-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDecision Trees Fraud.R
37 lines (21 loc) · 940 Bytes
/
Decision Trees Fraud.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
fraud_data <- read.csv("~/Downloads/Data Science/data set/Fraud_check.csv")
str(fraud_data)
head(fraud_data)
hist(fraud_data$Taxable.Income)
sum(is.na(fraud_data))
fraud_data$Taxable.Income <- ifelse(fraud_data$Taxable.Income<=30000,"Risky","Good")
fraud_data$Taxable.Income <- as.factor(fraud_data$Taxable.Income)
fraud_train <- fraud_data[1:300,]
fraud_test <- fraud_data[301:600,]
library(C50)
fraud_train_model<-C5.0(fraud_train[,-3],fraud_train$Taxable.Income)
plot(fraud_train_model)
fraud_train_pred <- predict(fraud_train_model,fraud_train)
mean(fraud_train$Taxable.Income==fraud_train_pred)
library(caret)
confusionMatrix(fraud_train_pred,fraud_train$Taxable.Income)
fraud_test_model <- predict(fraud_train_model,newdata=fraud_test)
mean(fraud_test_model==fraud_test$Taxable.Income)
confusionMatrix(fraud_test_model,fraud_test$Taxable.Income)
library(gmodels)
CrossTable(fraud_test_model,fraud_test$Taxable.Income)