|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<h3 align=\"center\" style='color:blue'>Optimize tensorflow pipeline performance with prefetch and caching</h3>" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 14, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import tensorflow as tf\n", |
| 17 | + "import time" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": 15, |
| 23 | + "metadata": { |
| 24 | + "scrolled": true |
| 25 | + }, |
| 26 | + "outputs": [ |
| 27 | + { |
| 28 | + "data": { |
| 29 | + "text/plain": [ |
| 30 | + "'2.5.0'" |
| 31 | + ] |
| 32 | + }, |
| 33 | + "execution_count": 15, |
| 34 | + "metadata": {}, |
| 35 | + "output_type": "execute_result" |
| 36 | + } |
| 37 | + ], |
| 38 | + "source": [ |
| 39 | + "tf.__version__" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "<h3 style='color:purple'>Prefetch</h3>" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": 16, |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "class FileDataset(tf.data.Dataset):\n", |
| 56 | + " def read_file_in_batches(num_samples):\n", |
| 57 | + " # Opening the file\n", |
| 58 | + " time.sleep(0.03)\n", |
| 59 | + "\n", |
| 60 | + " for sample_idx in range(num_samples):\n", |
| 61 | + " # Reading data (line, record) from the file\n", |
| 62 | + " time.sleep(0.015)\n", |
| 63 | + "\n", |
| 64 | + " yield (sample_idx,)\n", |
| 65 | + "\n", |
| 66 | + " def __new__(cls, num_samples=3):\n", |
| 67 | + " return tf.data.Dataset.from_generator(\n", |
| 68 | + " cls.read_file_in_batches,\n", |
| 69 | + " output_signature = tf.TensorSpec(shape = (1,), dtype = tf.int64),\n", |
| 70 | + " args=(num_samples,)\n", |
| 71 | + " )" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 17, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "def benchmark(dataset, num_epochs=2):\n", |
| 81 | + " for epoch_num in range(num_epochs):\n", |
| 82 | + " for sample in dataset:\n", |
| 83 | + " # Performing a training step\n", |
| 84 | + " time.sleep(0.01)" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": 18, |
| 90 | + "metadata": { |
| 91 | + "scrolled": true |
| 92 | + }, |
| 93 | + "outputs": [ |
| 94 | + { |
| 95 | + "name": "stdout", |
| 96 | + "output_type": "stream", |
| 97 | + "text": [ |
| 98 | + "304 ms ± 10.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 99 | + ] |
| 100 | + } |
| 101 | + ], |
| 102 | + "source": [ |
| 103 | + "%%timeit\n", |
| 104 | + "benchmark(FileDataset())" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 23, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [ |
| 112 | + { |
| 113 | + "name": "stdout", |
| 114 | + "output_type": "stream", |
| 115 | + "text": [ |
| 116 | + "238 ms ± 6.64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 117 | + ] |
| 118 | + } |
| 119 | + ], |
| 120 | + "source": [ |
| 121 | + "%%timeit\n", |
| 122 | + "benchmark(FileDataset().prefetch(1))" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": 19, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [ |
| 130 | + { |
| 131 | + "name": "stdout", |
| 132 | + "output_type": "stream", |
| 133 | + "text": [ |
| 134 | + "240 ms ± 7.28 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 135 | + ] |
| 136 | + } |
| 137 | + ], |
| 138 | + "source": [ |
| 139 | + "%%timeit\n", |
| 140 | + "benchmark(FileDataset().prefetch(tf.data.AUTOTUNE))" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "markdown", |
| 145 | + "metadata": {}, |
| 146 | + "source": [ |
| 147 | + "**As you can notice above, using prefetch improves the performance from 304 ms to 238 and 240 ms**" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "markdown", |
| 152 | + "metadata": {}, |
| 153 | + "source": [ |
| 154 | + "<h3 style='color:purple'>Cache</h3>" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": 30, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [ |
| 162 | + { |
| 163 | + "data": { |
| 164 | + "text/plain": [ |
| 165 | + "[0, 1, 4, 9, 16]" |
| 166 | + ] |
| 167 | + }, |
| 168 | + "execution_count": 30, |
| 169 | + "metadata": {}, |
| 170 | + "output_type": "execute_result" |
| 171 | + } |
| 172 | + ], |
| 173 | + "source": [ |
| 174 | + "dataset = tf.data.Dataset.range(5)\n", |
| 175 | + "dataset = dataset.map(lambda x: x**2)\n", |
| 176 | + "dataset = dataset.cache(\"mycache.txt\")\n", |
| 177 | + "# The first time reading through the data will generate the data using\n", |
| 178 | + "# `range` and `map`.\n", |
| 179 | + "list(dataset.as_numpy_iterator())" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 29, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "data": { |
| 189 | + "text/plain": [ |
| 190 | + "[0, 1, 4, 9, 16]" |
| 191 | + ] |
| 192 | + }, |
| 193 | + "execution_count": 29, |
| 194 | + "metadata": {}, |
| 195 | + "output_type": "execute_result" |
| 196 | + } |
| 197 | + ], |
| 198 | + "source": [ |
| 199 | + "# Subsequent iterations read from the cache.\n", |
| 200 | + "list(dataset.as_numpy_iterator())" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": 24, |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [], |
| 208 | + "source": [ |
| 209 | + "def mapped_function(s):\n", |
| 210 | + " # Do some hard pre-processing\n", |
| 211 | + " tf.py_function(lambda: time.sleep(0.03), [], ())\n", |
| 212 | + " return s" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "cell_type": "code", |
| 217 | + "execution_count": 26, |
| 218 | + "metadata": {}, |
| 219 | + "outputs": [ |
| 220 | + { |
| 221 | + "name": "stdout", |
| 222 | + "output_type": "stream", |
| 223 | + "text": [ |
| 224 | + "1.25 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" |
| 225 | + ] |
| 226 | + } |
| 227 | + ], |
| 228 | + "source": [ |
| 229 | + "%%timeit -r1 -n1\n", |
| 230 | + "benchmark(FileDataset().map(mapped_function), 5)" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": 27, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [ |
| 238 | + { |
| 239 | + "name": "stdout", |
| 240 | + "output_type": "stream", |
| 241 | + "text": [ |
| 242 | + "528 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" |
| 243 | + ] |
| 244 | + } |
| 245 | + ], |
| 246 | + "source": [ |
| 247 | + "%%timeit -r1 -n1\n", |
| 248 | + "benchmark(FileDataset().map(mapped_function).cache(), 5)" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "markdown", |
| 253 | + "metadata": {}, |
| 254 | + "source": [ |
| 255 | + "**Further reading** https://www.tensorflow.org/guide/data_performance#caching" |
| 256 | + ] |
| 257 | + } |
| 258 | + ], |
| 259 | + "metadata": { |
| 260 | + "kernelspec": { |
| 261 | + "display_name": "Python 3", |
| 262 | + "language": "python", |
| 263 | + "name": "python3" |
| 264 | + }, |
| 265 | + "language_info": { |
| 266 | + "codemirror_mode": { |
| 267 | + "name": "ipython", |
| 268 | + "version": 3 |
| 269 | + }, |
| 270 | + "file_extension": ".py", |
| 271 | + "mimetype": "text/x-python", |
| 272 | + "name": "python", |
| 273 | + "nbconvert_exporter": "python", |
| 274 | + "pygments_lexer": "ipython3", |
| 275 | + "version": "3.8.5" |
| 276 | + } |
| 277 | + }, |
| 278 | + "nbformat": 4, |
| 279 | + "nbformat_minor": 4 |
| 280 | +} |
0 commit comments