-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexp_lambda.py
27 lines (24 loc) · 848 Bytes
/
exp_lambda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import os, time, random
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from main import save_txt, main, training_curve
from args import init_arguments
def exp_lambda(args_):
for i, lamb in enumerate(args_.lambdas):
args_.lamb = lamb
print(args_.lamb)
training_curve(args_, COLORS, i, legend=True)
if __name__ == '__main__':
args = init_arguments().parse_args()
args.algorithms = [args.algorithm] if args.algorithms == '' else args.algorithms
PATH = args.savePATH
COLORS = {
'deep': ('salmon', 'seagreen', 'royalblue', 'mediumorchid'),
'light': ('sandybrown', 'limegreen', '#089FFF', 'violet')
}
for A in args.algorithms:
args.algorithm = A
args.savePATH = os.path.join(PATH, A)
plt.figure()
exp_lambda(args)