-object/task.md +++ b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/task.md @@ -1,4 +1,4 @@ -importance: 5 +importance: 3 --- @@ -19,7 +19,6 @@ let rabbit = new Rabbit("Rab"); *!* // hasOwnProperty method is from Object.prototype -// rabbit.__proto__ === Object.prototype alert( rabbit.hasOwnProperty('name') ); // true */!* ``` @@ -39,5 +38,5 @@ class Rabbit extends Object { let rabbit = new Rabbit("Rab"); -alert( rabbit.hasOwnProperty('name') ); // true +alert( rabbit.hasOwnProperty('name') ); // Error ``` diff --git a/1-js/09-classes/03-static-properties-methods/article.md b/1-js/09-classes/03-static-properties-methods/article.md index 6ccf4fd71..0cfc07797 100644 --- a/1-js/09-classes/03-static-properties-methods/article.md +++ b/1-js/09-classes/03-static-properties-methods/article.md @@ -1,9 +1,9 @@ # Static properties and methods -We can also assign a method to the class function, not to its `"prototype"`. Such methods are called *static*. +We can also assign a method to the class as a whole. Such methods are called *static*. -An example: +In a class declaration, they are prepended by `static` keyword, like this: ```js run class User { @@ -17,21 +17,25 @@ class User { User.staticMethod(); // true ``` -That actually does the same as assigning it as a function property: +That actually does the same as assigning it as a property directly: -```js -function User() { } +```js run +class User { } User.staticMethod = function() { alert(this === User); }; + +User.staticMethod(); // true ``` -The value of `this` inside `User.staticMethod()` is the class constructor `User` itself (the "object before dot" rule). +The value of `this` in `User.staticMethod()` call is the class constructor `User` itself (the "object before dot" rule). + +Usually, static methods are used to implement functions that belong to the class as a whole, but not to any particular object of it. -Usually, static methods are used to implement functions that belong to the class, but not to any particular object of it. +For instance, we have `Article` objects and need a function to compare them. -For instance, we have `Article` objects and need a function to compare them. The natural choice would be `Article.compare`, like this: +A natural solution would be to add `Article.compare` static method: ```js run class Article { @@ -49,8 +53,8 @@ class Article { // usage let articles = [ - new Article("Mind", new Date(2019, 1, 1)), - new Article("Body", new Date(2019, 0, 1)), + new Article("HTML", new Date(2019, 1, 1)), + new Article("CSS", new Date(2019, 0, 1)), new Article("JavaScript", new Date(2019, 11, 1)) ]; @@ -58,20 +62,22 @@ let articles = [ articles.sort(Article.compare); */!* -alert( articles[0].title ); // Body +alert( articles[0].title ); // CSS ``` -Here `Article.compare` stands "over" the articles, as a means to compare them. It's not a method of an article, but rather of the whole class. +Here `Article.compare` method stands "above" articles, as a means to compare them. It's not a method of an article, but rather of the whole class. -Another example would be a so-called "factory" method. Imagine, we need few ways to create an article: +Another example would be a so-called "factory" method. + +Let's say, we need multiple ways to create an article: 1. Create by given parameters (`title`, `date` etc). 2. Create an empty article with today's date. -3. ... +3. ...or else somehow. The first way can be implemented by the constructor. And for the second one we can make a static method of the class. -Like `Article.createTodays()` here: +Such as `Article.createTodays()` here: ```js run class Article { @@ -90,7 +96,7 @@ class Article { let article = Article.createTodays(); -alert( article.title ); // Todays digest +alert( article.title ); // Today's digest ``` Now every time we need to create a today's digest, we can call `Article.createTodays()`. Once again, that's not a method of an article, but a method of the whole class. @@ -99,15 +105,26 @@ Static methods are also used in database-related classes to search/save/remove e ```js // assuming Article is a special class for managing articles -// static method to remove the article: +// static method to remove the article by id: Article.remove({id: 12345}); ``` +````warn header="Static methods aren't available for individual objects" +Static methods are callable on classes, not on individual objects. + +E.g. such code won't work: + +```js +// ... +article.createTodays(); /// Error: article.createTodays is not a function +``` +```` + ## Static properties [recent browser=Chrome] -Static properties are also possible, just like regular class properties: +Static properties are also possible, they look like regular class properties, but prepended by `static`: ```js run class Article { @@ -123,14 +140,15 @@ That is the same as a direct assignment to `Article`: Article.publisher = "Ilya Kantor"; ``` -## Statics and inheritance +## Inheritance of static properties and methods [#statics-and-inheritance] -Statics are inherited, we can access `Parent.method` as `Child.method`. +Static properties and methods are inherited. -For instance, `Animal.compare` in the code below is inherited and accessible as `Rabbit.compare`: +For instance, `Animal.compare` and `Animal.planet` in the code below are inherited and accessible as `Rabbit.compare` and `Rabbit.planet`: ```js run class Animal { + static planet = "Earth"; constructor(name, speed) { this.speed = speed; @@ -167,38 +185,47 @@ rabbits.sort(Rabbit.compare); */!* rabbits[0].run(); // Black Rabbit runs with speed 5. + +alert(Rabbit.planet); // Earth ``` -Now we can call `Rabbit.compare` assuming that the inherited `Animal.compare` will be called. +Now when we call `Rabbit.compare`, the inherited `Animal.compare` will be called. -How does it work? Again, using prototypes. As you might have already guessed, extends also gives `Rabbit` the `[[Prototype]]` reference to `Animal`. +How does it work? Again, using prototypes. As you might have already guessed, `extends` gives `Rabbit` the `[[Prototype]]` reference to `Animal`. +![](animal-rabbit-static.svg) +<<<<<<< HEAD ![](animal-rabbit-static.svg) +======= +So, `Rabbit extends Animal` creates two `[[Prototype]]` references: +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b + +1. `Rabbit` function prototypally inherits from `Animal` function. +2. `Rabbit.prototype` prototypally inherits from `Animal.prototype`. -So, `Rabbit` function now inherits from `Animal` function. And `Animal` function normally has `[[Prototype]]` referencing `Function.prototype`, because it doesn't `extend` anything. +As a result, inheritance works both for regular and static methods. -Here, let's check that: +Here, let's check that by code: ```js run class Animal {} class Rabbit extends Animal {} -// for static properties and methods +// for statics alert(Rabbit.__proto__ === Animal); // true -// and the next step is Function.prototype -alert(Animal.__proto__ === Function.prototype); // true - -// that's in addition to the "normal" prototype chain for object methods -alert(Rabbit.prototype.__proto__ === Animal.prototype); +// for regular methods +alert(Rabbit.prototype.__proto__ === Animal.prototype); // true ``` -This way `Rabbit` has access to all static methods of `Animal`. - ## Summary -Static methods are used for the functionality that doesn't relate to a concrete class instance, doesn't require an instance to exist, but rather belongs to the class as a whole, like `Article.compare` -- a generic method to compare two articles. +Static methods are used for the functionality that belongs to the class "as a whole". It doesn't relate to a concrete class instance. + +For example, a method for comparison `Article.compare(article1, article2)` or a factory method `Article.createTodays()`. + +They are labeled by the word `static` in class declaration. Static properties are used when we'd like to store class-level data, also not bound to an instance. @@ -214,13 +241,13 @@ class MyClass { } ``` -That's technically the same as assigning to the class itself: +Technically, static declaration is the same as assigning to the class itself: ```js MyClass.property = ... MyClass.method = ... ``` -Static properties are inherited. +Static properties and methods are inherited. -Technically, for `class B extends A` the prototype of the class `B` itself points to `A`: `B.[[Prototype]] = A`. So if a field is not found in `B`, the search continues in `A`. +For `class B extends A` the prototype of the class `B` itself points to `A`: `B.[[Prototype]] = A`. So if a field is not found in `B`, the search continues in `A`. diff --git a/1-js/09-classes/04-private-protected-properties-methods/article.md b/1-js/09-classes/04-private-protected-properties-methods/article.md index ea6753419..91efb89ee 100644 --- a/1-js/09-classes/04-private-protected-properties-methods/article.md +++ b/1-js/09-classes/04-private-protected-properties-methods/article.md @@ -48,16 +48,16 @@ So, all we need to use an object is to know its external interface. We may be co That was a general introduction. -In JavaScript, there are three types of properties and members: +In JavaScript, there are two types of object fields (properties and methods): -- Public: accessible from anywhere. They comprise the external interface. Till now we were only using public properties and methods. +- Public: accessible from anywhere. They comprise the external interface. Until now we were only using public properties and methods. - Private: accessible only from inside the class. These are for the internal interface. -In many other languages there also exist "protected" fields: accessible only from inside the class and those extending it. They are also useful for the internal interface. They are in a sense more widespread than private ones, because we usually want inheriting classes to gain access to properly do the extension. +In many other languages there also exist "protected" fields: accessible only from inside the class and those extending it (like private, but plus access from inheriting classes). They are also useful for the internal interface. They are in a sense more widespread than private ones, because we usually want inheriting classes to gain access to them. Protected fields are not implemented in JavaScript on the language level, but in practice they are very convenient, so they are emulated. -In the next step we'll make a coffee machine in JavaScript with all these types of properties. A coffee machine has a lot of details, we won't model them to stay simple (though we could). +Now we'll make a coffee machine in JavaScript with all these types of properties. A coffee machine has a lot of details, we won't model them to stay simple (though we could). ## Protecting "waterAmount" @@ -87,7 +87,7 @@ Let's change `waterAmount` property to protected to have more control over it. F **Protected properties are usually prefixed with an underscore `_`.** -That is not enforced on the language level, but there's a convention that such properties and methods should not be accessed from the outside. Most programmers follow it. +That is not enforced on the language level, but there's a well-known convention between programmers that such properties and methods should not be accessed from the outside. So our property will be called `_waterAmount`: @@ -96,7 +96,9 @@ class CoffeeMachine { _waterAmount = 0; set waterAmount(value) { - if (value < 0) throw new Error("Negative water"); + if (value < 0) { + value = 0; + } this._waterAmount = value; } @@ -114,10 +116,10 @@ class CoffeeMachine { let coffeeMachine = new CoffeeMachine(100); // add water -coffeeMachine.waterAmount = -10; // Error: Negative water +coffeeMachine.waterAmount = -10; // _waterAmount will become 0, not -10 ``` -Now the access is under control, so setting the water below zero fails. +Now the access is under control, so setting the water amount below zero becomes impossible. ## Read-only "power" @@ -159,21 +161,21 @@ class CoffeeMachine { _waterAmount = 0; *!*setWaterAmount(value)*/!* { - if (value < 0) throw new Error("Negative water"); + if (value < 0) value = 0; this._waterAmount = value; } *!*getWaterAmount()*/!* { - return this.waterAmount; + return this._waterAmount; } } new CoffeeMachine().setWaterAmount(100); ``` -That looks a bit longer, but functions are more flexible. They can accept multiple arguments (even if we don't need them right now). So, for the future, just in case we need to refactor something, functions are a safer choice. +That looks a bit longer, but functions are more flexible. They can accept multiple arguments (even if we don't need them right now). -Surely, there's a tradeoff. On the other hand, get/set syntax is shorter, so ultimately there's no strict rule, it's up to you to decide. +On the other hand, get/set syntax is shorter, so ultimately there's no strict rule, it's up to you to decide. ```` ```smart header="Protected fields are inherited" @@ -190,32 +192,23 @@ There's a finished JavaScript proposal, almost in the standard, that provides la Privates should start with `#`. They are only accessible from inside the class. -For instance, here we add a private `#waterLimit` property and extract the water-checking logic into a separate method: +For instance, here's a private `#waterLimit` property and the water-checking private method `#fixWaterAmount`: -```js +```js run class CoffeeMachine { *!* #waterLimit = 200; */!* *!* - #checkWater(value) { - if (value < 0) throw new Error("Negative water"); - if (value > this.#waterLimit) throw new Error("Too much water"); + #fixWaterAmount(value) { + if (value < 0) return 0; + if (value > this.#waterLimit) return this.#waterLimit; } */!* - _waterAmount = 0; - - set waterAmount(value) { -*!* - this.#checkWater(value); -*/!* - this._waterAmount = value; - } - - get waterAmount() { - return this.waterAmount; + setWaterAmount(value) { + this.#waterLimit = this.#fixWaterAmount(value); } } @@ -223,11 +216,10 @@ class CoffeeMachine { let coffeeMachine = new CoffeeMachine(); *!* -coffeeMachine.#checkWater(); // Error +// can't access privates from outside of the class +coffeeMachine.#fixWaterAmount(123); // Error coffeeMachine.#waterLimit = 1000; // Error */!* - -coffeeMachine.waterAmount = 100; // Works ``` On the language level, `#` is a special sign that the field is private. We can't access it from outside or from inheriting classes. @@ -246,7 +238,7 @@ class CoffeeMachine { } set waterAmount(value) { - if (value < 0) throw new Error("Negative water"); + if (value < 0) value = 0; this.#waterAmount = value; } } @@ -262,7 +254,7 @@ Unlike protected ones, private fields are enforced by the language itself. That' But if we inherit from `CoffeeMachine`, then we'll have no direct access to `#waterAmount`. We'll need to rely on `waterAmount` getter/setter: ```js -class CoffeeMachine extends CoffeeMachine() { +class MegaCoffeeMachine extends CoffeeMachine { method() { *!* alert( this.#waterAmount ); // Error: can only access from CoffeeMachine @@ -271,19 +263,19 @@ class CoffeeMachine extends CoffeeMachine() { } ``` -In many scenarios such limitation is too severe. If we extend a `CoffeeMachine`, we may have legitimate reason to access its internals. That's why protected fields are used most of the time, even though they are not supported by the language syntax. +In many scenarios such limitation is too severe. If we extend a `CoffeeMachine`, we may have legitimate reasons to access its internals. That's why protected fields are used more often, even though they are not supported by the language syntax. -````warn +````warn header="Private fields are not available as this[name]" Private fields are special. -Remember, usually we can access fields by this[name]: +As we know, usually we can access fields using `this[name]`: ```js class User { ... sayHi() { let fieldName = "name"; - alert(`Hello, ${this[fieldName]}`); + alert(`Hello, ${*!*this[fieldName]*/!*}`); } } ``` @@ -293,11 +285,11 @@ With private fields that's impossible: `this['#name']` doesn't work. That's a sy ## Summary -In terms of OOP, delimiting of the internal interface from the external one is called [encapsulation]("https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)"). +In terms of OOP, delimiting of the internal interface from the external one is called [encapsulation](https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)). It gives the following benefits: -Protection for users, so that they don't shoot themselves in the feet +Protection for users, so that they don't shoot themselves in the foot : Imagine, there's a team of developers using a coffee machine. It was made by the "Best CoffeeMachine" company, and works fine, but a protective cover was removed. So the internal interface is exposed. All developers are civilized -- they use the coffee machine as intended. But one of them, John, decided that he's the smartest one, and made some tweaks in the coffee machine internals. So the coffee machine failed two days later. @@ -309,22 +301,22 @@ Protection for users, so that they don't shoot themselves in the feet Supportable : The situation in programming is more complex than with a real-life coffee machine, because we don't just buy it once. The code constantly undergoes development and improvement. - **If we strictly delimit the internal interface, then the developer of the class can freely change its internal properties and methods, even without informing the users..** + **If we strictly delimit the internal interface, then the developer of the class can freely change its internal properties and methods, even without informing the users.** - It's much easier to develop, if you know that certain methods can be renamed, their parameters can be changed, and even removed, because no external code depends on them. + If you're a developer of such class, it's great to know that private methods can be safely renamed, their parameters can be changed, and even removed, because no external code depends on them. - For users, when a new version comes out, it may be a total overhaul, but still simple to upgrade if the external interface is the same. + For users, when a new version comes out, it may be a total overhaul internally, but still simple to upgrade if the external interface is the same. Hiding complexity -: People adore to use things that are simple. At least from outside. What's inside is a different thing. +: People adore using things that are simple. At least from outside. What's inside is a different thing. Programmers are not an exception. **It's always convenient when implementation details are hidden, and a simple, well-documented external interface is available.** -To hide internal interface we use either protected or public properties: +To hide an internal interface we use either protected or private properties: - Protected fields start with `_`. That's a well-known convention, not enforced at the language level. Programmers should only access a field starting with `_` from its class and classes inheriting from it. -- Private fields start with `#`. JavaScript makes sure we only can access those from inside the class. +- Private fields start with `#`. JavaScript makes sure we can only access those from inside the class. Right now, private fields are not well-supported among browsers, but can be polyfilled. diff --git a/1-js/09-classes/05-extend-natives/article.md b/1-js/09-classes/05-extend-natives/article.md index 4cf1c2bdd..28b4c6eb6 100644 --- a/1-js/09-classes/05-extend-natives/article.md +++ b/1-js/09-classes/05-extend-natives/article.md @@ -21,21 +21,20 @@ alert(filteredArr); // 10, 50 alert(filteredArr.isEmpty()); // false ``` -Please note a very interesting thing. Built-in methods like `filter`, `map` and others -- return new objects of exactly the inherited type. They rely on the `constructor` property to do so. +Please note a very interesting thing. Built-in methods like `filter`, `map` and others -- return new objects of exactly the inherited type `PowerArray`. Their internal implementation uses the object's `constructor` property for that. In the example above, ```js arr.constructor === PowerArray ``` -So when `arr.filter()` is called, it internally creates the new array of results exactly as `new PowerArray`. -That's actually very cool, because we can keep using `PowerArray` methods further on the result. +When `arr.filter()` is called, it internally creates the new array of results using exactly `arr.constructor`, not basic `Array`. That's actually very cool, because we can keep using `PowerArray` methods further on the result. Even more, we can customize that behavior. -There's a special static getter `Symbol.species`, if exists, it returns the constructor to use in such cases. +We can add a special static getter `Symbol.species` to the class. If it exists, it should return the constructor that JavaScript will use internally to create new entities in `map`, `filter` and so on. -If we'd like built-in methods like `map`, `filter` will return regular arrays, we can return `Array` in `Symbol.species`, like here: +If we'd like built-in methods like `map` or `filter` to return regular arrays, we can return `Array` in `Symbol.species`, like here: ```js run class PowerArray extends Array { @@ -65,18 +64,26 @@ alert(filteredArr.isEmpty()); // Error: filteredArr.isEmpty is not a function As you can see, now `.filter` returns `Array`. So the extended functionality is not passed any further. +```smart header="Other collections work similarly" +Other collections, such as `Map` and `Set`, work alike. They also use `Symbol.species`. +``` + ## No static inheritance in built-ins Built-in objects have their own static methods, for instance `Object.keys`, `Array.isArray` etc. -And we've already been talking about native classes extending each other: `Array.[[Prototype]] = Object`. +As we already know, native classes extend each other. For instance, `Array` extends `Object`. -But statics are an exception. Built-in classes don't inherit static properties from each other. +Normally, when one class extends another, both static and non-static methods are inherited. That was thoroughly explained in the article [](info:static-properties-methods#statics-and-inheritance). -In other words, the prototype of built-in constructor `Array` does not point to `Object`. This way `Array` and `Date` do not have `Array.keys` or `Date.keys`. And that feels natural. +But built-in classes are an exception. They don't inherit statics from each other. + +For example, both `Array` and `Date` inherit from `Object`, so their instances have methods from `Object.prototype`. But `Array.[[Prototype]]` does not reference `Object`, so there's no, for instance, `Array.keys()` (or `Date.keys()`) static method. Here's the picture structure for `Date` and `Object`: ![](object-date-inheritance.svg) -Note, there's no link between `Date` and `Object`. Both `Object` and `Date` exist independently. `Date.prototype` inherits from `Object.prototype`, but that's all. +As you can see, there's no link between `Date` and `Object`. They are independent, only `Date.prototype` inherits from `Object.prototype`. + +That's an important difference of inheritance between built-in objects compared to what we get with `extends`. diff --git a/1-js/09-classes/06-instanceof/1-strange-instanceof/task.md b/1-js/09-classes/06-instanceof/1-strange-instanceof/task.md index e9481912a..5b8dc7de3 100644 --- a/1-js/09-classes/06-instanceof/1-strange-instanceof/task.md +++ b/1-js/09-classes/06-instanceof/1-strange-instanceof/task.md @@ -4,7 +4,7 @@ importance: 5 # Strange instanceof -Why `instanceof` below returns `true`? We can easily see that `a` is not created by `B()`. +In the code below, why does `instanceof` return `true`? We can easily see that `a` is not created by `B()`. ```js run function A() {} diff --git a/1-js/09-classes/06-instanceof/article.md b/1-js/09-classes/06-instanceof/article.md index 50adef552..f9db989ca 100644 --- a/1-js/09-classes/06-instanceof/article.md +++ b/1-js/09-classes/06-instanceof/article.md @@ -2,7 +2,7 @@ The `instanceof` operator allows to check whether an object belongs to a certain class. It also takes inheritance into account. -Such a check may be necessary in many cases, here we'll use it for building a *polymorphic* function, the one that treats arguments differently depending on their type. +Such a check may be necessary in many cases. For example, it can be used for building a *polymorphic* function, the one that treats arguments differently depending on their type. ## The instanceof operator [#ref-instanceof] @@ -11,7 +11,7 @@ The syntax is: obj instanceof Class ``` -It returns `true` if `obj` belongs to the `Class` (or a class inheriting from it). +It returns `true` if `obj` belongs to the `Class` or a class inheriting from it. For instance: @@ -44,16 +44,19 @@ alert( arr instanceof Array ); // true alert( arr instanceof Object ); // true ``` -Please note that `arr` also belongs to the `Object` class. That's because `Array` prototypally inherits from `Object`. +Please note that `arr` also belongs to the `Object` class. That's because `Array` prototypically inherits from `Object`. -The `instanceof` operator examines the prototype chain for the check, and is also fine-tunable using the static method `Symbol.hasInstance`. +Normally, `instanceof` examines the prototype chain for the check. We can also set a custom logic in the static method `Symbol.hasInstance`. The algorithm of `obj instanceof Class` works roughly as follows: -1. If there's a static method `Symbol.hasInstance`, then use it. Like this: +1. If there's a static method `Symbol.hasInstance`, then just call it: `Class[Symbol.hasInstance](obj)`. It should return either `true` or `false`, and we're done. That's how we can customize the behavior of `instanceof`. + + For example: ```js run - // assume anything that canEat is an animal + // setup instanceOf check that assumes that + // anything with canEat property is an animal class Animal { static [Symbol.hasInstance](obj) { if (obj.canEat) return true; @@ -61,22 +64,25 @@ The algorithm of `obj instanceof Class` works roughly as follows: } let obj = { canEat: true }; + alert(obj instanceof Animal); // true: Animal[Symbol.hasInstance](obj) is called ``` -2. Most classes do not have `Symbol.hasInstance`. In that case, check if `Class.prototype` equals to one of prototypes in the `obj` prototype chain. +2. Most classes do not have `Symbol.hasInstance`. In that case, the standard logic is used: `obj instanceOf Class` checks whether `Class.prototype` is equal to one of the prototypes in the `obj` prototype chain. - In other words, compare: + In other words, compare one after another: ```js - obj.__proto__ === Class.prototype - obj.__proto__.__proto__ === Class.prototype - obj.__proto__.__proto__.__proto__ === Class.prototype + obj.__proto__ === Class.prototype? + obj.__proto__.__proto__ === Class.prototype? + obj.__proto__.__proto__.__proto__ === Class.prototype? ... + // if any answer is true, return true + // otherwise, if we reached the end of the chain, return false ``` - In the example above `Rabbit.prototype === rabbit.__proto__`, so that gives the answer immediately. + In the example above `rabbit.__proto__ === Rabbit.prototype`, so that gives the answer immediately. - In the case of an inheritance, `rabbit` is an instance of the parent class as well: + In the case of an inheritance, the match will be at the second step: ```js run class Animal {} @@ -86,8 +92,11 @@ The algorithm of `obj instanceof Class` works roughly as follows: *!* alert(rabbit instanceof Animal); // true */!* - // rabbit.__proto__ === Rabbit.prototype + + // rabbit.__proto__ === Animal.prototype (no match) + *!* // rabbit.__proto__.__proto__ === Animal.prototype (match!) + */!* ``` Here's the illustration of what `rabbit instanceof Animal` compares with `Animal.prototype`: @@ -96,9 +105,9 @@ Here's the illustration of what `rabbit instanceof Animal` compares with `Animal By the way, there's also a method [objA.isPrototypeOf(objB)](mdn:js/object/isPrototypeOf), that returns `true` if `objA` is somewhere in the chain of prototypes for `objB`. So the test of `obj instanceof Class` can be rephrased as `Class.prototype.isPrototypeOf(obj)`. -That's funny, but the `Class` constructor itself does not participate in the check! Only the chain of prototypes and `Class.prototype` matters. +It's funny, but the `Class` constructor itself does not participate in the check! Only the chain of prototypes and `Class.prototype` matters. -That can lead to interesting consequences when `prototype` is changed. +That can lead to interesting consequences when a `prototype` property is changed after the object is created. Like here: @@ -115,9 +124,7 @@ alert( rabbit instanceof Rabbit ); // false */!* ``` -That's one of the reasons to avoid changing `prototype`. Just to keep safe. - -## Bonus: Object toString for the type +## Bonus: Object.prototype.toString for the type We already know that plain objects are converted to string as `[object Object]`: @@ -150,7 +157,7 @@ let objectToString = Object.prototype.toString; // what type is this? let arr = []; -alert( objectToString.call(arr) ); // [object Array] +alert( objectToString.call(arr) ); // [object *!*Array*/!*] ``` Here we used [call](mdn:js/function/call) as described in the chapter [](info:call-apply-decorators) to execute the function `objectToString` in the context `this=arr`. @@ -179,11 +186,11 @@ let user = { alert( {}.toString.call(user) ); // [object User] ``` -For most environment-specific objects, there is such a property. Here are few browser specific examples: +For most environment-specific objects, there is such a property. Here are some browser specific examples: ```js run // toStringTag for the environment-specific object and class: -alert( window[Symbol.toStringTag]); // window +alert( window[Symbol.toStringTag]); // Window alert( XMLHttpRequest.prototype[Symbol.toStringTag] ); // XMLHttpRequest alert( {}.toString.call(window) ); // [object Window] @@ -194,11 +201,11 @@ As you can see, the result is exactly `Symbol.toStringTag` (if exists), wrapped At the end we have "typeof on steroids" that not only works for primitive data types, but also for built-in objects and even can be customized. -It can be used instead of `instanceof` for built-in objects when we want to get the type as a string rather than just to check. +We can use `{}.toString.call` instead of `instanceof` for built-in objects when we want to get the type as a string rather than just to check. ## Summary -Let's recap the type-checking methods that we know: +Let's summarize the type-checking methods that we know: | | works for | returns | |---------------|-------------|---------------| diff --git a/1-js/09-classes/07-mixins/article.md b/1-js/09-classes/07-mixins/article.md index 7b6d9ebad..21c1097d0 100644 --- a/1-js/09-classes/07-mixins/article.md +++ b/1-js/09-classes/07-mixins/article.md @@ -2,19 +2,19 @@ In JavaScript we can only inherit from a single object. There can be only one `[[Prototype]]` for an object. And a class may extend only one other class. -But sometimes that feels limiting. For instance, I have a class `StreetSweeper` and a class `Bicycle`, and want to make a `StreetSweepingBicycle`. +But sometimes that feels limiting. For instance, we have a class `StreetSweeper` and a class `Bicycle`, and want to make their mix: a `StreetSweepingBicycle`. -Or, talking about programming, we have a class `Renderer` that implements templating and a class `EventEmitter` that implements event handling, and want to merge these functionalities together with a class `Page`, to make a page that can use templates and emit events. +Or we have a class `User` and a class `EventEmitter` that implements event generation, and we'd like to add the functionality of `EventEmitter` to `User`, so that our users can emit events. There's a concept that can help here, called "mixins". -As defined in Wikipedia, a [mixin](https://en.wikipedia.org/wiki/Mixin) is a class that contains methods for use by other classes without having to be the parent class of those other classes. +As defined in Wikipedia, a [mixin](https://en.wikipedia.org/wiki/Mixin) is a class containing methods that can be used by other classes without a need to inherit from it. In other words, a *mixin* provides methods that implement a certain behavior, but we do not use it alone, we use it to add the behavior to other classes. ## A mixin example -The simplest way to make a mixin in JavaScript is to make an object with useful methods, so that we can easily merge them into a prototype of any class. +The simplest way to implement a mixin in JavaScript is to make an object with useful methods, so that we can easily merge them into a prototype of any class. For instance here the mixin `sayHiMixin` is used to add some "speech" for `User`: @@ -47,7 +47,7 @@ Object.assign(User.prototype, sayHiMixin); new User("Dude").sayHi(); // Hello Dude! ``` -There's no inheritance, but a simple method copying. So `User` may extend some other class and also include the mixin to "mix-in" the additional methods, like this: +There's no inheritance, but a simple method copying. So `User` may inherit from another class and also include the mixin to "mix-in" the additional methods, like this: ```js class User extends Person { @@ -69,16 +69,16 @@ let sayMixin = { }; let sayHiMixin = { - __proto__: sayMixin, // (or we could use Object.create to set the prototype here) + __proto__: sayMixin, // (or we could use Object.setPrototypeOf to set the prototype here) sayHi() { *!* // call parent method */!* - super.say(`Hello ${this.name}`); + super.say(`Hello ${this.name}`); // (*) }, sayBye() { - super.say(`Bye ${this.name}`); + super.say(`Bye ${this.name}`); // (*) } }; @@ -95,27 +95,35 @@ Object.assign(User.prototype, sayHiMixin); new User("Dude").sayHi(); // Hello Dude! ``` -Please note that the call to the parent method `super.say()` from `sayHiMixin` looks for the method in the prototype of that mixin, not the class. +Please note that the call to the parent method `super.say()` from `sayHiMixin` (at lines labelled with `(*)`) looks for the method in the prototype of that mixin, not the class. +<<<<<<< HEAD ![](mixin-inheritance.svg) +======= +Here's the diagram (see the right part): +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b -That's because methods from `sayHiMixin` have `[[HomeObject]]` set to it. So `super` actually means `sayHiMixin.__proto__`, not `User.__proto__`. +![](mixin-inheritance.svg) + +That's because methods `sayHi` and `sayBye` were initially created in `sayHiMixin`. So even though they got copied, their `[[HomeObject]]` internal property references `sayHiMixin`, as shown in the picture above. + +As `super` looks for parent methods in `[[HomeObject]].[[Prototype]]`, that means it searches `sayHiMixin.[[Prototype]]`. ## EventMixin Now let's make a mixin for real life. -The important feature of many objects is working with events. +An important feature of many browser objects (for instance) is that they can generate events. Events are a great way to "broadcast information" to anyone who wants it. So let's make a mixin that allows us to easily add event-related functions to any class/object. -That is: an object should have a method to "generate an event" when something important happens to it, and other objects should be able to "listen" to such events. +- The mixin will provide a method `.trigger(name, [...data])` to "generate an event" when something important happens to it. The `name` argument is a name of the event, optionally followed by additional arguments with event data. +- Also the method `.on(name, handler)` that adds `handler` function as the listener to events with the given name. It will be called when an event with the given `name` triggers, and get the arguments from the `.trigger` call. +- ...And the method `.off(name, handler)` that removes the `handler` listener. -An event must have a name and, optionally, bundle some additional data. +After adding the mixin, an object `user` will be able to generate an event `"login"` when the visitor logs in. And another object, say, `calendar` may want to listen for such events to load the calendar for the logged-in person. -For instance, an object `user` can generate an event `"login"` when the visitor logs in. And another object `calendar` may want to receive such events to load the calendar for the logged-in person. +Or, a `menu` can generate the event `"select"` when a menu item is selected, and other objects may assign handlers to react on that event. And so on. -Or, a `menu` can generate the event `"select"` when a menu item is selected, and other objects may want to get that information and react on that event. - -Events is a way to "share information" with anyone who wants it. They can be useful in any class, so let's make a mixin for them: +Here's the code: ```js run let eventMixin = { @@ -136,7 +144,7 @@ let eventMixin = { * menu.off('select', handler) */ off(eventName, handler) { - let handlers = this._eventHandlers && this._eventHandlers[eventName]; + let handlers = this._eventHandlers?.[eventName]; if (!handlers) return; for (let i = 0; i < handlers.length; i++) { if (handlers[i] === handler) { @@ -146,11 +154,11 @@ let eventMixin = { }, /** - * Generate the event and attach the data to it + * Generate an event with the given name and data * this.trigger('select', data1, data2); */ trigger(eventName, ...args) { - if (!this._eventHandlers || !this._eventHandlers[eventName]) { + if (!this._eventHandlers?.[eventName]) { return; // no handlers for that event name } @@ -160,12 +168,10 @@ let eventMixin = { }; ``` -There are 3 methods here: - -1. `.on(eventName, handler)` -- assigns function `handler` to run when the event with that name happens. The handlers are stored in the `_eventHandlers` property. -2. `.off(eventName, handler)` -- removes the function from the handlers list. -3. `.trigger(eventName, ...args)` -- generates the event: all assigned handlers are called and `args` are passed as arguments to them. +- `.on(eventName, handler)` -- assigns function `handler` to run when the event with that name occurs. Technically, there's an `_eventHandlers` property that stores an array of handlers for each event name, and it just adds it to the list. +- `.off(eventName, handler)` -- removes the function from the handlers list. +- `.trigger(eventName, ...args)` -- generates the event: all handlers from `_eventHandlers[eventName]` are called, with a list of arguments `...args`. Usage: @@ -176,30 +182,31 @@ class Menu { this.trigger("select", value); } } -// Add the mixin +// Add the mixin with event-related methods Object.assign(Menu.prototype, eventMixin); let menu = new Menu(); -// call the handler on selection: +// add a handler, to be called on selection: *!* menu.on("select", value => alert(`Value selected: ${value}`)); */!* -// triggers the event => shows Value selected: 123 -menu.choose("123"); // value selected +// triggers the event => the handler above runs and shows: +// Value selected: 123 +menu.choose("123"); ``` -Now if we have the code interested to react on user selection, we can bind it with `menu.on(...)`. +Now, if we'd like any code to react to a menu selection, we can listen for it with `menu.on(...)`. -And the `eventMixin` can add such behavior to as many classes as we'd like, without interfering with the inheritance chain. +And `eventMixin` mixin makes it easy to add such behavior to as many classes as we'd like, without interfering with the inheritance chain. ## Summary *Mixin* -- is a generic object-oriented programming term: a class that contains methods for other classes. -Some other languages like e.g. python allow to create mixins using multiple inheritance. JavaScript does not support multiple inheritance, but mixins can be implemented by copying them into the prototype. +Some other languages allow multiple inheritance. JavaScript does not support multiple inheritance, but mixins can be implemented by copying methods into prototype. -We can use mixins as a way to augment a class by multiple behaviors, like event-handling as we have seen above. +We can use mixins as a way to augment a class by adding multiple behaviors, like event-handling as we have seen above. -Mixins may become a point of conflict if they occasionally overwrite native class methods. So generally one should think well about the naming for a mixin, to minimize such possibility. +Mixins may become a point of conflict if they accidentally overwrite existing class methods. So generally one should think well about the naming methods of a mixin, to minimize the probability of that happening. diff --git a/1-js/09-classes/07-mixins/head.html b/1-js/09-classes/07-mixins/head.html index 77ea38b20..20e3a6354 100644 --- a/1-js/09-classes/07-mixins/head.html +++ b/1-js/09-classes/07-mixins/head.html @@ -18,7 +18,7 @@ * menu.off('select', handler) */ off(eventName, handler) { - let handlers = this._eventHandlers && this._eventHandlers[eventName]; + let handlers = this._eventHandlers?.[eventName]; if (!handlers) return; for(let i = 0; i < handlers.length; i++) { if (handlers[i] == handler) { diff --git a/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/solution.md b/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/solution.md index 05ba72e00..ec0dabc9a 100644 --- a/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/solution.md +++ b/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/solution.md @@ -1,8 +1,8 @@ The difference becomes obvious when we look at the code inside a function. -The behavior is different if there's a "jump out" of `try..catch`. +The behavior is different if there's a "jump out" of `try...catch`. -For instance, when there's a `return` inside `try..catch`. The `finally` clause works in case of *any* exit from `try..catch`, even via the `return` statement: right after `try..catch` is done, but before the calling code gets the control. +For instance, when there's a `return` inside `try...catch`. The `finally` clause works in case of *any* exit from `try...catch`, even via the `return` statement: right after `try...catch` is done, but before the calling code gets the control. ```js run function f() { @@ -11,7 +11,7 @@ function f() { *!* return "result"; */!* - } catch (e) { + } catch (err) { /// ... } finally { alert('cleanup!'); @@ -28,11 +28,11 @@ function f() { try { alert('start'); throw new Error("an error"); - } catch (e) { + } catch (err) { // ... if("can't handle the error") { *!* - throw e; + throw err; */!* } @@ -44,4 +44,4 @@ function f() { f(); // cleanup! ``` -It's `finally` that guarantees the cleanup here. If we just put the code at the end of `f`, it wouldn't run. +It's `finally` that guarantees the cleanup here. If we just put the code at the end of `f`, it wouldn't run in these situations. diff --git a/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/task.md b/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/task.md index e84687343..b6dc81326 100644 --- a/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/task.md +++ b/1-js/10-error-handling/1-try-catch/1-finally-or-code-after/task.md @@ -6,12 +6,12 @@ importance: 5 Compare the two code fragments. -1. The first one uses `finally` to execute the code after `try..catch`: +1. The first one uses `finally` to execute the code after `try...catch`: ```js try { work work - } catch (e) { + } catch (err) { handle errors } finally { *!* @@ -19,12 +19,12 @@ Compare the two code fragments. */!* } ``` -2. The second fragment puts the cleaning right after `try..catch`: +2. The second fragment puts the cleaning right after `try...catch`: ```js try { work work - } catch (e) { + } catch (err) { handle errors } @@ -33,6 +33,6 @@ Compare the two code fragments. */!* ``` -We definitely need the cleanup after the work has started, doesn't matter if there was an error or not. +We definitely need the cleanup after the work, doesn't matter if there was an error or not. Is there an advantage here in using `finally` or both code fragments are equal? If there is such an advantage, then give an example when it matters. diff --git a/1-js/10-error-handling/1-try-catch/article.md b/1-js/10-error-handling/1-try-catch/article.md index d2a42dddc..cad2e1a3e 100644 --- a/1-js/10-error-handling/1-try-catch/article.md +++ b/1-js/10-error-handling/1-try-catch/article.md @@ -1,14 +1,14 @@ -# Error handling, "try..catch" +# Error handling, "try...catch" -No matter how great we are at programming, sometimes our scripts have errors. They may occur because of our mistakes, an unexpected user input, an erroneous server response and for a thousand of other reasons. +No matter how great we are at programming, sometimes our scripts have errors. They may occur because of our mistakes, an unexpected user input, an erroneous server response, and for a thousand other reasons. Usually, a script "dies" (immediately stops) in case of an error, printing it to console. -But there's a syntax construct `try..catch` that allows to "catch" errors and, instead of dying, do something more reasonable. +But there's a syntax construct `try...catch` that allows us to "catch" errors so the script can, instead of dying, do something more reasonable. -## The "try..catch" syntax +## The "try...catch" syntax -The `try..catch` construct has two main blocks: `try`, and then `catch`: +The `try...catch` construct has two main blocks: `try`, and then `catch`: ```js try { @@ -25,14 +25,14 @@ try { It works like this: 1. First, the code in `try {...}` is executed. -2. If there were no errors, then `catch(err)` is ignored: the execution reaches the end of `try` and then jumps over `catch`. -3. If an error occurs, then `try` execution is stopped, and the control flows to the beginning of `catch(err)`. The `err` variable (can use any name for it) contains an error object with details about what's happened. +2. If there were no errors, then `catch (err)` is ignored: the execution reaches the end of `try` and goes on, skipping `catch`. +3. If an error occurs, then the `try` execution is stopped, and control flows to the beginning of `catch (err)`. The `err` variable (we can use any name for it) will contain an error object with details about what happened. ![](try-catch-flow.svg) -So, an error inside the `try {…}` block does not kill the script: we have a chance to handle it in `catch`. +So, an error inside the `try {...}` block does not kill the script -- we have a chance to handle it in `catch`. -Let's see more examples. +Let's look at some examples. - An errorless example: shows `alert` `(1)` and `(2)`: @@ -45,13 +45,11 @@ Let's see more examples. alert('End of try runs'); // *!*(2) <--*/!* - } catch(err) { + } catch (err) { alert('Catch is ignored, because there are no errors'); // (3) } - - alert("...Then the execution continues"); ``` - An example with an error: shows `(1)` and `(3)`: @@ -66,55 +64,53 @@ Let's see more examples. alert('End of try (never reached)'); // (2) - } catch(err) { + } catch (err) { alert(`Error has occurred!`); // *!*(3) <--*/!* } - - alert("...Then the execution continues"); ``` -````warn header="`try..catch` only works for runtime errors" -For `try..catch` to work, the code must be runnable. In other words, it should be valid JavaScript. +````warn header="`try...catch` only works for runtime errors" +For `try...catch` to work, the code must be runnable. In other words, it should be valid JavaScript. It won't work if the code is syntactically wrong, for instance it has unmatched curly braces: ```js run try { {{{{{{{{{{{{ -} catch(e) { +} catch (err) { alert("The engine can't understand this code, it's invalid"); } ``` -The JavaScript engine first reads the code, and then runs it. The errors that occur on the reading phrase are called "parse-time" errors and are unrecoverable (from inside that code). That's because the engine can't understand the code. +The JavaScript engine first reads the code, and then runs it. The errors that occur on the reading phase are called "parse-time" errors and are unrecoverable (from inside that code). That's because the engine can't understand the code. -So, `try..catch` can only handle errors that occur in the valid code. Such errors are called "runtime errors" or, sometimes, "exceptions". +So, `try...catch` can only handle errors that occur in valid code. Such errors are called "runtime errors" or, sometimes, "exceptions". ```` -````warn header="`try..catch` works synchronously" -If an exception happens in "scheduled" code, like in `setTimeout`, then `try..catch` won't catch it: +````warn header="`try...catch` works synchronously" +If an exception happens in "scheduled" code, like in `setTimeout`, then `try...catch` won't catch it: ```js run try { setTimeout(function() { noSuchVariable; // script will die here }, 1000); -} catch (e) { +} catch (err) { alert( "won't work" ); } ``` -That's because `try..catch` actually wraps the `setTimeout` call that schedules the function. But the function itself is executed later, when the engine has already left the `try..catch` construct. +That's because the function itself is executed later, when the engine has already left the `try...catch` construct. -To catch an exception inside a scheduled function, `try..catch` must be inside that function: +To catch an exception inside a scheduled function, `try...catch` must be inside that function: ```js run setTimeout(function() { try { - noSuchVariable; // try..catch handles the error! + noSuchVariable; // try...catch handles the error! } catch { alert( "error is caught here!" ); } @@ -129,15 +125,15 @@ When an error occurs, JavaScript generates an object containing the details abou ```js try { // ... -} catch(err) { // <-- the "error object", could use another word instead of err +} catch (err) { // <-- the "error object", could use another word instead of err // ... } ``` -For all built-in errors, the error object inside `catch` block has two main properties: +For all built-in errors, the error object has two main properties: `name` -: Error name. For an undefined variable that's `"ReferenceError"`. +: Error name. For instance, for an undefined variable that's `"ReferenceError"`. `message` : Textual message about error details. @@ -154,10 +150,10 @@ try { *!* lalala; // error, variable is not defined! */!* -} catch(err) { +} catch (err) { alert(err.name); // ReferenceError alert(err.message); // lalala is not defined - alert(err.stack); // ReferenceError: lalala is not defined at ... + alert(err.stack); // ReferenceError: lalala is not defined at (...call stack) // Can also show an error as a whole // The error is converted to string as "name: message" @@ -174,20 +170,20 @@ If we don't need error details, `catch` may omit it: ```js try { // ... -} catch { - // error object omitted +} catch { // <-- without (err) + // ... } ``` -## Using "try..catch" +## Using "try...catch" -Let's explore a real-life use case of `try..catch`. +Let's explore a real-life use case of `try...catch`. As we already know, JavaScript supports the [JSON.parse(str)](mdn:js/JSON/parse) method to read JSON-encoded values. Usually it's used to decode data received over the network, from the server or another source. -We receive it and call `JSON.parse`, like this: +We receive it and call `JSON.parse` like this: ```js run let json = '{"name":"John", "age": 30}'; // data from the server @@ -205,11 +201,11 @@ You can find more detailed information about JSON in the chapter. **If `json` is malformed, `JSON.parse` generates an error, so the script "dies".** -Should we be satisfied with that? Of course, not! +Should we be satisfied with that? Of course not! This way, if something's wrong with the data, the visitor will never know that (unless they open the developer console). And people really don't like when something "just dies" without any error message. -Let's use `try..catch` to handle the error: +Let's use `try...catch` to handle the error: ```js run let json = "{ bad json }"; @@ -221,12 +217,12 @@ try { */!* alert( user.name ); // doesn't work -} catch (e) { +} catch (err) { *!* // ...the execution jumps here alert( "Our apologies, the data has errors, we'll try to request it one more time." ); - alert( e.name ); - alert( e.message ); + alert( err.name ); + alert( err.message ); */!* } ``` @@ -249,7 +245,7 @@ try { alert( user.name ); // no name! */!* -} catch (e) { +} catch (err) { alert( "doesn't execute" ); } ``` @@ -298,17 +294,17 @@ Let's see what kind of error `JSON.parse` generates: ```js run try { JSON.parse("{ bad json o_O }"); -} catch(e) { +} catch (err) { *!* - alert(e.name); // SyntaxError + alert(err.name); // SyntaxError */!* - alert(e.message); // Unexpected token o in JSON at position 0 + alert(err.message); // Unexpected token b in JSON at position 2 } ``` As we can see, that's a `SyntaxError`. -And in our case, the absence of `name` could be treated as a syntax error also, assuming that users must have a `name`. +And in our case, the absence of `name` is an error, as users must have a `name`. So let's throw it: @@ -327,8 +323,8 @@ try { alert( user.name ); -} catch(e) { - alert( "JSON Error: " + e.message ); // JSON Error: Incomplete data: no name +} catch (err) { + alert( "JSON Error: " + err.message ); // JSON Error: Incomplete data: no name } ``` @@ -338,9 +334,9 @@ Now `catch` became a single place for all error handling: both for `JSON.parse` ## Rethrowing -In the example above we use `try..catch` to handle incorrect data. But is it possible that *another unexpected error* occurs within the `try {...}` block? Like a variable is undefined or something else, not just that "incorrect data" thing. +In the example above we use `try...catch` to handle incorrect data. But is it possible that *another unexpected error* occurs within the `try {...}` block? Like a programming error (variable is not defined) or something else, not just this "incorrect data" thing. -Like this: +For example: ```js run let json = '{ "age": 30 }'; // incomplete data @@ -349,37 +345,41 @@ try { user = JSON.parse(json); // <-- forgot to put "let" before user // ... -} catch(err) { +} catch (err) { alert("JSON Error: " + err); // JSON Error: ReferenceError: user is not defined // (no JSON Error actually) } ``` -Of course, everything's possible! Programmers do make mistakes. Even in open-source utilities used by millions for decades -- suddenly a crazy bug may be discovered that leads to terrible hacks (like it happened with the `ssh` tool). +Of course, everything's possible! Programmers do make mistakes. Even in open-source utilities used by millions for decades -- suddenly a bug may be discovered that leads to terrible hacks. + +In our case, `try...catch` is placed to catch "incorrect data" errors. But by its nature, `catch` gets *all* errors from `try`. Here it gets an unexpected error, but still shows the same `"JSON Error"` message. That's wrong and also makes the code more difficult to debug. + +To avoid such problems, we can employ the "rethrowing" technique. The rule is simple: + +**Catch should only process errors that it knows and "rethrow" all others.** + +The "rethrowing" technique can be explained in more detail as: -In our case, `try..catch` is meant to catch "incorrect data" errors. But by its nature, `catch` gets *all* errors from `try`. Here it gets an unexpected error, but still shows the same `"JSON Error"` message. That's wrong and also makes the code more difficult to debug. +1. Catch gets all errors. +2. In the `catch (err) {...}` block we analyze the error object `err`. +3. If we don't know how to handle it, we do `throw err`. -Fortunately, we can find out which error we get, for instance from its `name`: +Usually, we can check the error type using the `instanceof` operator: ```js run try { user = { /*...*/ }; -} catch(e) { +} catch (err) { *!* - alert(e.name); // "ReferenceError" for accessing an undefined variable + if (err instanceof ReferenceError) { */!* + alert('ReferenceError'); // "ReferenceError" for accessing an undefined variable + } } ``` -The rule is simple: - -**Catch should only process errors that it knows and "rethrow" all others.** - -The "rethrowing" technique can be explained in more detail as: - -1. Catch gets all errors. -2. In `catch(err) {...}` block we analyze the error object `err`. -2. If we don't know how to handle it, then we do `throw err`. +We can also get the error class name from `err.name` property. All native errors have it. Another option is to read `err.constructor.name`. In the code below, we use rethrowing so that `catch` only handles `SyntaxError`: @@ -399,24 +399,24 @@ try { alert( user.name ); -} catch(e) { +} catch (err) { *!* - if (e.name == "SyntaxError") { - alert( "JSON Error: " + e.message ); + if (err instanceof SyntaxError) { + alert( "JSON Error: " + err.message ); } else { - throw e; // rethrow (*) + throw err; // rethrow (*) } */!* } ``` -The error throwing on line `(*)` from inside `catch` block "falls out" of `try..catch` and can be either caught by an outer `try..catch` construct (if it exists), or it kills the script. +The error throwing on line `(*)` from inside `catch` block "falls out" of `try...catch` and can be either caught by an outer `try...catch` construct (if it exists), or it kills the script. So the `catch` block actually handles only errors that it knows how to deal with and "skips" all others. -The example below demonstrates how such errors can be caught by one more level of `try..catch`: +The example below demonstrates how such errors can be caught by one more level of `try...catch`: ```js run function readData() { @@ -427,11 +427,11 @@ function readData() { *!* blabla(); // error! */!* - } catch (e) { + } catch (err) { // ... - if (e.name != 'SyntaxError') { + if (!(err instanceof SyntaxError)) { *!* - throw e; // rethrow (don't know how to deal with it) + throw err; // rethrow (don't know how to deal with it) */!* } } @@ -439,20 +439,20 @@ function readData() { try { readData(); -} catch (e) { +} catch (err) { *!* - alert( "External catch got: " + e ); // caught it! + alert( "External catch got: " + err ); // caught it! */!* } ``` -Here `readData` only knows how to handle `SyntaxError`, while the outer `try..catch` knows how to handle everything. +Here `readData` only knows how to handle `SyntaxError`, while the outer `try...catch` knows how to handle everything. -## try..catch..finally +## try...catch...finally Wait, that's not all. -The `try..catch` construct may have one more code clause: `finally`. +The `try...catch` construct may have one more code clause: `finally`. If it exists, it runs in all cases: @@ -464,7 +464,7 @@ The extended syntax looks like this: ```js *!*try*/!* { ... try to execute the code ... -} *!*catch*/!*(e) { +} *!*catch*/!* (err) { ... handle errors ... } *!*finally*/!* { ... execute always ... @@ -477,7 +477,7 @@ Try running this code: try { alert( 'try' ); if (confirm('Make an error?')) BAD_CODE(); -} catch (e) { +} catch (err) { alert( 'catch' ); } finally { alert( 'finally' ); @@ -489,7 +489,7 @@ The code has two ways of execution: 1. If you answer "Yes" to "Make an error?", then `try -> catch -> finally`. 2. If you say "No", then `try -> finally`. -The `finally` clause is often used when we start doing something before `try..catch` and want to finalize it in any case of outcome. +The `finally` clause is often used when we start doing something and want to finalize it in any case of outcome. For instance, we want to measure the time that a Fibonacci numbers function `fib(n)` takes. Naturally, we can start measuring before it runs and finish afterwards. But what if there's an error during the function call? In particular, the implementation of `fib(n)` in the code below returns an error for negative or non-integer numbers. @@ -513,7 +513,7 @@ let start = Date.now(); try { result = fib(num); -} catch (e) { +} catch (err) { result = 0; *!* } finally { @@ -521,24 +521,24 @@ try { } */!* -alert(result || "error occured"); +alert(result || "error occurred"); alert( `execution took ${diff}ms` ); ``` -You can check by running the code with entering `35` into `prompt` -- it executes normally, `finally` after `try`. And then enter `-1` -- there will be an immediate error, an the execution will take `0ms`. Both measurements are done correctly. +You can check by running the code with entering `35` into `prompt` -- it executes normally, `finally` after `try`. And then enter `-1` -- there will be an immediate error, and the execution will take `0ms`. Both measurements are done correctly. -In other words, there may be two ways to exit a function: either a `return` or `throw`. The `finally` clause handles them both. +In other words, the function may finish with `return` or `throw`, that doesn't matter. The `finally` clause executes in both cases. -```smart header="Variables are local inside `try..catch..finally`" -Please note that `result` and `diff` variables in the code above are declared *before* `try..catch`. +```smart header="Variables are local inside `try...catch...finally`" +Please note that `result` and `diff` variables in the code above are declared *before* `try...catch`. -Otherwise, if `let` were made inside the `{...}` block, it would only be visible inside of it. +Otherwise, if we declared `let` in `try` block, it would only be visible inside of it. ``` ````smart header="`finally` and `return`" -The `finally` clause works for *any* exit from `try..catch`. That includes an explicit `return`. +The `finally` clause works for *any* exit from `try...catch`. That includes an explicit `return`. In the example below, there's a `return` in `try`. In this case, `finally` is executed just before the control returns to the outer code. @@ -550,7 +550,7 @@ function func() { return 1; */!* - } catch (e) { + } catch (err) { /* ... */ } finally { *!* @@ -563,9 +563,9 @@ alert( func() ); // first works alert from finally, and then this one ``` ```` -````smart header="`try..finally`" +````smart header="`try...finally`" -The `try..finally` construct, without `catch` clause, is also useful. We apply it when we don't want to handle errors right here, but want to be sure that processes that we started are finalized. +The `try...finally` construct, without `catch` clause, is also useful. We apply it when we don't want to handle errors here (let them fall through), but want to be sure that processes that we started are finalized. ```js function func() { @@ -577,7 +577,7 @@ function func() { } } ``` -In the code above, an error inside `try` always falls out, because there's no `catch`. But `finally` works before the execution flow jumps outside. +In the code above, an error inside `try` always falls out, because there's no `catch`. But `finally` works before the execution flow leaves the function. ```` ## Global catch @@ -586,11 +586,11 @@ In the code above, an error inside `try` always falls out, because there's no `c The information from this section is not a part of the core JavaScript. ``` -Let's imagine we've got a fatal error outside of `try..catch`, and the script died. Like a programming error or something else terrible. +Let's imagine we've got a fatal error outside of `try...catch`, and the script died. Like a programming error or some other terrible thing. -Is there a way to react on such occurrences? We may want to log the error, show something to the user (normally they don't see error messages) etc. +Is there a way to react on such occurrences? We may want to log the error, show something to the user (normally they don't see error messages), etc. -There is none in the specification, but environments usually provide it, because it's really useful. For instance, Node.js has [process.on('uncaughtException')](https://nodejs.org/api/process.html#process_event_uncaughtexception) for that. And in the browser we can assign a function to special [window.onerror](mdn:api/GlobalEventHandlers/onerror) property. It will run in case of an uncaught error. +There is none in the specification, but environments usually provide it, because it's really useful. For instance, Node.js has [`process.on("uncaughtException")`](https://nodejs.org/api/process.html#process_event_uncaughtexception) for that. And in the browser we can assign a function to the special [window.onerror](mdn:api/GlobalEventHandlers/onerror) property, that will run in case of an uncaught error. The syntax: @@ -632,25 +632,25 @@ For instance: The role of the global handler `window.onerror` is usually not to recover the script execution -- that's probably impossible in case of programming errors, but to send the error message to developers. -There are also web-services that provide error-logging for such cases, like or . +There are also web-services that provide error-logging for such cases, like or . They work like this: 1. We register at the service and get a piece of JS (or a script URL) from them to insert on pages. -2. That JS script has a custom `window.onerror` function. +2. That JS script sets a custom `window.onerror` function. 3. When an error occurs, it sends a network request about it to the service. 4. We can log in to the service web interface and see errors. ## Summary -The `try..catch` construct allows to handle runtime errors. It literally allows to try running the code and catch errors that may occur in it. +The `try...catch` construct allows to handle runtime errors. It literally allows to "try" running the code and "catch" errors that may occur in it. The syntax is: ```js try { // run this code -} catch(err) { +} catch (err) { // if an error happened, then jump here // err is the error object } finally { @@ -658,18 +658,18 @@ try { } ``` -There may be no `catch` section or no `finally`, so `try..catch` and `try..finally` are also valid. +There may be no `catch` section or no `finally`, so shorter constructs `try...catch` and `try...finally` are also valid. Error objects have following properties: - `message` -- the human-readable error message. - `name` -- the string with error name (error constructor name). -- `stack` (non-standard) -- the stack at the moment of error creation. +- `stack` (non-standard, but well-supported) -- the stack at the moment of error creation. -If error is not needed, we can omit it by using `catch {` instead of `catch(err) {`. +If an error object is not needed, we can omit it by using `catch {` instead of `catch (err) {`. We can also generate our own errors using the `throw` operator. Technically, the argument of `throw` can be anything, but usually it's an error object inheriting from the built-in `Error` class. More on extending errors in the next chapter. -Rethrowing is a basic pattern of error handling: a `catch` block usually expects and knows how to handle the particular error type, so it should rethrow errors it doesn't know. +*Rethrowing* is a very important pattern of error handling: a `catch` block usually expects and knows how to handle the particular error type, so it should rethrow errors it doesn't know. -Even if we don't have `try..catch`, most environments allow to setup a "global" error handler to catch errors that "fall out". In-browser that's `window.onerror`. +Even if we don't have `try...catch`, most environments allow us to setup a "global" error handler to catch errors that "fall out". In-browser, that's `window.onerror`. diff --git a/1-js/10-error-handling/2-custom-errors/1-format-error/solution.md b/1-js/10-error-handling/2-custom-errors/1-format-error/solution.md index bb6b74cfa..754e68f9a 100644 --- a/1-js/10-error-handling/2-custom-errors/1-format-error/solution.md +++ b/1-js/10-error-handling/2-custom-errors/1-format-error/solution.md @@ -2,7 +2,7 @@ class FormatError extends SyntaxError { constructor(message) { super(message); - this.name = "FormatError"; + this.name = this.constructor.name; } } diff --git a/1-js/10-error-handling/2-custom-errors/article.md b/1-js/10-error-handling/2-custom-errors/article.md index 5079c746d..d28b07439 100644 --- a/1-js/10-error-handling/2-custom-errors/article.md +++ b/1-js/10-error-handling/2-custom-errors/article.md @@ -2,11 +2,11 @@ When we develop something, we often need our own error classes to reflect specific things that may go wrong in our tasks. For errors in network operations we may need `HttpError`, for database operations `DbError`, for searching operations `NotFoundError` and so on. -Our errors should support basic error properties like `message`, `name` and, preferably, `stack`. But they also may have other properties of their own, e.g. `HttpError` objects may have `statusCode` property with a value like `404` or `403` or `500`. +Our errors should support basic error properties like `message`, `name` and, preferably, `stack`. But they also may have other properties of their own, e.g. `HttpError` objects may have a `statusCode` property with a value like `404` or `403` or `500`. JavaScript allows to use `throw` with any argument, so technically our custom error classes don't need to inherit from `Error`. But if we inherit, then it becomes possible to use `obj instanceof Error` to identify error objects. So it's better to inherit from it. -As we build our application, our own errors naturally form a hierarchy, for instance `HttpTimeoutError` may inherit from `HttpError`, and so on. +As the application grows, our own errors naturally form a hierarchy. For instance, `HttpTimeoutError` may inherit from `HttpError`, and so on. ## Extending Error @@ -17,17 +17,13 @@ Here's an example of how a valid `json` may look: let json = `{ "name": "John", "age": 30 }`; ``` -Internally, we'll use `JSON.parse`. If it receives malformed `json`, then it throws `SyntaxError`. - -But even if `json` is syntactically correct, that doesn't mean that it's a valid user, right? It may miss the necessary data. For instance, it may not have `name` and `age` properties that are essential for our users. +Internally, we'll use `JSON.parse`. If it receives malformed `json`, then it throws `SyntaxError`. But even if `json` is syntactically correct, that doesn't mean that it's a valid user, right? It may miss the necessary data. For instance, it may not have `name` and `age` properties that are essential for our users. Our function `readUser(json)` will not only read JSON, but check ("validate") the data. If there are no required fields, or the format is wrong, then that's an error. And that's not a `SyntaxError`, because the data is syntactically correct, but another kind of error. We'll call it `ValidationError` and create a class for it. An error of that kind should also carry the information about the offending field. -Our `ValidationError` class should inherit from the built-in `Error` class. - -That class is built-in, but we should have its approximate code before our eyes, to understand what we're extending. +Our `ValidationError` class should inherit from the `Error` class. -So here you are: +The `Error` class is built-in, but here's its approximate code so we can understand what we're extending: ```js // The "pseudocode" for the built-in Error class defined by JavaScript itself @@ -35,14 +31,14 @@ class Error { constructor(message) { this.message = message; this.name = "Error"; // (different names for different built-in error classes) - this.stack = ; // non-standard, but most environments support it + this.stack = ; // non-standard, but most environments support it } } ``` -Now let's go on and inherit `ValidationError` from it: +Now let's inherit `ValidationError` from it and try it in action: -```js run untrusted +```js run *!* class ValidationError extends Error { */!* @@ -65,10 +61,9 @@ try { } ``` -Please take a look at the constructor: +Please note: in the line `(1)` we call the parent constructor. JavaScript requires us to call `super` in the child constructor, so that's obligatory. The parent constructor sets the `message` property. -1. In the line `(1)` we call the parent constructor. JavaScript requires us to call `super` in the child constructor, so that's obligatory. The parent constructor sets the `message` property. -2. The parent constructor also sets the `name` property to `"Error"`, so in the line `(2)` we reset it to the right value. +The parent constructor also sets the `name` property to `"Error"`, so in the line `(2)` we reset it to the right value. Let's try to use it in `readUser(json)`: @@ -122,15 +117,15 @@ We could also look at `err.name`, like this: // instead of (err instanceof SyntaxError) } else if (err.name == "SyntaxError") { // (*) // ... -``` +``` The `instanceof` version is much better, because in the future we are going to extend `ValidationError`, make subtypes of it, like `PropertyRequiredError`. And `instanceof` check will continue to work for new inheriting classes. So that's future-proof. -Also it's important that if `catch` meets an unknown error, then it rethrows it in the line `(**)`. The `catch` only knows how to handle validation and syntax errors, other kinds (due to a typo in the code or such) should fall through. +Also it's important that if `catch` meets an unknown error, then it rethrows it in the line `(**)`. The `catch` block only knows how to handle validation and syntax errors, other kinds (caused by a typo in the code or other unknown reasons) should fall through. ## Further inheritance -The `ValidationError` class is very generic. Many things may go wrong. The property may be absent or it may be in a wrong format (like a string value for `age`). Let's make a more concrete class `PropertyRequiredError`, exactly for absent properties. It will carry additional information about the property that's missing. +The `ValidationError` class is very generic. Many things may go wrong. The property may be absent or it may be in a wrong format (like a string value for `age` instead of a number). Let's make a more concrete class `PropertyRequiredError`, exactly for absent properties. It will carry additional information about the property that's missing. ```js run class ValidationError extends Error { @@ -185,7 +180,7 @@ try { The new class `PropertyRequiredError` is easy to use: we only need to pass the property name: `new PropertyRequiredError(property)`. The human-readable `message` is generated by the constructor. -Please note that `this.name` in `PropertyRequiredError` constructor is again assigned manually. That may become a bit tedious -- to assign `this.name = ` when creating each custom error. But there's a way out. We can make our own "basic error" class that removes this burden from our shoulders by using `this.constructor.name` for `this.name` in the constructor. And then inherit from it. +Please note that `this.name` in `PropertyRequiredError` constructor is again assigned manually. That may become a bit tedious -- to assign `this.name = ` in every custom error class. We can avoid it by making our own "basic error" class that assigns `this.name = this.constructor.name`. And then inherit all our custom errors from it. Let's call it `MyError`. @@ -218,13 +213,41 @@ Now custom errors are much shorter, especially `ValidationError`, as we got rid ## Wrapping exceptions -The purpose of the function `readUser` in the code above is "to read the user data", right? There may occur different kinds of errors in the process. Right now we have `SyntaxError` and `ValidationError`, but in the future `readUser` function may grow: the new code will probably generate other kinds of errors. +The purpose of the function `readUser` in the code above is "to read the user data". There may occur different kinds of errors in the process. Right now we have `SyntaxError` and `ValidationError`, but in the future `readUser` function may grow and probably generate other kinds of errors. + +The code which calls `readUser` should handle these errors. Right now it uses multiple `if`s in the `catch` block, that check the class and handle known errors and rethrow the unknown ones. + +The scheme is like this: + +```js +try { + ... + readUser() // the potential error source + ... +} catch (err) { + if (err instanceof ValidationError) { + // handle validation errors + } else if (err instanceof SyntaxError) { + // handle syntax errors + } else { + throw err; // unknown error, rethrow it + } +} +``` + +In the code above we can see two types of errors, but there can be more. + +If the `readUser` function generates several kinds of errors, then we should ask ourselves: do we really want to check for all error types one-by-one every time? + +Often the answer is "No": we'd like to be "one level above all that". We just want to know if there was a "data reading error" -- why exactly it happened is often irrelevant (the error message describes it). Or, even better, we'd like to have a way to get the error details, but only if we need to. -The code which calls `readUser` should handle these errors. Right now it uses multiple `if` in the `catch` block to check for different error types and rethrow the unknown ones. But if `readUser` function generates several kinds of errors -- then we should ask ourselves: do we really want to check for all error types one-by-one in every code that calls `readUser`? +The technique that we describe here is called "wrapping exceptions". -Often the answer is "No": the outer code wants to be "one level above all that". It wants to have some kind of "data reading error". Why exactly it happened -- is often irrelevant (the error message describes it). Or, even better if there is a way to get error details, but only if we need to. +1. We'll make a new class `ReadError` to represent a generic "data reading" error. +2. The function `readUser` will catch data reading errors that occur inside it, such as `ValidationError` and `SyntaxError`, and generate a `ReadError` instead. +3. The `ReadError` object will keep the reference to the original error in its `cause` property. -So let's make a new class `ReadError` to represent such errors. If an error occurs inside `readUser`, we'll catch it there and generate `ReadError`. We'll also keep the reference to the original error in its `cause` property. Then the outer code will only have to check for `ReadError`. +Then the code that calls `readUser` will only have to check for `ReadError`, not for every kind of data reading errors. And if it needs more details of an error, it can check its `cause` property. Here's the code that defines `ReadError` and demonstrates its use in `readUser` and `try..catch`: @@ -296,12 +319,12 @@ try { In the code above, `readUser` works exactly as described -- catches syntax and validation errors and throws `ReadError` errors instead (unknown errors are rethrown as usual). -So the outer code checks `instanceof ReadError` and that's it. No need to list possible all error types. +So the outer code checks `instanceof ReadError` and that's it. No need to list all possible error types. -The approach is called "wrapping exceptions", because we take "low level exceptions" and "wrap" them into `ReadError` that is more abstract and more convenient to use for the calling code. It is widely used in object-oriented programming. +The approach is called "wrapping exceptions", because we take "low level" exceptions and "wrap" them into `ReadError` that is more abstract. It is widely used in object-oriented programming. ## Summary -- We can inherit from `Error` and other built-in error classes normally, just need to take care of `name` property and don't forget to call `super`. -- Most of the time, we should use `instanceof` to check for particular errors. It also works with inheritance. But sometimes we have an error object coming from the 3rd-party library and there's no easy way to get the class. Then `name` property can be used for such checks. -- Wrapping exceptions is a widespread technique when a function handles low-level exceptions and makes a higher-level object to report about the errors. Low-level exceptions sometimes become properties of that object like `err.cause` in the examples above, but that's not strictly required. +- We can inherit from `Error` and other built-in error classes normally. We just need to take care of the `name` property and don't forget to call `super`. +- We can use `instanceof` to check for particular errors. It also works with inheritance. But sometimes we have an error object coming from a 3rd-party library and there's no easy way to get its class. Then `name` property can be used for such checks. +- Wrapping exceptions is a widespread technique: a function handles low-level exceptions and creates higher-level errors instead of various low-level ones. Low-level exceptions sometimes become properties of that object like `err.cause` in the examples above, but that's not strictly required. diff --git a/1-js/11-async/01-callbacks/article.md b/1-js/11-async/01-callbacks/article.md index a9183c80f..18039db17 100644 --- a/1-js/11-async/01-callbacks/article.md +++ b/1-js/11-async/01-callbacks/article.md @@ -2,38 +2,53 @@ # Introduction: callbacks -Many actions in JavaScript are *asynchronous*. +```warn header="We use browser methods in examples here" +To demonstrate the use of callbacks, promises and other abstract concepts, we'll be using some browser methods: specifically, loading scripts and performing simple document manipulations. -For instance, take a look at the function `loadScript(src)`: +If you're not familiar with these methods, and their usage in the examples is confusing, you may want to read a few chapters from the [next part](/document) of the tutorial. + +Although, we'll try to make things clear anyway. There won't be anything really complex browser-wise. +``` + +Many functions are provided by JavaScript host environments that allow you to schedule *asynchronous* actions. In other words, actions that we initiate now, but they finish later. + +For instance, one such function is the `setTimeout` function. + +There are other real-world examples of asynchronous actions, e.g. loading scripts and modules (we'll cover them in later chapters). + +Take a look at the function `loadScript(src)`, that loads a script with the given `src`: ```js function loadScript(src) { + // creates a {value: 1, done: false} \ No newline at end of file +<<<<<<< HEAD +{value: 1, done: false} +======= +{value: 1, done: false} +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/12-generators-iterators/1-generators/generateSequence-3.svg b/1-js/12-generators-iterators/1-generators/generateSequence-3.svg index 0af8e9efd..720c88d52 100644 --- a/1-js/12-generators-iterators/1-generators/generateSequence-3.svg +++ b/1-js/12-generators-iterators/1-generators/generateSequence-3.svg @@ -1 +1,5 @@ -{value: 2, done: false} \ No newline at end of file +<<<<<<< HEAD +{value: 2, done: false} +======= +{value: 2, done: false} +>>>>>>> 540d753e90789205fc6e75c502f68382c87dea9b diff --git a/1-js/12-generators-iterators/2-async-iterators-generators/article.md b/1-js/12-generators-iterators/2-async-iterators-generators/article.md index 43b214a0f..d4e9f7861 100644 --- a/1-js/12-generators-iterators/2-async-iterators-generators/article.md +++ b/1-js/12-generators-iterators/2-async-iterators-generators/article.md @@ -1,35 +1,48 @@ -# Async iterators and generators +# Async iteration and generators -Asynchronous iterators allow to iterate over data that comes asynchronously, on-demand. +Asynchronous iteration allow us to iterate over data that comes asynchronously, on-demand. Like, for instance, when we download something chunk-by-chunk over a network. And asynchronous generators make it even more convenient. -For instance, when we download something chunk-by-chunk, or just expect events to come asynchronously and would like to iterate over them -- async iterators and generators may come in handy. Let's see a simple example first, to grasp the syntax, and then review a real-life use case. +Let's see a simple example first, to grasp the syntax, and then review a real-life use case. -## Async iterators +## Recall iterables -Asynchronous iterators are totally similar to regular iterators, with a few syntactic differences. +Let's recall the topic about iterables. -"Regular" iterable object from the chapter look like this: +The idea is that we have an object, such as `range` here: +```js +let range = { + from: 1, + to: 5 +}; +``` + +...And we'd like to use `for..of` loop on it, such as `for(value of range)`, to get values from `1` to `5`. + +In other words, we want to add an *iteration ability* to the object. + +That can be implemented using a special method with the name `Symbol.iterator`: + +- This method is called in by the `for..of` construct when the loop is started, and it should return an object with the `next` method. +- For each iteration, the `next()` method is invoked for the next value. +- The `next()` should return a value in the form `{done: true/false, value:}`, where `done:true` means the end of the loop. + +Here's an implementation for the iterable `range`: ```js run let range = { from: 1, to: 5, - // for..of calls this method once in the very beginning *!* - [Symbol.iterator]() { + [Symbol.iterator]() { // called once, in the beginning of for..of */!* - // ...it returns the iterator object: - // onward, for..of works only with that object, asking it for next values return { current: this.from, last: this.to, - // next() is called on each iteration by the for..of loop *!* - next() { // (2) - // it should return the value as an object {done:.., value :...} + next() { // called every iteration, to get the next value */!* if (this.current <= this.last) { return { done: false, value: this.current++ }; @@ -46,39 +59,46 @@ for(let value of range) { } ``` -If necessary, please refer to the [chapter about iterables](info:iterable) for details about regular iterators. +If anything is unclear, please visit the chapter [](info:iterable), it gives all the details about regular iterables. + +## Async iterables + +Asynchronous iteration is needed when values come asynchronously: after `setTimeout` or another kind of delay. -To make the object iterable asynchronously: -1. We need to use `Symbol.asyncIterator` instead of `Symbol.iterator`. -2. `next()` should return a promise. -3. To iterate over such an object, we should use `for await (let item of iterable)` loop. +The most common case is that the object needs to make a network request to deliver the next value, we'll see a real-life example of it a bit later. -Let's make an iterable `range` object, like the one before, but now it will return values asynchronously, one per second: +To make an object iterable asynchronously: + +1. Use `Symbol.asyncIterator` instead of `Symbol.iterator`. +2. The `next()` method should return a promise (to be fulfilled with the next value). + - The `async` keyword handles it, we can simply make `async next()`. +3. To iterate over such an object, we should use a `for await (let item of iterable)` loop. + - Note the `await` word. + +As a starting example, let's make an iterable `range` object, similar like the one before, but now it will return values asynchronously, one per second. + +All we need to do is to perform a few replacements in the code above: ```js run let range = { from: 1, to: 5, - // for await..of calls this method once in the very beginning *!* [Symbol.asyncIterator]() { // (1) */!* - // ...it returns the iterator object: - // onward, for await..of works only with that object, asking it for next values return { current: this.from, last: this.to, - // next() is called on each iteration by the for..of loop *!* async next() { // (2) - // it should return the value as an object {done:.., value :...} - // (automatically wrapped into a promise by async) */!* - // can use await inside, do async stuff: +*!* + // note: we can use "await" inside the async next: await new Promise(resolve => setTimeout(resolve, 1000)); // (3) +*/!* if (this.current <= this.last) { return { done: false, value: this.current++ }; @@ -101,38 +121,43 @@ let range = { })() ``` -As we can see, the components are similar to regular iterators: +As we can see, the structure is similar to regular iterators: 1. To make an object asynchronously iterable, it must have a method `Symbol.asyncIterator` `(1)`. -2. It must return the object with `next()` method returning a promise `(2)`. -3. The `next()` method doesn't have to be `async`, it may be a regular method returning a promise, but `async` allows to use `await` inside. Here we just delay for a second `(3)`. +2. This method must return the object with `next()` method returning a promise `(2)`. +3. The `next()` method doesn't have to be `async`, it may be a regular method returning a promise, but `async` allows us to use `await`, so that's convenient. Here we just delay for a second `(3)`. 4. To iterate, we use `for await(let value of range)` `(4)`, namely add "await" after "for". It calls `range[Symbol.asyncIterator]()` once, and then its `next()` for values. -Here's a small cheatsheet: +Here's a small table with the differences: | | Iterators | Async iterators | |-------|-----------|-----------------| -| Object method to provide iteraterable | `Symbol.iterator` | `Symbol.asyncIterator` | +| Object method to provide iterator | `Symbol.iterator` | `Symbol.asyncIterator` | | `next()` return value is | any value | `Promise` | | to loop, use | `for..of` | `for await..of` | - -````warn header="The spread operator doesn't work asynchronously" +````warn header="The spread syntax `...` doesn't work asynchronously" Features that require regular, synchronous iterators, don't work with asynchronous ones. -For instance, a spread operator won't work: +For instance, a spread syntax won't work: ```js alert( [...range] ); // Error, no Symbol.iterator ``` -That's natural, as it expects to find `Symbol.iterator`, same as `for..of` without `await`. +That's natural, as it expects to find `Symbol.iterator`, not `Symbol.asyncIterator`. + +It's also the case for `for..of`: the syntax without `await` needs `Symbol.iterator`. ```` -## Async generators +## Recall generators -JavaScript also provides generators, that are also iterable. +Now let's recall generators, as they allow to make iteration code much shorter. Most of the time, when we'd like to make an iterable, we'll use generators. -Let's recall a sequence generator from the chapter [](info:generators). It generates a sequence of values from `start` to `end` (could be anything else): +For sheer simplicity, omitting some important stuff, they are "functions that generate (yield) values". They are explained in detail in the chapter [](info:generators). + +Generators are labelled with `function*` (note the star) and use `yield` to generate a value, then we can use `for..of` to loop over them. + +This example generates a sequence of values from `start` to `end`: ```js run function* generateSequence(start, end) { @@ -146,12 +171,54 @@ for(let value of generateSequence(1, 5)) { } ``` +As we already know, to make an object iterable, we should add `Symbol.iterator` to it. + +```js +let range = { + from: 1, + to: 5, +*!* + [Symbol.iterator]() { + return + } +*/!* +} +``` + +A common practice for `Symbol.iterator` is to return a generator, it makes the code shorter, as you can see: + +```js run +let range = { + from: 1, + to: 5, + + *[Symbol.iterator]() { // a shorthand for [Symbol.iterator]: function*() + for(let value = this.from; value <= this.to; value++) { + yield value; + } + } +}; + +for(let value of range) { + alert(value); // 1, then 2, then 3, then 4, then 5 +} +``` -Normally, we can't use `await` in generators. All values must come synchronously: there's no place for delay in `for..of`. +Please see the chapter [](info:generators) if you'd like more details. -But what if we need to use `await` in the generator body? To perform network requests, for instance. +In regular generators we can't use `await`. All values must come synchronously, as required by the `for..of` construct. -No problem, just prepend it with `async`, like this: +What if we'd like to generate values asynchronously? From network requests, for instance. + +Let's switch to asynchronous generators to make it possible. + +## Async generators (finally) + +For most practical applications, when we'd like to make an object that asynchronously generates a sequence of values, we can use an asynchronous generator. + +The syntax is simple: prepend `function*` with `async`. That makes the generator asynchronous. + +And then use `for await (...)` to iterate over it, like this: ```js run *!*async*/!* function* generateSequence(start, end) { @@ -159,7 +226,7 @@ No problem, just prepend it with `async`, like this: for (let i = start; i <= end; i++) { *!* - // yay, can use await! + // Wow, can use await! await new Promise(resolve => setTimeout(resolve, 1000)); */!* @@ -172,70 +239,43 @@ No problem, just prepend it with `async`, like this: let generator = generateSequence(1, 5); for *!*await*/!* (let value of generator) { - alert(value); // 1, then 2, then 3, then 4, then 5 + alert(value); // 1, then 2, then 3, then 4, then 5 (with delay between) } })(); ``` -Now we have an the async generator, iteratable with `for await...of`. +As the generator is asynchronous, we can use `await` inside it, rely on promises, perform network requests and so on. -It's indeed very simple. We add the `async` keyword, and the generator now can use `await` inside of it, rely on promises and other async functions. +````smart header="Under-the-hood difference" +Technically, if you're an advanced reader who remembers the details about generators, there's an internal difference. -Technically, another the difference of an async generator is that its `generator.next()` method is now asynchronous also, it returns promises. +For async generators, the `generator.next()` method is asynchronous, it returns promises. -Instead of `result = generator.next()` for a regular, non-async generator, values can be obtained like this: +In a regular generator we'd use `result = generator.next()` to get values. In an async generator, we should add `await`, like this: ```js result = await generator.next(); // result = {value: ..., done: true/false} ``` +That's why async generators work with `for await...of`. +```` -## Iterables via async generators - -When we'd like to make an object iterable, we should add `Symbol.iterator` to it. - -```js -let range = { - from: 1, - to: 5, -*!* - [Symbol.iterator]() { ...return object with next to make range iterable... } -*/!* -} -``` - -A common practice for `Symbol.iterator` is to return a generator, rather than a plain object with `next` as in the example before. - -Let's recall an example from the chapter [](info:generators): - -```js run -let range = { - from: 1, - to: 5, - - *[Symbol.iterator]() { // a shorthand for [Symbol.iterator]: function*() - for(let value = this.from; value <= this.to; value++) { - yield value; - } - } -}; +### Async iterable range -for(let value of range) { - alert(value); // 1, then 2, then 3, then 4, then 5 -} -``` +Regular generators can be used as `Symbol.iterator` to make the iteration code shorter. -Here a custom object `range` is iterable, and the generator `*[Symbol.iterator]` implements the logic for listing values. +Similar to that, async generators can be used as `Symbol.asyncIterator` to implement the asynchronous iteration. -If we'd like to add async actions into the generator, then we should replace `Symbol.iterator` with async `Symbol.asyncIterator`: +For instance, we can make the `range` object generate values asynchronously, once per second, by replacing synchronous `Symbol.iterator` with asynchronous `Symbol.asyncIterator`: ```js run let range = { from: 1, to: 5, + // this line is same as [Symbol.asyncIterator]: async function*() { *!* - async *[Symbol.asyncIterator]() { // same as [Symbol.asyncIterator]: async function*() + async *[Symbol.asyncIterator]() { */!* for(let value = this.from; value <= this.to; value++) { @@ -258,31 +298,39 @@ let range = { Now values come with a delay of 1 second between them. -## Real-life example +```smart +Technically, we can add both `Symbol.iterator` and `Symbol.asyncIterator` to the object, so it's both synchronously (`for..of`) and asynchronously (`for await..of`) iterable. + +In practice though, that would be a weird thing to do. +``` + +## Real-life example: paginated data -So far we've seen simple examples, to gain basic understanding. Now let's review a real-life use case. +So far we've seen basic examples, to gain understanding. Now let's review a real-life use case. -There are many online APIs that deliver paginated data. For instance, when we need a list of users, then we can fetch it page-by-page: a request returns a pre-defined count (e.g. 100 users), and provides an URL to the next page. +There are many online services that deliver paginated data. For instance, when we need a list of users, a request returns a pre-defined count (e.g. 100 users) - "one page", and provides a URL to the next page. -The pattern is very common, it's not about users, but just about anything. For instance, GitHub allows to retrieve commits in the same, paginated fashion: +This pattern is very common. It's not about users, but just about anything. -- We should make a request to URL in the form `https://api.github.com/repos//commits`. +For instance, GitHub allows us to retrieve commits in the same, paginated fashion: + +- We should make a request to `fetch` in the form `https://api.github.com/repos//commits`. - It responds with a JSON of 30 commits, and also provides a link to the next page in the `Link` header. - Then we can use that link for the next request, to get more commits, and so on. -What we'd like to have is an iterable source of commits, so that we could use it like this: +For our code, we'd like to have a simpler way to get commits. -```js -let repo = 'javascript-tutorial/en.javascript.info'; // GitHub repository to get commits from +Let's make a function `fetchCommits(repo)` that gets commits for us, making requests whenever needed. And let it care about all pagination stuff. For us it'll be a simple async iteration `for await..of`. + +So the usage will be like this: -for await (let commit of fetchCommits(repo)) { +```js +for await (let commit of fetchCommits("username/repository")) { // process commit } ``` -We'd like `fetchCommits` to get commits for us, making requests whenever needed. And let it care about all pagination stuff, for us it'll be a simple `for await..of`. - -With async generators that's pretty easy to implement: +Here's such function, implemented as async generator: ```js async function* fetchCommits(repo) { @@ -290,14 +338,14 @@ async function* fetchCommits(repo) { while (url) { const response = await fetch(url, { // (1) - headers: {'User-Agent': 'Our script'}, // github requires user-agent header + headers: {'User-Agent': 'Our script'}, // github needs any user-agent header }); - const body = await response.json(); // (2) parses response as JSON (array of commits) + const body = await response.json(); // (2) response is JSON (array of commits) // (3) the URL of the next page is in the headers, extract it let nextPage = response.headers.get('Link').match(/<(.*?)>; rel="next"/); - nextPage = nextPage && nextPage[1]; + nextPage = nextPage?.[1]; url = nextPage; @@ -308,10 +356,16 @@ async function* fetchCommits(repo) { } ``` -1. We use the browser `fetch` method to download from a remote URL. It allows to supply authorization and other headers if needed, here GitHub requires `User-Agent`. -2. The fetch result is parsed as JSON, that's again a `fetch`-specific method. -3. We can get the next page URL from the `Link` header of the response. It has a special format, so we use a regexp for that. The next page URL may look like this: `https://api.github.com/repositories/93253246/commits?page=2`, it's generated by GitHub itself. -4. Then we yield all commits received, and when they finish -- the next `while(url)` iteration will trigger, making one more request. +More explanations about how it works: + +1. We use the browser [fetch](info:fetch) method to download the commits. + + - The initial URL is `https://api.github.com/repos//commits`, and the next page will be in the `Link` header of the response. + - The `fetch` method allows us to supply authorization and other headers if needed -- here GitHub requires `User-Agent`. +2. The commits are returned in JSON format. +3. We should get the next page URL from the `Link` header of the response. It has a special format, so we use a regular expression for that (we will learn this feature in [Regular expressions](info:regular-expressions)). + - The next page URL may look like `https://api.github.com/repositories/93253246/commits?page=2`. It's generated by GitHub itself. +4. Then we yield the received commits one by one, and when they finish, the next `while(url)` iteration will trigger, making one more request. An example of use (shows commit authors in console): @@ -330,9 +384,13 @@ An example of use (shows commit authors in console): } })(); + +// Note: If you are running this in an external sandbox, you'll need to paste here the function fetchCommits described above ``` -That's just what we wanted. The internal pagination mechanics is invisible from the outside. For us it's just an async generator that returns commits. +That's just what we wanted. + +The internal mechanics of paginated requests is invisible from the outside. For us it's just an async generator that returns commits. ## Summary @@ -342,20 +400,18 @@ When we expect the data to come asynchronously, with delays, their async counter Syntax differences between async and regular iterators: -| | Iterators | Async iterators | +| | Iterable | Async Iterable | |-------|-----------|-----------------| -| Object method to provide iteraterable | `Symbol.iterator` | `Symbol.asyncIterator` | -| `next()` return value is | any value | `Promise` | +| Method to provide iterator | `Symbol.iterator` | `Symbol.asyncIterator` | +| `next()` return value is | `{value:…, done: true/false}` | `Promise` that resolves to `{value:…, done: true/false}` | Syntax differences between async and regular generators: | | Generators | Async generators | |-------|-----------|-----------------| | Declaration | `function*` | `async function*` | -| `generator.next()` returns | `{value:…, done: true/false}` | `Promise` that resolves to `{value:…, done: true/false}` | +| `next()` return value is | `{value:…, done: true/false}` | `Promise` that resolves to `{value:…, done: true/false}` | In web-development we often meet streams of data, when it flows chunk-by-chunk. For instance, downloading or uploading a big file. -We could use async generators to process such data, but there's also another API called Streams, that may be more convenient, as it provides special interfaces to transform the data and to pass it from one stream to another (e.g. download from one place and immediately send elsewhere). But they are also more complex. - -Streams API not a part of JavaScript language standard. Streams and async generators complement each other, both are great ways to handle async data flows. +We can use async generators to process such data. It's also noteworthy that in some environments, like in browsers, there's also another API called Streams, that provides special interfaces to work with such streams, to transform the data and to pass it from one stream to another (e.g. download from one place and immediately send elsewhere). diff --git a/1-js/12-generators-iterators/2-async-iterators-generators/head.html b/1-js/12-generators-iterators/2-async-iterators-generators/head.html index 74d66a8b8..03f21e2bd 100644 --- a/1-js/12-generators-iterators/2-async-iterators-generators/head.html +++ b/1-js/12-generators-iterators/2-async-iterators-generators/head.html @@ -11,7 +11,7 @@ // the URL of the next page is in the headers, extract it let nextPage = response.headers.get('Link').match(/<(.*?)>; rel="next"/); - nextPage = nextPage && nextPage[1]; + nextPage = nextPage?.[1]; url = nextPage; diff --git a/1-js/13-modules/01-modules-intro/article.md b/1-js/13-modules/01-modules-intro/article.md index ad4f21068..5ad70d151 100644 --- a/1-js/13-modules/01-modules-intro/article.md +++ b/1-js/13-modules/01-modules-intro/article.md @@ -1,29 +1,30 @@ # Modules, introduction -As our application grows bigger, we want to split it into multiple files, so called 'modules'. -A module usually contains a class or a library of useful functions. +As our application grows bigger, we want to split it into multiple files, so called "modules". A module may contain a class or a library of functions for a specific purpose. -For a long time, JavaScript existed without a language-level module syntax. That wasn't a problem, because initially scripts were small and simple. So there was no need. +For a long time, JavaScript existed without a language-level module syntax. That wasn't a problem, because initially scripts were small and simple, so there was no need. -But eventually scripts became more and more complex, so the community invented a variety of ways to organize code into modules. +But eventually scripts became more and more complex, so the community invented a variety of ways to organize code into modules, special libraries to load modules on demand. -For instance: +To name some (for historical reasons): -- [AMD](https://en.wikipedia.org/wiki/Asynchronous_module_definition) -- one of the most ancient module systems, initially implemented by the library [require.js](http://requirejs.org/). -- [CommonJS](http://wiki.commonjs.org/wiki/Modules/1.1) -- the module system created for Node.js server. +- [AMD](https://en.wikipedia.org/wiki/Asynchronous_module_definition) -- one of the most ancient module systems, initially implemented by the library [require.js](https://requirejs.org/). +- [CommonJS](https://wiki.commonjs.org/wiki/Modules/1.1) -- the module system created for Node.js server. - [UMD](https://github.com/umdjs/umd) -- one more module system, suggested as a universal one, compatible with AMD and CommonJS. -Now all these slowly become a part of history, but we still can find them in old scripts. The language-level module system appeared in the standard in 2015, gradually evolved since then, and is now supported by all major browsers and in Node.js. +Now these all slowly became a part of history, but we still can find them in old scripts. + +The language-level module system appeared in the standard in 2015, gradually evolved since then, and is now supported by all major browsers and in Node.js. So we'll study the modern JavaScript modules from now on. ## What is a module? -A module is just a file, a single script, as simple as that. +A module is just a file. One script is one module. As simple as that. -Directives `export` and `import` allow to interchange functionality between modules: +Modules can load each other and use special directives `export` and `import` to interchange functionality, call functions of one module from another one: -- `export` keyword labels variables and functions that should be accessible from outside the file. -- `import` allows to import functionality from other modules. +- `export` keyword labels variables and functions that should be accessible from outside the current module. +- `import` allows the import of functionality from other modules. For instance, if we have a file `sayHi.js` exporting a function: @@ -44,13 +45,21 @@ alert(sayHi); // function... sayHi('John'); // Hello, John! ``` -In this tutorial we concentrate on the language itself, but we use browser as the demo environment, so let's see how modules work in the browser. +The `import` directive loads the module by path `./sayHi.js` relative to the current file, and assigns exported function `sayHi` to the corresponding variable. + +Let's run the example in-browser. -To use modules, we must set the attribute ` ``` -Here we can see it in the browser, but the same is true for any module. - ### Module-level scope Each module has its own top-level scope. In other words, top-level variables and functions from a module are not seen in other scripts. -In the example below, two scripts are imported, and `hello.js` tries to use `user` variable declared in `user.js`, and fails: +In the example below, two scripts are imported, and `hello.js` tries to use `user` variable declared in `user.js`. It fails, because it's a separate module (you'll see the error in the console): [codetabs src="scopes" height="140" current="index.html"] -Modules are expected to `export` what they want to be accessible from outside and `import` what they need. +Modules should `export` what they want to be accessible from outside and `import` what they need. + +- `user.js` should export the `user` variable. +- `hello.js` should import it from `user.js` module. -So we should import `user.js` directly into `hello.js` instead of `index.html`. +In other words, with modules we use import/export instead of relying on global variables. -That's the correct variant: +This is the correct variant: [codetabs src="scopes-working" height="140" current="hello.js"] -In the browser, independant top-level scope also exists for each ` ``` -If we really need to make a "global" in-browser variable, we can explicitly assign it to `window` and access as `window.user`. But that's an exception requiring a good reason. +```smart +In the browser, we can make a variable window-level global by explicitly assigning it to a `window` property, e.g. `window.user = "John"`. + +Then all scripts will see it, both with `type="module"` and without it. + +That said, making such global variables is frowned upon. Please try to avoid them. +``` ### A module code is evaluated only the first time when imported -If the same module is imported into multiple other places, its code is executed only the first time, then exports are given to all importers. +If the same module is imported into multiple other modules, its code is executed only once, upon the first import. Then its exports are given to all further importers. + +The one-time evaluation has important consequences, that we should be aware of. -That has important consequences. Let's see that on examples. +Let's see a couple of examples. First, if executing a module code brings side-effects, like showing a message, then importing it multiple times will trigger it only once -- the first time: @@ -123,12 +143,14 @@ alert("Module is evaluated!"); import `./alert.js`; // Module is evaluated! // 📁 2.js -import `./alert.js`; // (nothing) +import `./alert.js`; // (shows nothing) ``` -In practice, top-level module code is mostly used for initialization. We create data structures, pre-fill them, and if we want something to be reusable -- export it. +The second import shows nothing, because the module has already been evaluated. -Now, a more advanced example. +There's a rule: top-level module code should be used for initialization, creation of module-specific internal data structures. If we need to make something callable multiple times - we should export it as a function, like we did with `sayHi` above. + +Now, let's consider a deeper example. Let's say, a module exports an object: @@ -153,60 +175,77 @@ import {admin} from './admin.js'; alert(admin.name); // Pete *!* -// Both 1.js and 2.js imported the same object +// Both 1.js and 2.js reference the same admin object // Changes made in 1.js are visible in 2.js */!* ``` -So, let's reiterate -- the module is executed only once. Exports are generated, and then they are shared between importers, so if something changes the `admin` object, other modules will see that . +As you can see, when `1.js` changes the `name` property in the imported `admin`, then `2.js` can see the new `admin.name`. + +That's exactly because the module is executed only once. Exports are generated, and then they are shared between importers, so if something changes the `admin` object, other importers will see that. -Such behavior is great for modules that require configuration. We can set required properties on the first import, and then in further imports it's ready. +**Such behavior is actually very convenient, because it allows us to *configure* modules.** -For instance, `admin.js` module may provide certain functionality, but expect the credentials to come into the `admin` object from outside: +In other words, a module can provide a generic functionality that needs a setup. E.g. authentication needs credentials. Then it can export a configuration object expecting the outer code to assign to it. + +Here's the classical pattern: +1. A module exports some means of configuration, e.g. a configuration object. +2. On the first import we initialize it, write to its properties. The top-level application script may do that. +3. Further imports use the module. + +For instance, the `admin.js` module may provide certain functionality (e.g. authentication), but expect the credentials to come into the `config` object from outside: ```js // 📁 admin.js -export let admin = { }; +export let config = { }; export function sayHi() { - alert(`Ready to serve, ${admin.name}!`); + alert(`Ready to serve, ${config.user}!`); } ``` -Now, in `init.js`, the first script of our app, we set `admin.name`. Then everyone will see it, including calls made from inside `admin.js` itself: +Here, `admin.js` exports the `config` object (initially empty, but may have default properties too). + +Then in `init.js`, the first script of our app, we import `config` from it and set `config.user`: ```js // 📁 init.js -import {admin} from './admin.js'; -admin.name = "Pete"; +import {config} from './admin.js'; +config.user = "Pete"; ``` -```js -// 📁 other.js -import {admin, sayHi} from './admin.js'; +...Now the module `admin.js` is configured. + +Further importers can call it, and it correctly shows the current user: -alert(admin.name); // *!*Pete*/!* +```js +// 📁 another.js +import {sayHi} from './admin.js'; sayHi(); // Ready to serve, *!*Pete*/!*! ``` + ### import.meta The object `import.meta` contains the information about the current module. -Its content depends on the environment. In the browser, it contains the url of the script, or a current webpage url if inside HTML: +Its content depends on the environment. In the browser, it contains the URL of the script, or a current webpage URL if inside HTML: ```html run height=0 ``` -### Top-level "this" is undefined +### In a module, "this" is undefined That's kind of a minor feature, but for completeness we should mention it. -In a module, top-level `this` is undefined, as opposed to a global object in non-module scripts: +In a module, top-level `this` is undefined. + +Compare it to non-module scripts, where `this` is a global object: ```html run height=0 +Compare to regular script below: + @@ -255,19 +296,21 @@ For instance: ``` -Please note: the second script actually works before the first! So we'll see `undefined` first, and then `object`. +Please note: the second script actually runs before the first! So we'll see `undefined` first, and then `object`. -That's because modules are deferred, so way wait for the document to be processed. The regular scripts runs immediately, so we saw its output first. +That's because modules are deferred, so we wait for the document to be processed. The regular script runs immediately, so we see its output first. -When using modules, we should be aware that HTML-document can show up before the JavaScript application is ready. Some functionality may not work yet. We should put transparent overlays or "loading indicators", or otherwise ensure that the visitor won't be confused because of it. +When using modules, we should be aware that the HTML page shows up as it loads, and JavaScript modules run after that, so the user may see the page before the JavaScript application is ready. Some functionality may not work yet. We should put "loading indicators", or otherwise ensure that the visitor won't be confused by that. ### Async works on inline scripts -Async attribute ` ``` -2. External scripts that are fetched from another domain require [CORS](mdn:Web/HTTP/CORS) headers. In other words, if a module script is fetched from another domain, the remote server must supply a header `Access-Control-Allow-Origin: *` (may use fetching domain instead of `*`) to indicate that the fetch is allowed. +2. External scripts that are fetched from another origin (e.g. another site) require [CORS](mdn:Web/HTTP/CORS) headers, as described in the chapter . In other words, if a module script is fetched from another origin, the remote server must supply a header `Access-Control-Allow-Origin` allowing the fetch. ```html @@ -301,21 +344,21 @@ There are two notable differences of external module scripts: That ensures better security by default. -### No bare modules allowed +### No "bare" modules allowed -In the browser, in scripts (not in HTML), `import` must get either a relative or absolute URL. So-called "bare" modules, without a path, are not allowed. +In the browser, `import` must get either a relative or absolute URL. Modules without any path are called "bare" modules. Such modules are not allowed in `import`. For instance, this `import` is invalid: ```js import {sayHi} from 'sayHi'; // Error, "bare" module -// must be './sayHi.js' or wherever the module is +// the module must have a path, e.g. './sayHi.js' or wherever the module is ``` -Certain environments, like Node.js or bundle tools allow bare modules, as they have own ways for finding modules and hooks to fine-tune them. But browsers do not support bare modules yet. +Certain environments, like Node.js or bundle tools allow bare modules, without any path, as they have their own ways for finding modules and hooks to fine-tune them. But browsers do not support bare modules yet. ### Compatibility, "nomodule" -Old browsers do not understand `type="module"`. Scripts of the unknown type are just ignored. For them, it's possible to provide a fallback using `nomodule` attribute: +Old browsers do not understand `type="module"`. Scripts of an unknown type are just ignored. For them, it's possible to provide a fallback using the `nomodule` attribute: ```html run ``` -If we use bundle tools, then as modules are bundled together, their `import/export` statements are replaced by special bundler calls, so the resulting build does not require `type="module"`, and we can put it into a regular script: - -```html - - -``` - ## Build tools In real-life, browser modules are rarely used in their "raw" form. Usually, we bundle them together with a special tool such as [Webpack](https://webpack.js.org/) and deploy to the production server. @@ -346,12 +382,19 @@ Build tools do the following: 1. Take a "main" module, the one intended to be put in ` +``` That said, native modules are also usable. So we won't be using Webpack here: you can configure it later. @@ -359,16 +402,16 @@ That said, native modules are also usable. So we won't be using Webpack here: yo To summarize, the core concepts are: -1. A module is a file. To make `import/export` work, browsers need ` + + diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.js b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.js new file mode 100644 index 000000000..ea55b4478 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.js @@ -0,0 +1,24 @@ +const startMessagesBtn = document.querySelector('.start-messages'); // (1) +const closeWindowBtn = document.querySelector('.window__button'); // (2) +const windowElementRef = new WeakRef(document.querySelector(".window__body")); // (3) + +startMessagesBtn.addEventListener('click', () => { // (4) + startMessages(windowElementRef); + startMessagesBtn.disabled = true; +}); + +closeWindowBtn.addEventListener('click', () => document.querySelector(".window__body").remove()); // (5) + + +const startMessages = (element) => { + const timerId = setInterval(() => { // (6) + if (element.deref()) { // (7) + const payload = document.createElement("p"); + payload.textContent = `Message: System status OK: ${new Date().toLocaleTimeString()}`; + element.deref().append(payload); + } else { // (8) + alert("The element has been deleted."); // (9) + clearInterval(timerId); + } + }, 1000); +}; \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-01.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-01.svg new file mode 100644 index 000000000..2a507dbcd --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-01.svg @@ -0,0 +1,32 @@ + + + + + + + + user + + name: "John" + Object + + <global> + + + + + + + + + + + + + + + + admin + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-02.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-02.svg new file mode 100644 index 000000000..6cc199a12 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-02.svg @@ -0,0 +1,33 @@ + + + + + + + + + + <global> + + + name: "John" + Object + + + + + + + + + + + + admin + + + + + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-03.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-03.svg new file mode 100644 index 000000000..949a14f9f --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-03.svg @@ -0,0 +1,75 @@ + + + + + + + + + + + + + + + key + value + image-01.jpg + image-02.jpg + image-03.jpg + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + + + + WeakRef object + + + + + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-04.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-04.svg new file mode 100644 index 000000000..1177d6580 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-04.svg @@ -0,0 +1,77 @@ + + + + + + + name: "John" + Object + + admin + + + + + + + + + key + value + image-01.jpg + image-02.jpg + image-03.jpg + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + WeakRef object + + + + + undefined + undefined + + + + + + + + + + + + + + + WeakRef object + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-05.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-05.svg new file mode 100644 index 000000000..e738f8e7e --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-05.svg @@ -0,0 +1,103 @@ + + + + + + + + + + + + + + + + image-02.jpg + image-03.jpg + + key + value + image-01.jpg + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + WeakRef object + + + + + undefined + undefined + Deleted by FinalizationRegistry cleanup callback + + + + + + + + + + + + + + + WeakRef object + + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-01.png b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-01.png new file mode 100644 index 000000000..fc33a023a Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-01.png differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-02.png b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-02.png new file mode 100644 index 000000000..7d8bb01e8 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-02.png differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-03.gif b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-03.gif new file mode 100644 index 000000000..b81966dda Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-03.gif differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-04.jpg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-04.jpg new file mode 100644 index 000000000..ba60f1e86 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-04.jpg differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-05.gif b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-05.gif new file mode 100644 index 000000000..d34bda4d7 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-05.gif differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-06.jpg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-06.jpg new file mode 100644 index 000000000..b2655540f Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-06.jpg differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-07.gif b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-07.gif new file mode 100644 index 000000000..51f874518 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-07.gif differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-08.jpg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-08.jpg new file mode 100644 index 000000000..5f98aec14 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-08.jpg differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.css b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.css new file mode 100644 index 000000000..e6c9e3960 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.css @@ -0,0 +1,285 @@ +:root { + --mineralGreen: 60, 98, 85; + --viridianGreen: 97, 135, 110; + --swampGreen: 166, 187, 141; + --fallGreen: 234, 231, 177; + --brinkPink: #FA7070; + --silverChalice: 178, 178, 178; + --white: 255, 255, 255; + --black: 0, 0, 0; + + --topBarHeight: 64px; + --itemPadding: 32px; + --containerGap: 8px; +} + +@keyframes zoom-in { + 0% { + transform: scale(1, 1); + } + + 100% { + transform: scale(1.30, 1.30); + } +} + +body, html { + margin: 0; + padding: 0; +} + +.app { + min-height: 100vh; + background-color: rgba(var(--viridianGreen), 0.5); +} + +.header { + height: var(--topBarHeight); + padding: 0 24px; + display: flex; + justify-content: space-between; + align-items: center; + background-color: rgba(var(--mineralGreen), 1); +} + +.header-text { + color: white; +} + +.container { + display: flex; + gap: 24px; + padding: var(--itemPadding); +} + +.item { + width: 50%; +} + +.item--scrollable { + overflow-y: scroll; + height: calc(100vh - var(--topBarHeight) - (var(--itemPadding) * 2)); +} + +.thumbnails-container { + display: flex; + flex-wrap: wrap; + gap: 8px; + justify-content: center; + align-items: center; +} + +.thumbnail-item { + width: calc(25% - var(--containerGap)); + cursor: pointer; + position: relative; +} + +.thumbnail-item:hover { + z-index: 1; + animation: zoom-in 0.1s forwards; +} + +.thumbnail-item--selected { + outline: 3px solid rgba(var(--fallGreen), 1); + outline-offset: -3px; +} + +.badge { + width: 16px; + height: 16px; + display: flex; + justify-content: center; + align-items: center; + padding: 4px; + position: absolute; + right: 8px; + bottom: 8px; + border-radius: 50%; + border: 2px solid rgba(var(--fallGreen), 1); + background-color: rgba(var(--swampGreen), 1); +} + +.check { + display: inline-block; + transform: rotate(45deg); + border-bottom: 2px solid white; + border-right: 2px solid white; + width: 6px; + height: 12px; +} + +.img { + width: 100%; + height: 100%; + object-fit: cover; +} + +.actions { + display: flex; + flex-wrap: wrap; + justify-content: center; + align-content: center; + padding: 0 0 16px 0; + gap: 8px; +} + +.select { + padding: 16px; + cursor: pointer; + font-weight: 700; + color: rgba(var(--black), 1); + border: 2px solid rgba(var(--swampGreen), 0.5); + background-color: rgba(var(--swampGreen), 1); +} + +.select:disabled { + cursor: not-allowed; + background-color: rgba(var(--silverChalice), 1); + color: rgba(var(--black), 0.5); + border: 2px solid rgba(var(--black), 0.25); +} + +.btn { + outline: none; + padding: 16px; + cursor: pointer; + font-weight: 700; + color: rgba(var(--black), 1); + border: 2px solid rgba(var(--black), 0.5); +} + +.btn--primary { + background-color: rgba(var(--mineralGreen), 1); +} + +.btn--primary:hover:not([disabled]) { + background-color: rgba(var(--mineralGreen), 0.85); +} + +.btn--secondary { + background-color: rgba(var(--viridianGreen), 0.5); +} + +.btn--secondary:hover:not([disabled]) { + background-color: rgba(var(--swampGreen), 0.25); +} + +.btn--success { + background-color: rgba(var(--fallGreen), 1); +} + +.btn--success:hover:not([disabled]) { + background-color: rgba(var(--fallGreen), 0.85); +} + +.btn:disabled { + cursor: not-allowed; + background-color: rgba(var(--silverChalice), 1); + color: rgba(var(--black), 0.5); + border: 2px solid rgba(var(--black), 0.25); +} + +.previewContainer { + margin-bottom: 16px; + display: flex; + width: 100%; + height: 40vh; + overflow: scroll; + border: 3px solid rgba(var(--black), 1); +} + +.previewContainer--disabled { + background-color: rgba(var(--black), 0.1); + cursor: not-allowed; +} + +.canvas { + margin: auto; + display: none; +} + +.canvas--ready { + display: block; +} + +.spinnerContainer { + display: flex; + gap: 8px; + flex-direction: column; + align-content: center; + align-items: center; + margin: auto; +} + +.spinnerContainer--hidden { + display: none; +} + +.spinnerText { + margin: 0; + color: rgba(var(--mineralGreen), 1); +} + +.spinner { + display: inline-block; + width: 50px; + height: 50px; + margin: auto; + border: 3px solid rgba(var(--mineralGreen), 0.3); + border-radius: 50%; + border-top-color: rgba(var(--mineralGreen), 0.9); + animation: spin 1s ease-in-out infinite; +} + +@keyframes spin { + to { + transform: rotate(360deg); + } +} + +.loggerContainer { + display: flex; + flex-direction: column; + gap: 8px; + padding: 0 8px 8px 8px; + width: 100%; + min-height: 30vh; + max-height: 30vh; + overflow: scroll; + border-left: 3px solid rgba(var(--black), 0.25); +} + +.logger-title { + display: flex; + align-items: center; + padding: 8px; + position: sticky; + height: 40px; + min-height: 40px; + top: 0; + left: 0; + background-color: rgba(var(--viridianGreen), 1); + font-size: 24px; + font-weight: 700; + margin: 0; +} + +.logger-item { + font-size: 14px; + padding: 8px; + border: 2px solid #5a5a5a; + color: white; +} + +.logger--primary { + background-color: #13315a; +} + +.logger--success { + background-color: #385a4e; +} + +.logger--error { + background-color: #5a1a24; +} \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.html b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.html new file mode 100644 index 000000000..7ce52f927 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.html @@ -0,0 +1,49 @@ + + + + + + + Photo Library Collage + + + + +
+
+

+ Photo Library Collage +

+
+
+
+ +
+
+
+
+
+ + + + +
+
+
+
+

+
+ +
+
+

Logger:

+
+
+
+
+
+ + + + + diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.js b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.js new file mode 100644 index 000000000..983b34d9a --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.js @@ -0,0 +1,228 @@ +import { + createImageFile, + loadImage, + weakRefCache, + LAYOUTS, + images, + THUMBNAIL_PARAMS, + stateObj, +} from "./utils.js"; + +export const state = new Proxy(stateObj, { + set(target, property, value) { + const previousValue = target[property]; + + target[property] = value; + + if (previousValue !== value) { + handleStateChange(target); + } + + return true; + }, +}); + +// Elements. +const thumbnailsContainerEl = document.querySelector(".thumbnails-container"); +const selectEl = document.querySelector(".select"); +const previewContainerEl = document.querySelector(".previewContainer"); +const canvasEl = document.querySelector(".canvas"); +const createCollageBtn = document.querySelector(".btn-create-collage"); +const startOverBtn = document.querySelector(".btn-start-over"); +const downloadBtn = document.querySelector(".btn-download"); +const spinnerContainerEl = document.querySelector(".spinnerContainer"); +const spinnerTextEl = document.querySelector(".spinnerText"); +const loggerContainerEl = document.querySelector(".loggerContainer"); + +// Renders. +// Render thumbnails previews. +images.forEach((img) => { + const thumbnail = document.createElement("div"); + thumbnail.classList.add("thumbnail-item"); + + thumbnail.innerHTML = ` + + `; + + thumbnail.addEventListener("click", (e) => handleSelection(e, img)); + + thumbnailsContainerEl.appendChild(thumbnail); +}); +// Render layouts select. +LAYOUTS.forEach((layout) => { + const option = document.createElement("option"); + option.value = JSON.stringify(layout); + option.innerHTML = layout.name; + selectEl.appendChild(option); +}); + +const handleStateChange = (state) => { + if (state.loading) { + selectEl.disabled = true; + createCollageBtn.disabled = true; + startOverBtn.disabled = true; + downloadBtn.disabled = true; + previewContainerEl.classList.add("previewContainer--disabled"); + spinnerContainerEl.classList.remove("spinnerContainer--hidden"); + spinnerTextEl.innerText = "Loading..."; + canvasEl.classList.remove("canvas--ready"); + } else if (!state.loading) { + selectEl.disabled = false; + createCollageBtn.disabled = false; + startOverBtn.disabled = false; + downloadBtn.disabled = false; + previewContainerEl.classList.remove("previewContainer--disabled"); + spinnerContainerEl.classList.add("spinnerContainer--hidden"); + canvasEl.classList.add("canvas--ready"); + } + + if (!state.selectedImages.size) { + createCollageBtn.disabled = true; + document.querySelectorAll(".badge").forEach((item) => item.remove()); + } else if (state.selectedImages.size && !state.loading) { + createCollageBtn.disabled = false; + } + + if (!state.collageRendered) { + downloadBtn.disabled = true; + } else if (state.collageRendered) { + downloadBtn.disabled = false; + } +}; +handleStateChange(state); + +const handleSelection = (e, imgName) => { + const imgEl = e.currentTarget; + + imgEl.classList.toggle("thumbnail-item--selected"); + + if (state.selectedImages.has(imgName)) { + state.selectedImages.delete(imgName); + state.selectedImages = new Set(state.selectedImages); + imgEl.querySelector(".badge")?.remove(); + } else { + state.selectedImages = new Set(state.selectedImages.add(imgName)); + + const badge = document.createElement("div"); + badge.classList.add("badge"); + badge.innerHTML = ` +
+ `; + imgEl.prepend(badge); + } +}; + +// Make a wrapper function. +let getCachedImage; +(async () => { + getCachedImage = await weakRefCache(loadImage); +})(); + +const calculateGridRows = (blobsLength) => + Math.ceil(blobsLength / state.currentLayout.columns); + +const drawCollage = (images) => { + state.drawing = true; + + let context = canvasEl.getContext("2d"); + + /** + * Calculate canvas dimensions based on the current layout. + * */ + context.canvas.width = + state.currentLayout.itemWidth * state.currentLayout.columns; + context.canvas.height = + calculateGridRows(images.length) * state.currentLayout.itemHeight; + + let currentRow = 0; + let currentCanvasDx = 0; + let currentCanvasDy = 0; + + for (let i = 0; i < images.length; i++) { + /** + * Get current row of the collage. + * */ + if (i % state.currentLayout.columns === 0) { + currentRow += 1; + currentCanvasDx = 0; + + if (currentRow > 1) { + currentCanvasDy += state.currentLayout.itemHeight; + } + } + + context.drawImage( + images[i], + 0, + 0, + images[i].width, + images[i].height, + currentCanvasDx, + currentCanvasDy, + state.currentLayout.itemWidth, + state.currentLayout.itemHeight, + ); + + currentCanvasDx += state.currentLayout.itemWidth; + } + + state.drawing = false; + state.collageRendered = true; +}; + +const createCollage = async () => { + state.loading = true; + + const images = []; + + for (const image of state.selectedImages.values()) { + const blobImage = await getCachedImage(image.img); + + const url = URL.createObjectURL(blobImage); + const img = await createImageFile(url); + + images.push(img); + URL.revokeObjectURL(url); + } + + state.loading = false; + + drawCollage(images); +}; + +/** + * Clear all settled data to start over. + * */ +const startOver = () => { + state.selectedImages = new Set(); + state.collageRendered = false; + const context = canvasEl.getContext("2d"); + context.clearRect(0, 0, canvasEl.width, canvasEl.height); + + document + .querySelectorAll(".thumbnail-item--selected") + .forEach((item) => item.classList.remove("thumbnail-item--selected")); + + loggerContainerEl.innerHTML = '

Logger:

'; +}; + +const downloadCollage = () => { + const date = new Date(); + const fileName = `Collage-${date.getDay()}-${date.getMonth()}-${date.getFullYear()}.png`; + const img = canvasEl.toDataURL("image/png"); + const link = document.createElement("a"); + link.download = fileName; + link.href = img; + link.click(); + link.remove(); +}; + +const changeLayout = ({ target }) => { + state.currentLayout = JSON.parse(target.value); +}; + +// Listeners. +selectEl.addEventListener("change", changeLayout); +createCollageBtn.addEventListener("click", createCollage); +startOverBtn.addEventListener("click", startOver); +downloadBtn.addEventListener("click", downloadCollage); diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/utils.js b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/utils.js new file mode 100644 index 000000000..f0140c116 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/utils.js @@ -0,0 +1,321 @@ +const loggerContainerEl = document.querySelector(".loggerContainer"); + +export const images = [ + { + img: "https://images.unsplash.com/photo-1471357674240-e1a485acb3e1", + }, + { + img: "https://images.unsplash.com/photo-1589118949245-7d38baf380d6", + }, + { + img: "https://images.unsplash.com/photo-1527631746610-bca00a040d60", + }, + { + img: "https://images.unsplash.com/photo-1500835556837-99ac94a94552", + }, + { + img: "https://images.unsplash.com/photo-1503220317375-aaad61436b1b", + }, + { + img: "https://images.unsplash.com/photo-1501785888041-af3ef285b470", + }, + { + img: "https://images.unsplash.com/photo-1528543606781-2f6e6857f318", + }, + { + img: "https://images.unsplash.com/photo-1523906834658-6e24ef2386f9", + }, + { + img: "https://images.unsplash.com/photo-1539635278303-d4002c07eae3", + }, + { + img: "https://images.unsplash.com/photo-1533105079780-92b9be482077", + }, + { + img: "https://images.unsplash.com/photo-1516483638261-f4dbaf036963", + }, + { + img: "https://images.unsplash.com/photo-1502791451862-7bd8c1df43a7", + }, + { + img: "https://plus.unsplash.com/premium_photo-1663047367140-91adf819d007", + }, + { + img: "https://images.unsplash.com/photo-1506197603052-3cc9c3a201bd", + }, + { + img: "https://images.unsplash.com/photo-1517760444937-f6397edcbbcd", + }, + { + img: "https://images.unsplash.com/photo-1518684079-3c830dcef090", + }, + { + img: "https://images.unsplash.com/photo-1505832018823-50331d70d237", + }, + { + img: "https://images.unsplash.com/photo-1524850011238-e3d235c7d4c9", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661277758451-b5053309eea1", + }, + { + img: "https://images.unsplash.com/photo-1541410965313-d53b3c16ef17", + }, + { + img: "https://images.unsplash.com/photo-1528702748617-c64d49f918af", + }, + { + img: "https://images.unsplash.com/photo-1502003148287-a82ef80a6abc", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661281272544-5204ea3a481a", + }, + { + img: "https://images.unsplash.com/photo-1503457574462-bd27054394c1", + }, + { + img: "https://images.unsplash.com/photo-1499363536502-87642509e31b", + }, + { + img: "https://images.unsplash.com/photo-1551918120-9739cb430c6d", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661382219642-43e54f7e81d7", + }, + { + img: "https://images.unsplash.com/photo-1497262693247-aa258f96c4f5", + }, + { + img: "https://images.unsplash.com/photo-1525254134158-4fd5fdd45793", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661274025419-4c54107d5c48", + }, + { + img: "https://images.unsplash.com/photo-1553697388-94e804e2f0f6", + }, + { + img: "https://images.unsplash.com/photo-1574260031597-bcd9eb192b4f", + }, + { + img: "https://images.unsplash.com/photo-1536323760109-ca8c07450053", + }, + { + img: "https://images.unsplash.com/photo-1527824404775-dce343118ebc", + }, + { + img: "https://images.unsplash.com/photo-1612278675615-7b093b07772d", + }, + { + img: "https://images.unsplash.com/photo-1522010675502-c7b3888985f6", + }, + { + img: "https://images.unsplash.com/photo-1501555088652-021faa106b9b", + }, + { + img: "https://plus.unsplash.com/premium_photo-1669223469435-27e091439169", + }, + { + img: "https://images.unsplash.com/photo-1506012787146-f92b2d7d6d96", + }, + { + img: "https://images.unsplash.com/photo-1511739001486-6bfe10ce785f", + }, + { + img: "https://images.unsplash.com/photo-1553342385-111fd6bc6ab3", + }, + { + img: "https://images.unsplash.com/photo-1516546453174-5e1098a4b4af", + }, + { + img: "https://images.unsplash.com/photo-1527142879-95b61a0b8226", + }, + { + img: "https://images.unsplash.com/photo-1520466809213-7b9a56adcd45", + }, + { + img: "https://images.unsplash.com/photo-1516939884455-1445c8652f83", + }, + { + img: "https://images.unsplash.com/photo-1545389336-cf090694435e", + }, + { + img: "https://plus.unsplash.com/premium_photo-1669223469455-b7b734c838f4", + }, + { + img: "https://images.unsplash.com/photo-1454391304352-2bf4678b1a7a", + }, + { + img: "https://images.unsplash.com/photo-1433838552652-f9a46b332c40", + }, + { + img: "https://images.unsplash.com/photo-1506125840744-167167210587", + }, + { + img: "https://images.unsplash.com/photo-1522199873717-bc67b1a5e32b", + }, + { + img: "https://images.unsplash.com/photo-1495904786722-d2b5a19a8535", + }, + { + img: "https://images.unsplash.com/photo-1614094082869-cd4e4b2905c7", + }, + { + img: "https://images.unsplash.com/photo-1474755032398-4b0ed3b2ae5c", + }, + { + img: "https://images.unsplash.com/photo-1501554728187-ce583db33af7", + }, + { + img: "https://images.unsplash.com/photo-1515859005217-8a1f08870f59", + }, + { + img: "https://images.unsplash.com/photo-1531141445733-14c2eb7d4c1f", + }, + { + img: "https://images.unsplash.com/photo-1500259783852-0ca9ce8a64dc", + }, + { + img: "https://images.unsplash.com/photo-1510662145379-13537db782dc", + }, + { + img: "https://images.unsplash.com/photo-1573790387438-4da905039392", + }, + { + img: "https://images.unsplash.com/photo-1512757776214-26d36777b513", + }, + { + img: "https://images.unsplash.com/photo-1518855706573-84de4022b69b", + }, + { + img: "https://images.unsplash.com/photo-1500049242364-5f500807cdd7", + }, + { + img: "https://images.unsplash.com/photo-1528759335187-3b683174c86a", + }, +]; +export const THUMBNAIL_PARAMS = "w=240&h=240&fit=crop&auto=format"; + +// Console styles. +export const CONSOLE_BASE_STYLES = [ + "font-size: 12px", + "padding: 4px", + "border: 2px solid #5a5a5a", + "color: white", +].join(";"); +export const CONSOLE_PRIMARY = [ + CONSOLE_BASE_STYLES, + "background-color: #13315a", +].join(";"); +export const CONSOLE_SUCCESS = [ + CONSOLE_BASE_STYLES, + "background-color: #385a4e", +].join(";"); +export const CONSOLE_ERROR = [ + CONSOLE_BASE_STYLES, + "background-color: #5a1a24", +].join(";"); + +// Layouts. +export const LAYOUT_4_COLUMNS = { + name: "Layout 4 columns", + columns: 4, + itemWidth: 240, + itemHeight: 240, +}; +export const LAYOUT_8_COLUMNS = { + name: "Layout 8 columns", + columns: 8, + itemWidth: 240, + itemHeight: 240, +}; +export const LAYOUTS = [LAYOUT_4_COLUMNS, LAYOUT_8_COLUMNS]; + +export const createImageFile = async (src) => + new Promise((resolve, reject) => { + const img = new Image(); + img.src = src; + img.onload = () => resolve(img); + img.onerror = () => reject(new Error("Failed to construct image.")); + }); + +export const loadImage = async (url) => { + try { + const response = await fetch(url); + if (!response.ok) { + throw new Error(String(response.status)); + } + + return await response.blob(); + } catch (e) { + console.log(`%cFETCHED_FAILED: ${e}`, CONSOLE_ERROR); + } +}; + +export const weakRefCache = (fetchImg) => { + const imgCache = new Map(); + const registry = new FinalizationRegistry(({ imgName, size, type }) => { + const cachedImg = imgCache.get(imgName); + if (cachedImg && !cachedImg.deref()) { + imgCache.delete(imgName); + console.log( + `%cCLEANED_IMAGE: Url: ${imgName}, Size: ${size}, Type: ${type}`, + CONSOLE_ERROR, + ); + + const logEl = document.createElement("div"); + logEl.classList.add("logger-item", "logger--error"); + logEl.innerHTML = `CLEANED_IMAGE: Url: ${imgName}, Size: ${size}, Type: ${type}`; + loggerContainerEl.appendChild(logEl); + loggerContainerEl.scrollTop = loggerContainerEl.scrollHeight; + } + }); + + return async (imgName) => { + const cachedImg = imgCache.get(imgName); + + if (cachedImg?.deref() !== undefined) { + console.log( + `%cCACHED_IMAGE: Url: ${imgName}, Size: ${cachedImg.size}, Type: ${cachedImg.type}`, + CONSOLE_SUCCESS, + ); + + const logEl = document.createElement("div"); + logEl.classList.add("logger-item", "logger--success"); + logEl.innerHTML = `CACHED_IMAGE: Url: ${imgName}, Size: ${cachedImg.size}, Type: ${cachedImg.type}`; + loggerContainerEl.appendChild(logEl); + loggerContainerEl.scrollTop = loggerContainerEl.scrollHeight; + + return cachedImg?.deref(); + } + + const newImg = await fetchImg(imgName); + console.log( + `%cFETCHED_IMAGE: Url: ${imgName}, Size: ${newImg.size}, Type: ${newImg.type}`, + CONSOLE_PRIMARY, + ); + + const logEl = document.createElement("div"); + logEl.classList.add("logger-item", "logger--primary"); + logEl.innerHTML = `FETCHED_IMAGE: Url: ${imgName}, Size: ${newImg.size}, Type: ${newImg.type}`; + loggerContainerEl.appendChild(logEl); + loggerContainerEl.scrollTop = loggerContainerEl.scrollHeight; + + imgCache.set(imgName, new WeakRef(newImg)); + registry.register(newImg, { + imgName, + size: newImg.size, + type: newImg.type, + }); + + return newImg; + }; +}; + +export const stateObj = { + loading: false, + drawing: true, + collageRendered: false, + currentLayout: LAYOUTS[0], + selectedImages: new Set(), +}; diff --git a/1-js/99-js-misc/index.md b/1-js/99-js-misc/index.md new file mode 100644 index 000000000..79cd72fe7 --- /dev/null +++ b/1-js/99-js-misc/index.md @@ -0,0 +1,2 @@ + +# Miscellaneous diff --git a/10-misc/12-mutation-observer/article.md b/10-misc/12-mutation-observer/article.md deleted file mode 100644 index 1045e87a8..000000000 --- a/10-misc/12-mutation-observer/article.md +++ /dev/null @@ -1,249 +0,0 @@ - -# Mutation observer - -`MutationObserver` is a built-in object that observes a DOM element and fires a callback in case of changes. - -We'll first see syntax, and then explore a real-world use case. - -## Syntax - -`MutationObserver` is easy to use. - -First, we create an observer with a callback-function: - -```js -let observer = new MutationObserver(callback); -``` - -And then attach it to a DOM node: - -```js -observer.observe(node, config); -``` - -`config` is an object with boolean options "what kind of changes to react on": -- `childList` -- changes in the direct children of `node`, -- `subtree` -- in all descendants of `node`, -- `attributes` -- attributes of `node`, -- `attributeOldValue` -- record the old value of attribute (infers `attributes`), -- `characterData` -- whether to observe `node.data` (text content), -- `characterDataOldValue` -- record the old value of `node.data` (infers `characterData`), -- `attributeFilter` -- an array of attribute names, to observe only selected ones. - -Then after any changes, the `callback` is executed, with a list of [MutationRecord](https://dom.spec.whatwg.org/#mutationrecord) objects as the first argument, and the observer itself as the second argument. - -[MutationRecord](https://dom.spec.whatwg.org/#mutationrecord) objects have properties: - -- `type` -- mutation type, one of - - `"attributes"` (attribute modified) - - `"characterData"` (data modified) - - `"childList"` (elements added/removed), -- `target` -- where the change occured: an element for "attributes", or text node for "characterData", or an element for a "childList" mutation, -- `addedNodes/removedNodes` -- nodes that were added/removed, -- `previousSibling/nextSibling` -- the previous and next sibling to added/removed nodes, -- `attributeName/attributeNamespace` -- the name/namespace (for XML) of the changed attribute, -- `oldValue` -- the previous value, only for attribute or text changes. - - -For example, here's a `
` with `contentEditable` attribute. That attribute allows us to focus on it and edit. - -```html run -
Edit me, please
- - -``` - -If we change the text inside `me`, we'll get a single mutation: - -```js -mutationRecords = [{ - type: "characterData", - oldValue: "me", - target: , - // other properties empty -}]; -``` - -If we select and remove the `me` altogether, we'll get multiple mutations: - -```js -mutationRecords = [{ - type: "childList", - target: , - removedNodes: [], - nextSibling: , - previousSibling: - // other properties empty -}, { - type: "characterData" - target: - // ...details depend on how the browser handles the change - // it may coalesce two adjacent text nodes "Edit " and ", please" into one node - // or it can just delete the extra space after "Edit". - // may be one mutation or a few -}]; -``` - -## Observer use case - -When `MutationObserver` is needed? Is there a scenario when such thing can be useful? - -Sure, we can track something like `contentEditable` and create "undo/redo" stack, but here's an example where `MutationObserver` is good from architectural standpoint. - -Let's say we're making a website about programming, like this one. Naturally, articles and other materials may contain source code snippets. - -An HTML code snippet looks like this: -```html -... -

-  // here's the code
-  let hello = "world";
-
-... -``` - -There's also a JavaScript highlighting library, e.g. [Prism.js](https://prismjs.com/). A call to `Prism.highlightElem(pre)` examines the contents of such `pre` elements and adds colored syntax highlighting, similar to what you in examples here, this page. - -Generally, when a page loads, e.g. at the bottom of the page, we can search for elements `pre[class*="language"]` and call `Prism.highlightElem` on them: - -```js -// highlight all code snippets on the page -document.querySelectorAll('pre[class*="language"]').forEach(Prism.highlightElem); -``` - -Now the `
` snippet looks like this (without line numbers by default):
-
-```js
-// here's the code
-let hello = "world";
-```
-
-Everything's simple so far, right? There are `
` code snippets in HTML, we highlight them.
-
-Now let's go on. Let's say we're going to dynamically fetch materials from a server. We'll study methods for that [later in the tutorial](info:fetch-basics). For now it only matters that we fetch an HTML article from a webserver and display it on demand:
-
-```js
-let article = /* fetch new content from server */
-articleElem.innerHTML = article;
-```
-
-The new `article` HTML may contain code snippets. We need to call `Prism.highlightElem` on them, otherwise they won't get highlighted.
-
-**Who's responsibility is to call `Prism.highlightElem` for a dynamically loaded article?**
-
-We could append that call to the code that loads an article, like this:
-
-```js
-let article = /* fetch new content from server */
-articleElem.innerHTML = article;
-
-*!*
-let snippets = articleElem.querySelectorAll('pre[class*="language-"]');
-snippets.forEach(Prism.highlightElem);
-*/!*
-```
-
-...But imagine, we have many places where we load contents with code: articles, quizzes, forum posts. Do we need to put the highlighting call everywhere? Then we need to be careful, not to forget about it.
-
-And what if we load the content into a third-party engine? E.g. we have a forum written by someone else, that loads contents dynamically, and we'd like to add syntax highlighting to it. No one likes to patch third-party scripts.
-
-Luckily, there's another option.
-
-We can use `MutationObserver` to automatically detect code snippets inserted in the page and highlight them.
-
-So we'll handle the highlighting functionality in one place, relieving us from the need to integrate it.
-
-## Dynamic highlight demo
-
-Here's the working example.
-
-If you run this code, it starts observing the element below and highlighting any code snippets that appear there:
-
-```js run
-let observer = new MutationObserver(mutations => {
-
-  for(let mutation of mutations) {
-    // examine new nodes
-
-    for(let node of mutation.addedNodes) {
-      // skip newly added text nodes
-      if (!(node instanceof HTMLElement)) continue;
-
-      // check the inserted element for being a code snippet
-      if (node.matches('pre[class*="language-"]')) {
-        Prism.highlightElement(node);
-      }
-
-      // search its subtree for code snippets
-      for(let elem of node.querySelectorAll('pre[class*="language-"]')) {
-        Prism.highlightElement(elem);
-      }
-    }
-  }
-
-});
-
-let demoElem = document.getElementById('highlight-demo');
-
-observer.observe(demoElem, {childList: true, subtree: true});
-```
-
-

Demo element with id="highlight-demo", obverved by the example above.

- -The code below populates `innerHTML`. If you've run the code above, snippets will get highlighted: - -```js run -let demoElem = document.getElementById('highlight-demo'); - -// dynamically insert content with code snippets -demoElem.innerHTML = `A code snippet is below: -
 let hello = "world!"; 
-
Another one:
-
-
.class { margin: 5px; } 
-
-`; -``` - -Now we have `MutationObserver` that can track all highlighting in observed elements or the whole `document`. We can add/remove code snippets in HTML without thinking about it. - - -## Garbage collection - -Observers use weak references to nodes internally. That is: if a node is removed from DOM, and becomes unreachable, then it becomes garbage collected, an observer doesn't prevent that. - -Still, we can release observers any time: - -- `observer.disconnect()` -- stops the observation. - -Additionally: - -- `mutationRecords = observer.takeRecords()` -- gets a list of unprocessed mutation records, those that happened, but the callback did not handle them. - -```js -// we're going to disconnect the observer -// it might have not yet handled some mutations -let mutationRecords = observer.takeRecords(); -// process mutationRecords - -// now all handled, disconnect -observer.disconnect(); -``` - -## Summary - -`MutationObserver` can react on changes in DOM: attributes, added/removed elements, text content. - -We can use it to track changes introduced by other parts of our own or 3rd-party code. - -For example, to post-process dynamically inserted content, as demo `innerHTML`, like highlighting in the example above. diff --git a/10-misc/index.md b/10-misc/index.md deleted file mode 100644 index 65ab3188a..000000000 --- a/10-misc/index.md +++ /dev/null @@ -1,4 +0,0 @@ - -# Miscellaneous - -Not yet categorized articles. diff --git a/2-ui/1-document/01-browser-environment/article.md b/2-ui/1-document/01-browser-environment/article.md index 0e123f581..eedc28fb3 100644 --- a/2-ui/1-document/01-browser-environment/article.md +++ b/2-ui/1-document/01-browser-environment/article.md @@ -1,12 +1,12 @@ # Browser environment, specs -The JavaScript language was initially created for web browsers. Since then, it has evolved and become a language with many uses and platforms. +The JavaScript language was initially created for web browsers. Since then, it has evolved into a language with many uses and platforms. -A platform may be a browser, or a web-server, or a washing machine, or another *host*. Each of them provides platform-specific functionality. The JavaScript specification calls that a *host environment*. +A platform may be a browser, or a web-server or another *host*, or even a "smart" coffee machine if it can run JavaScript. Each of these provides platform-specific functionality. The JavaScript specification calls that a *host environment*. -A host environment provides platform-specific objects and functions additional to the language core. Web browsers give a means to control web pages. Node.js provides server-side features, and so on. +A host environment provides its own objects and functions in addition to the language core. Web browsers give a means to control web pages. Node.js provides server-side features, and so on. -Here's a bird's-eye view of what we have when JavaScript runs in a web-browser: +Here's a bird's-eye view of what we have when JavaScript runs in a web browser: ![](windowObjects.svg) @@ -15,28 +15,30 @@ There's a "root" object called `window`. It has two roles: 1. First, it is a global object for JavaScript code, as described in the chapter . 2. Second, it represents the "browser window" and provides methods to control it. -For instance, here we use it as a global object: +For instance, we can use it as a global object: -```js run +```js run global function sayHi() { alert("Hello"); } -// global functions are accessible as properties of window +// global functions are methods of the global object: window.sayHi(); ``` -And here we use it as a browser window, to see the window height: +And we can use it as a browser window, to show the window height: ```js run alert(window.innerHeight); // inner window height ``` -There are more window-specific methods and properties, we'll cover them later. +There are more window-specific methods and properties, which we'll cover later. + +## DOM (Document Object Model) -## Document Object Model (DOM) +The Document Object Model, or DOM for short, represents all page content as objects that can be modified. -The `document` object gives access to the page content. We can change or create anything on the page using it. +The `document` object is the main "entry point" to the page. We can change or create anything on the page using it. For instance: ```js run @@ -47,58 +49,44 @@ document.body.style.background = "red"; setTimeout(() => document.body.style.background = "", 1000); ``` -Here we used `document.body.style`, but there's much, much more. Properties and methods are described in the specification. There happen to be two working groups who develop it: - -1. [W3C](https://en.wikipedia.org/wiki/World_Wide_Web_Consortium) -- the documentation is at . -2. [WhatWG](https://en.wikipedia.org/wiki/WHATWG), publishing at . - -As it happens, the two groups don't always agree, so it's like we have two sets of standards. But they are very similar and eventually things merge. The documentation that you can find on the given resources is very similar, with about a 99% match. There are very minor differences that you probably won't notice. - -Personally, I find more pleasant to use. - -In the ancient past, there was no standard at all -- each browser implemented however it wanted. Different browsers had different sets, methods, and properties for the same thing, and developers had to write different code for each of them. Dark, messy times. - -Even now we can sometimes meet old code that uses browser-specific properties and works around incompatibilities. But, in this tutorial we'll use modern stuff: there's no need to learn old things until you really need to (chances are high that you won't). - -Then the DOM standard appeared, in an attempt to bring everyone to an agreement. The first version was "DOM Level 1", then it was extended by DOM Level 2, then DOM Level 3, and now it's reached DOM Level 4. People from WhatWG group got tired of version numbers and are calling it just "DOM", without a number. So we'll do the same. +Here, we used `document.body.style`, but there's much, much more. Properties and methods are described in the specification: [DOM Living Standard](https://dom.spec.whatwg.org). ```smart header="DOM is not only for browsers" -The DOM specification explains the structure of a document and provides objects to manipulate it. There are non-browser instruments that use it too. +The DOM specification explains the structure of a document and provides objects to manipulate it. There are non-browser instruments that use DOM too. -For instance, server-side tools that download HTML pages and process them use the DOM. They may support only a part of the specification though. +For instance, server-side scripts that download HTML pages and process them can also use the DOM. They may support only a part of the specification though. ``` ```smart header="CSSOM for styling" -CSS rules and stylesheets are not structured like HTML. There's a separate specification [CSSOM](https://www.w3.org/TR/cssom-1/) that explains how they are represented as objects, and how to read and write them. +There's also a separate specification, [CSS Object Model (CSSOM)](https://www.w3.org/TR/cssom-1/) for CSS rules and stylesheets, that explains how they are represented as objects, and how to read and write them. -CSSOM is used together with DOM when we modify style rules for the document. In practice though, CSSOM is rarely required, because usually CSS rules are static. We rarely need to add/remove CSS rules from JavaScript, so we won't cover it right now. +The CSSOM is used together with the DOM when we modify style rules for the document. In practice though, the CSSOM is rarely required, because we rarely need to modify CSS rules from JavaScript (usually we just add/remove CSS classes, not modify their CSS rules), but that's also possible. ``` -## BOM (part of HTML spec) +## BOM (Browser Object Model) -Browser Object Model (BOM) are additional objects provided by the browser (host environment) to work with everything except the document. +The Browser Object Model (BOM) represents additional objects provided by the browser (host environment) for working with everything except the document. For instance: -- The [navigator](mdn:api/Window/navigator) object provides background information about the browser and the operating system. There are many properties, but the two most widely known are: `navigator.userAgent` -- about the current browser, and `navigator.platform` -- about the platform (can help to differ between Windows/Linux/Mac etc). +- The [navigator](mdn:api/Window/navigator) object provides background information about the browser and the operating system. There are many properties, but the two most widely known are: `navigator.userAgent` -- about the current browser, and `navigator.platform` -- about the platform (can help to differentiate between Windows/Linux/Mac etc). - The [location](mdn:api/Window/location) object allows us to read the current URL and can redirect the browser to a new one. Here's how we can use the `location` object: ```js run alert(location.href); // shows current URL -if (confirm("Go to wikipedia?")) { +if (confirm("Go to Wikipedia?")) { location.href = "https://wikipedia.org"; // redirect the browser to another URL } ``` -Functions `alert/confirm/prompt` are also a part of BOM: they are directly not related to the document, but represent pure browser methods of communicating with the user. - +The functions `alert/confirm/prompt` are also a part of the BOM: they are not directly related to the document, but represent pure browser methods for communicating with the user. -```smart header="HTML specification" -BOM is the part of the general [HTML specification](https://html.spec.whatwg.org). +```smart header="Specifications" +The BOM is a part of the general [HTML specification](https://html.spec.whatwg.org). -Yes, you heard that right. The HTML spec at is not only about the "HTML language" (tags, attributes), but also covers a bunch of objects, methods and browser-specific DOM extensions. That's "HTML in broad terms". +Yes, you heard that right. The HTML spec at is not only about the "HTML language" (tags, attributes), but also covers a bunch of objects, methods, and browser-specific DOM extensions. That's "HTML in broad terms". Also, some parts have additional specs listed at . ``` ## Summary @@ -106,16 +94,20 @@ Yes, you heard that right. The HTML spec at is no Talking about standards, we have: DOM specification -: Describes the document structure, manipulations and events, see . +: Describes the document structure, manipulations, and events, see . CSSOM specification -: Describes stylesheets and style rules, manipulations with them and their binding to documents, see . +: Describes stylesheets and style rules, manipulations with them, and their binding to documents, see . HTML specification : Describes the HTML language (e.g. tags) and also the BOM (browser object model) -- various browser functions: `setTimeout`, `alert`, `location` and so on, see . It takes the DOM specification and extends it with many additional properties and methods. -Now we'll get down to learning DOM, because the document plays the central role in the UI. +Additionally, some classes are described separately at . + +Please note these links, as there's so much to learn that it's impossible to cover everything and remember it all. + +When you'd like to read about a property or a method, the Mozilla manual at is also a nice resource, but the corresponding spec may be better: it's more complex and longer to read, but will make your fundamental knowledge sound and complete. -Please note the links above, as there's so much stuff to learn it's impossible to cover and remember everything. +To find something, it's often convenient to use an internet search "WHATWG [term]" or "MDN [term]", e.g , . -When you'd like to read about a property or a method, the Mozilla manual at is a nice resource, but reading the corresponding spec may be better: it's more complex and longer to read, but will make your fundamental knowledge sound and complete. +Now, we'll get down to learning the DOM, because the document plays the central role in the UI. diff --git a/2-ui/1-document/02-dom-nodes/article.md b/2-ui/1-document/02-dom-nodes/article.md index 6bb34ff8c..f7f2be91d 100644 --- a/2-ui/1-document/02-dom-nodes/article.md +++ b/2-ui/1-document/02-dom-nodes/article.md @@ -6,26 +6,42 @@ libs: # DOM tree -The backbone of an HTML document are tags. +The backbone of an HTML document is tags. -According to Document Object Model (DOM), every HTML-tag is an object. Nested tags are called "children" of the enclosing one. +According to the Document Object Model (DOM), every HTML tag is an object. Nested tags are "children" of the enclosing one. The text inside a tag is an object as well. -The text inside a tag it is an object as well. +All these objects are accessible using JavaScript, and we can use them to modify the page. -All these objects are accessible using JavaScript. +For example, `document.body` is the object representing the `` tag. -## An example of DOM +Running this code will make the `` red for 3 seconds: -For instance, let's explore the DOM for this document: +```js run +document.body.style.background = 'red'; // make the background red + +setTimeout(() => document.body.style.background = '', 3000); // return back +``` + +Here we used `style.background` to change the background color of `document.body`, but there are many other properties, such as: + +- `innerHTML` -- HTML contents of the node. +- `offsetWidth` -- the node width (in pixels) +- ...and so on. + +Soon we'll learn more ways to manipulate the DOM, but first we need to know about its structure. + +## An example of the DOM + +Let's start with the following simple document: ```html run no-beautify - About elks + About elk - The truth about elks. + The truth about elk. ``` @@ -35,7 +51,7 @@ The DOM represents HTML as a tree structure of tags. Here's how it looks:
@@ -44,56 +60,57 @@ drawHtmlTree(node1, 'div.domtree', 690, 320); On the picture above, you can click on element nodes and their children will open/collapse. ``` -Tags are called *element nodes* (or just elements). Nested tags become children of the enclosing ones. As a result we have a tree of elements: `` is at the root, then `` and `` are its children, etc. +Every tree node is an object. + +Tags are *element nodes* (or just elements) and form the tree structure: `` is at the root, then `` and `` are its children, etc. The text inside elements forms *text nodes*, labelled as `#text`. A text node contains only a string. It may not have children and is always a leaf of the tree. -For instance, the `` tag has the text `"About elks"`. +For instance, the `<title>` tag has the text `"About elk"`. Please note the special characters in text nodes: - a newline: `↵` (in JavaScript known as `\n`) - a space: `␣` -Spaces and newlines -- are totally valid characters, they form text nodes and become a part of the DOM. So, for instance, in the example above the `<head>` tag contains some spaces before `<title>`, and that text becomes a `#text` node (it contains a newline and some spaces only). +Spaces and newlines are totally valid characters, like letters and digits. They form text nodes and become a part of the DOM. So, for instance, in the example above the `<head>` tag contains some spaces before `<title>`, and that text becomes a `#text` node (it contains a newline and some spaces only). There are only two top-level exclusions: -1. Spaces and newlines before `<head>` are ignored for historical reasons, -2. If we put something after `</body>`, then that is automatically moved inside the `body`, at the end, as the HTML spec requires that all content must be inside `<body>`. So there may be no spaces after `</body>`. +1. Spaces and newlines before `<head>` are ignored for historical reasons. +2. If we put something after `</body>`, then that is automatically moved inside the `body`, at the end, as the HTML spec requires that all content must be inside `<body>`. So there can't be any spaces after `</body>`. -In other cases everything's straightforward -- if there are spaces (just like any character) in the document, then they become text nodes in DOM, and if we remove them, then there won't be any. +In other cases everything's straightforward -- if there are spaces (just like any character) in the document, then they become text nodes in the DOM, and if we remove them, then there won't be any. Here are no space-only text nodes: ```html no-beautify <!DOCTYPE HTML> -<html><head><title>About elksThe truth about elks. +About elkThe truth about elk. ```
-```smart header="Edge spaces and in-between empty text are usually hidden in tools" +```smart header="Spaces at string start/end and space-only text nodes are usually hidden in tools" Browser tools (to be covered soon) that work with DOM usually do not show spaces at the start/end of the text and empty text nodes (line-breaks) between tags. -That's because they are mainly used to decorate HTML, and do not affect how it is shown (in most cases). +Developer tools save screen space this way. -On further DOM pictures we'll sometimes omit them where they are irrelevant, to keep things short. +On further DOM pictures we'll sometimes omit them when they are irrelevant. Such spaces usually do not affect how the document is displayed. ``` - ## Autocorrection -If the browser encounters malformed HTML, it automatically corrects it when making DOM. +If the browser encounters malformed HTML, it automatically corrects it when making the DOM. -For instance, the top tag is always ``. Even if it doesn't exist in the document -- it will exist in the DOM, the browser will create it. The same goes for ``. +For instance, the top tag is always ``. Even if it doesn't exist in the document, it will exist in the DOM, because the browser will create it. The same goes for ``. -As an example, if the HTML file is a single word `"Hello"`, the browser will wrap it into `` and ``, add the required ``, and the DOM will be: +As an example, if the HTML file is the single word `"Hello"`, the browser will wrap it into `` and ``, and add the required ``, and the DOM will be:
@@ -106,7 +123,7 @@ drawHtmlTree(node3, 'div.domtree', 690, 150); While generating the DOM, browsers automatically process errors in the document, close tags and so on. -Such an "invalid" document: +A document with unclosed tags: ```html no-beautify

Hello @@ -115,7 +132,7 @@ Such an "invalid" document:

  • Dad ``` -...Will become a normal DOM, as the browser reads tags and restores the missing parts: +...will become a normal DOM as the browser reads tags and restores the missing parts:
    @@ -126,7 +143,7 @@ drawHtmlTree(node4, 'div.domtree', 690, 360); ````warn header="Tables always have ``" -An interesting "special case" is tables. By the DOM specification they must have ``, but HTML text may (officially) omit it. Then the browser creates `` in DOM automatically. +An interesting "special case" is tables. By DOM specification they must have `` tag, but HTML text may omit it. Then the browser creates `` in the DOM automatically. For the HTML: @@ -143,18 +160,20 @@ let node5 = {"name":"TABLE","nodeType":1,"children":[{"name":"TBODY","nodeType": drawHtmlTree(node5, 'div.domtree', 600, 200); -You see? The `` appeared out of nowhere. You should keep this in mind while working with tables to avoid surprises. +You see? The `` appeared out of nowhere. We should keep this in mind while working with tables to avoid surprises. ```` ## Other node types -Let's add more tags and a comment to the page: +There are some other node types besides elements and text nodes. + +For example, comments: ```html - The truth about elks. + The truth about elk.
    1. An elk is a smart
    2. *!* @@ -169,18 +188,18 @@ Let's add more tags and a comment to the page:
      -Here we see a new tree node type -- *comment node*, labeled as `#comment`. +We can see here a new tree node type -- *comment node*, labeled as `#comment`, between two text nodes. We may think -- why is a comment added to the DOM? It doesn't affect the visual representation in any way. But there's a rule -- if something's in HTML, then it also must be in the DOM tree. **Everything in HTML, even comments, becomes a part of the DOM.** -Even the `` directive at the very beginning of HTML is also a DOM node. It's in the DOM tree right before ``. We are not going to touch that node, we even don't draw it on diagrams for that reason, but it's there. +Even the `` directive at the very beginning of HTML is also a DOM node. It's in the DOM tree right before ``. Few people know about that. We are not going to touch that node, we even don't draw it on diagrams, but it's there. The `document` object that represents the whole document is, formally, a DOM node as well. @@ -189,31 +208,29 @@ There are [12 node types](https://dom.spec.whatwg.org/#node). In practice we usu 1. `document` -- the "entry point" into DOM. 2. element nodes -- HTML-tags, the tree building blocks. 3. text nodes -- contain text. -4. comments -- sometimes we can put the information there, it won't be shown, but JS can read it from the DOM. +4. comments -- sometimes we can put information there, it won't be shown, but JS can read it from the DOM. ## See it for yourself -To see the DOM structure in real-time, try [Live DOM Viewer](http://software.hixie.ch/utilities/js/live-dom-viewer/). Just type in the document, and it will show up DOM at an instant. - -## In the browser inspector +To see the DOM structure in real-time, try [Live DOM Viewer](https://software.hixie.ch/utilities/js/live-dom-viewer/). Just type in the document, and it will show up as a DOM at an instant. Another way to explore the DOM is to use the browser developer tools. Actually, that's what we use when developing. -To do so, open the web-page [elks.html](elks.html), turn on the browser developer tools and switch to the Elements tab. +To do so, open the web page [elk.html](elk.html), turn on the browser developer tools and switch to the Elements tab. It should look like this: -![](elks.png) +![](elk.svg) You can see the DOM, click on elements, see their details and so on. Please note that the DOM structure in developer tools is simplified. Text nodes are shown just as text. And there are no "blank" (space only) text nodes at all. That's fine, because most of the time we are interested in element nodes. -Clicking the button in the left-upper corner allows to choose a node from the webpage using a mouse (or other pointer devices) and "inspect" it (scroll to it in the Elements tab). This works great when we have a huge HTML page (and corresponding huge DOM) and would like to see the place of a particular element in it. +Clicking the button in the left-upper corner allows us to choose a node from the webpage using a mouse (or other pointer devices) and "inspect" it (scroll to it in the Elements tab). This works great when we have a huge HTML page (and corresponding huge DOM) and would like to see the place of a particular element in it. Another way to do it would be just right-clicking on a webpage and selecting "Inspect" in the context menu. -![](inspect.png) +![](inspect.svg) At the right part of the tools there are the following subtabs: - **Styles** -- we can see CSS applied to the current element rule by rule, including built-in rules (gray). Almost everything can be edited in-place, including the dimensions/margins/paddings of the box below. @@ -225,22 +242,26 @@ The best way to study them is to click around. Most values are editable in-place ## Interaction with console -As we explore the DOM, we also may want to apply JavaScript to it. Like: get a node and run some code to modify it, to see how it looks. Here are few tips to travel between the Elements tab and the console. +As we work the DOM, we also may want to apply JavaScript to it. Like: get a node and run some code to modify it, to see the result. Here are few tips to travel between the Elements tab and the console. + +For the start: -- Select the first `
    3. ` in the Elements tab. -- Press `key:Esc` -- it will open console right below the Elements tab. +1. Select the first `
    4. ` in the Elements tab. +2. Press `key:Esc` -- it will open console right below the Elements tab. Now the last selected element is available as `$0`, the previously selected is `$1` etc. We can run commands on them. For instance, `$0.style.background = 'red'` makes the selected list item red, like this: -![](domconsole0.png) +![](domconsole0.svg) + +That's how to get a node from Elements in Console. -From the other side, if we're in console and have a variable referencing a DOM node, then we can use the command `inspect(node)` to see it in the Elements pane. +There's also a road back. If there's a variable referencing a DOM node, then we can use the command `inspect(node)` in Console to see it in the Elements pane. -Or we can just output it in the console and explore "at-place", like `document.body` below: +Or we can just output the DOM node in the console and explore "in-place", like `document.body` below: -![](domconsole1.png) +![](domconsole1.svg) That's for debugging purposes of course. From the next chapter on we'll access and modify DOM using JavaScript. @@ -258,4 +279,4 @@ We can use developer tools to inspect DOM and modify it manually. Here we covered the basics, the most used and important actions to start with. There's an extensive documentation about Chrome Developer Tools at . The best way to learn the tools is to click here and there, read menus: most options are obvious. Later, when you know them in general, read the docs and pick up the rest. -DOM nodes have properties and methods that allow to travel between them, modify, move around the page and more. We'll get down to them in the next chapters. +DOM nodes have properties and methods that allow us to travel between them, modify them, move around the page, and more. We'll get down to them in the next chapters. diff --git a/2-ui/1-document/02-dom-nodes/domconsole0.png b/2-ui/1-document/02-dom-nodes/domconsole0.png deleted file mode 100644 index 121c11d75..000000000 Binary files a/2-ui/1-document/02-dom-nodes/domconsole0.png and /dev/null differ diff --git a/2-ui/1-document/02-dom-nodes/domconsole0.svg b/2-ui/1-document/02-dom-nodes/domconsole0.svg new file mode 100644 index 000000000..eb99f193f --- /dev/null +++ b/2-ui/1-document/02-dom-nodes/domconsole0.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/domconsole0@2x.png b/2-ui/1-document/02-dom-nodes/domconsole0@2x.png deleted file mode 100644 index a8953395c..000000000 Binary files a/2-ui/1-document/02-dom-nodes/domconsole0@2x.png and /dev/null differ diff --git a/2-ui/1-document/02-dom-nodes/domconsole1.png b/2-ui/1-document/02-dom-nodes/domconsole1.png deleted file mode 100644 index c04f015cf..000000000 Binary files a/2-ui/1-document/02-dom-nodes/domconsole1.png and /dev/null differ diff --git a/2-ui/1-document/02-dom-nodes/domconsole1.svg b/2-ui/1-document/02-dom-nodes/domconsole1.svg new file mode 100644 index 000000000..02ef5f0a6 --- /dev/null +++ b/2-ui/1-document/02-dom-nodes/domconsole1.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/domconsole1@2x.png b/2-ui/1-document/02-dom-nodes/domconsole1@2x.png deleted file mode 100644 index ce0fa0fff..000000000 Binary files a/2-ui/1-document/02-dom-nodes/domconsole1@2x.png and /dev/null differ diff --git a/2-ui/1-document/02-dom-nodes/elks.html b/2-ui/1-document/02-dom-nodes/elk.html similarity index 86% rename from 2-ui/1-document/02-dom-nodes/elks.html rename to 2-ui/1-document/02-dom-nodes/elk.html index 7d29f3d4e..dc5d65f54 100644 --- a/2-ui/1-document/02-dom-nodes/elks.html +++ b/2-ui/1-document/02-dom-nodes/elk.html @@ -1,7 +1,7 @@ - The truth about elks. + The truth about elk.
      1. An elk is a smart
      2. diff --git a/2-ui/1-document/02-dom-nodes/elk.svg b/2-ui/1-document/02-dom-nodes/elk.svg new file mode 100644 index 000000000..448eea9d1 --- /dev/null +++ b/2-ui/1-document/02-dom-nodes/elk.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/elks.png b/2-ui/1-document/02-dom-nodes/elks.png deleted file mode 100644 index 03177c40e..000000000 Binary files a/2-ui/1-document/02-dom-nodes/elks.png and /dev/null differ diff --git a/2-ui/1-document/02-dom-nodes/elks@2x.png b/2-ui/1-document/02-dom-nodes/elks@2x.png deleted file mode 100644 index e8a15bd5b..000000000 Binary files a/2-ui/1-document/02-dom-nodes/elks@2x.png and /dev/null differ diff --git a/2-ui/1-document/02-dom-nodes/inspect.png b/2-ui/1-document/02-dom-nodes/inspect.png deleted file mode 100644 index 075cf9308..000000000 Binary files a/2-ui/1-document/02-dom-nodes/inspect.png and /dev/null differ diff --git a/2-ui/1-document/02-dom-nodes/inspect.svg b/2-ui/1-document/02-dom-nodes/inspect.svg new file mode 100644 index 000000000..60696ec0d --- /dev/null +++ b/2-ui/1-document/02-dom-nodes/inspect.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/inspect@2x.png b/2-ui/1-document/02-dom-nodes/inspect@2x.png deleted file mode 100644 index 8743dd297..000000000 Binary files a/2-ui/1-document/02-dom-nodes/inspect@2x.png and /dev/null differ diff --git a/2-ui/1-document/03-dom-navigation/1-dom-children/task.md b/2-ui/1-document/03-dom-navigation/1-dom-children/task.md index 4a9e741a9..d97f2748a 100644 --- a/2-ui/1-document/03-dom-navigation/1-dom-children/task.md +++ b/2-ui/1-document/03-dom-navigation/1-dom-children/task.md @@ -4,7 +4,7 @@ importance: 5 # DOM children -For the page: +Look at this page: ```html @@ -18,7 +18,7 @@ For the page: ``` -How to access: +For each of the following, give at least one way of how to access them: - The `
        ` DOM node? - The `