|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<h3 style='color:blue'>Exercise: GPU performance for fashion mnist dataset</h3>" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "This notebook is derived from a tensorflow tutorial here: https://www.tensorflow.org/tutorials/keras/classification\n", |
| 15 | + "So please refer to it before starting work on this exercise" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "markdown", |
| 20 | + "metadata": {}, |
| 21 | + "source": [ |
| 22 | + "You need to write code wherever you see `your code goes here` comment. You are going to do image classification for fashion mnist dataset and then you will benchmark the performance of GPU vs CPU for 1 hidden layer and then for 5 hidden layers. You will eventually fill out this table with your performance benchmark numbers\n", |
| 23 | + "\n", |
| 24 | + "\n", |
| 25 | + "| Hidden Layer | CPU | GPU |\n", |
| 26 | + "|:------|:------|:------|\n", |
| 27 | + "| 1 | ? | ? |\n", |
| 28 | + "| 5 | ? | ? |" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "# TensorFlow and tf.keras\n", |
| 38 | + "import tensorflow as tf\n", |
| 39 | + "from tensorflow import keras\n", |
| 40 | + "\n", |
| 41 | + "# Helper libraries\n", |
| 42 | + "import numpy as np\n", |
| 43 | + "import matplotlib.pyplot as plt\n", |
| 44 | + "\n", |
| 45 | + "print(tf.__version__)" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "fashion_mnist = keras.datasets.fashion_mnist\n", |
| 55 | + "\n", |
| 56 | + "(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n", |
| 66 | + " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": null, |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "train_images.shape" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": null, |
| 81 | + "metadata": { |
| 82 | + "scrolled": true |
| 83 | + }, |
| 84 | + "outputs": [], |
| 85 | + "source": [ |
| 86 | + "plt.imshow(train_images[0])" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": null, |
| 92 | + "metadata": {}, |
| 93 | + "outputs": [], |
| 94 | + "source": [ |
| 95 | + "train_labels[0]" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "class_names[train_labels[0]]" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "metadata": { |
| 111 | + "scrolled": false |
| 112 | + }, |
| 113 | + "outputs": [], |
| 114 | + "source": [ |
| 115 | + "plt.figure(figsize=(3,3))\n", |
| 116 | + "for i in range(5):\n", |
| 117 | + " plt.imshow(train_images[i])\n", |
| 118 | + " plt.xlabel(class_names[train_labels[i]])\n", |
| 119 | + " plt.show()" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "train_images_scaled = train_images / 255.0\n", |
| 129 | + "test_images_scaled = test_images / 255.0" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "code", |
| 134 | + "execution_count": null, |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "def get_model(hidden_layers=1):\n", |
| 139 | + " layers = []\n", |
| 140 | + " # Your code goes here-----------START\n", |
| 141 | + " # Create Flatten input layers\n", |
| 142 | + " # Create hidden layers that are equal to hidden_layers argument in this function\n", |
| 143 | + " # Create output \n", |
| 144 | + " # Your code goes here-----------END\n", |
| 145 | + " model = keras.Sequential(layers)\n", |
| 146 | + " \n", |
| 147 | + " model.compile(optimizer='adam',\n", |
| 148 | + " loss='sparse_categorical_crossentropy',\n", |
| 149 | + " metrics=['accuracy'])\n", |
| 150 | + " \n", |
| 151 | + " return model" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": null, |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [], |
| 159 | + "source": [ |
| 160 | + "model = get_model(1)\n", |
| 161 | + "model.fit(train_images_scaled, train_labels, epochs=5)" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "model.predict(test_images_scaled)[2]" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": null, |
| 176 | + "metadata": {}, |
| 177 | + "outputs": [], |
| 178 | + "source": [ |
| 179 | + "test_labels[2]" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": null, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [], |
| 187 | + "source": [ |
| 188 | + "tf.config.experimental.list_physical_devices() " |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "markdown", |
| 193 | + "metadata": {}, |
| 194 | + "source": [ |
| 195 | + "<h4 style=\"color:purple\">5 Epochs performance comparison for 1 hidden layer</h4>" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": null, |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "%%timeit -n1 -r1\n", |
| 205 | + "with tf.device('/CPU:0'):\n", |
| 206 | + " # your code goes here" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": null, |
| 212 | + "metadata": { |
| 213 | + "scrolled": false |
| 214 | + }, |
| 215 | + "outputs": [], |
| 216 | + "source": [ |
| 217 | + "%%timeit -n1 -r1\n", |
| 218 | + "with tf.device('/GPU:0'):\n", |
| 219 | + " # your code goes here" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "markdown", |
| 224 | + "metadata": {}, |
| 225 | + "source": [ |
| 226 | + "<h4 style=\"color:purple\">5 Epocs performance comparison with 5 hidden layers</h4>" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": null, |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [], |
| 234 | + "source": [ |
| 235 | + "%%timeit -n1 -r1\n", |
| 236 | + "with tf.device('/CPU:0'):\n", |
| 237 | + " # your code here" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": null, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "%%timeit -n1 -r1\n", |
| 247 | + "with tf.device('/GPU:0'):\n", |
| 248 | + " # your code here" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "markdown", |
| 253 | + "metadata": {}, |
| 254 | + "source": [ |
| 255 | + "[Click me to check solution for this exercise](https://github.com/codebasics/py/blob/master/DeepLearningML/10_gpu_benchmarking/Exercise/exercise_solution.ipynb)" |
| 256 | + ] |
| 257 | + } |
| 258 | + ], |
| 259 | + "metadata": { |
| 260 | + "kernelspec": { |
| 261 | + "display_name": "Python 3", |
| 262 | + "language": "python", |
| 263 | + "name": "python3" |
| 264 | + }, |
| 265 | + "language_info": { |
| 266 | + "codemirror_mode": { |
| 267 | + "name": "ipython", |
| 268 | + "version": 3 |
| 269 | + }, |
| 270 | + "file_extension": ".py", |
| 271 | + "mimetype": "text/x-python", |
| 272 | + "name": "python", |
| 273 | + "nbconvert_exporter": "python", |
| 274 | + "pygments_lexer": "ipython3", |
| 275 | + "version": "3.8.5" |
| 276 | + } |
| 277 | + }, |
| 278 | + "nbformat": 4, |
| 279 | + "nbformat_minor": 4 |
| 280 | +} |
0 commit comments