-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfp_denoise.nim
488 lines (415 loc) · 17.3 KB
/
fp_denoise.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#[
Author: Dr. John Lindsay
Created: January 18, 2018
Last Modified: January 19, 2018
License: MIT
]#
import system, strutils, endians, os, math, ospaths, times
import raster, array_2d
type Normal = object
a, b, c: float64
proc angleBetween(self, other: Normal): float64 {.inline.} =
# Note that this is actually not the angle between the vectors but
# rather the cosine of the angle between the vectors. This improves
# the performance considerably. Also note that we do not need to worry
# about checking for division by zero here because 'c' will always be
# non-zero and therefore the vector magnitude cannot be zero.
let denom = ((self.a * self.a + self.b * self.b + self.c * self.c) *
(other.a * other.a + other.b * other.b + other.c * other.c)).sqrt()
result = (self.a * other.a + self.b * other.b + self.c * other.c) / denom
when isMainModule:
var
workingDir = ""
inputFile = ""
outputFile = ""
shadedReliefFile = ""
createShadedRelief = false
threshold = 15'f64
filterSize = 11
iterations = 5
simpleMeanFilter = false
######################
# Read the arguments #
######################
let arguments = commandLineParams()
if arguments.len > 0:
var arg: string
for i in 0..<arguments.len:
arg = arguments[i].strip.replace("--", "-")
if not arg.isNilOrWhitespace:
if arg.toLowerAscii == "-wd":
workingDir = arguments[i+1]
elif arg.toLowerAscii.startsWith "-wd=":
workingDir = arg.split("=")[1]
elif arg.toLowerAscii == "-i" or arg.toLowerAscii == "-input":
inputFile = arguments[i+1]
elif arg.toLowerAscii.startsWith("-i=") or arg.toLowerAscii.startsWith("-input="):
inputFile = arg.split("=")[1]
elif arg.toLowerAscii == "-o" or arg.toLowerAscii == "-output":
outputFile = arguments[i+1]
elif arg.toLowerAscii.startsWith("-o=") or arg.toLowerAscii.startsWith("-output="):
outputFile = arg.split("=")[1]
elif arg.toLowerAscii == "-threshold":
threshold = parseFloat(arguments[i+1].strip)
elif arg.toLowerAscii.startsWith "-threshold=":
threshold = parseFloat(arg.split("=")[1].strip)
elif arg.toLowerAscii == "-filter":
filterSize = parseInt(arguments[i+1].strip)
elif arg.toLowerAscii.startsWith "-filter=":
filterSize = parseInt(arg.split("=")[1].strip)
elif arg.toLowerAscii == "-iterations":
iterations = parseInt(arguments[i+1].strip)
elif arg.toLowerAscii.startsWith "-iterations=":
iterations = parseInt(arg.split("=")[1].strip)
elif arg.toLowerAscii == "-shaded_relief" or arg.toLowerAscii == "-sr":
shadedReliefFile = arguments[i+1].strip
createShadedRelief = true
elif arg.toLowerAscii.startsWith("-shaded_relief=") or arg.toLowerAscii.startsWith("-sr="):
shadedReliefFile = arg.split("=")[1].strip
createShadedRelief = true
elif arg.toLowerAscii == "-m":
simpleMeanFilter = true
elif arg.toLowerAscii.contains("-h"):
echo """
fp_denoise:
This tool performs feature-preserving de-noising on a raster digital elevation model (DEM).
Usage:
--wd Working directory; appended to input/output file names
-i, --input Input DEM file name
-o, --output Output DEM file name
--threshold Threshold value in degrees (1.0 - 85.0)
--filter Filter size for normal smoothing (odd value >3)
--iterations Number of iterations used for elevation updating
--shaded_relief, --sr Optional output hillshade image file name
-m If this flag is present, a simple mean filter is used
-h Help
"""
quit(QuitSuccess)
else:
# No arguments have been supplied, so ask the user for input.
# That is, proceed as an interactive command line program.
stdout.write("Working directory: ")
workingDir = readLine(stdin)
stdout.write("Input DEM file (with extension): ")
inputFile = readLine(stdin)
stdout.write("Output DEM file (with extension): ")
outputFile = readLine(stdin)
# stdout.write("Input hillslope file (with extension): ")
# hillslopeFile = readLine(stdin)
stdout.write("Output shaded relief file (with extension): ")
shadedReliefFile = readLine(stdin)
stdout.write("Angular Threshold (1.0 - 85.0): ")
threshold = parseFloat(readLine(stdin))
stdout.write("Filter Size: ")
filterSize = parseInt(readLine(stdin))
stdout.write("Num. Iterations (1 - 50): ")
iterations = parseInt(readLine(stdin))
let t0 = cpuTime()
# Make sure that the input and output file names are fully qualified
# and perform quality assurance on the input variables.
if not workingDir.endsWith(DirSep):
workingDir.add(DirSep)
if not inputFile.contains(DirSep):
inputFile = workingDir & inputFile
if not (inputFile.endsWith(".dep") or inputFile.endsWith(".asc")):
inputFile.add(".dep")
if not outputFile.contains(DirSep):
outputFile = workingDir & outputFile
if not (outputFile.endsWith(".dep") or outputFile.endsWith(".asc")):
outputFile.add(".dep")
if not shadedReliefFile.contains(DirSep):
shadedReliefFile = workingDir & shadedReliefFile
if not (shadedReliefFile.endsWith(".dep") or shadedReliefFile.endsWith(".asc")):
shadedReliefFile.add(".dep")
if filterSize mod 2 == 0:
filterSize += 1
echo "Warning: Filter size ($1) has been modified because it must be odd.".format(filterSize)
if threshold < 1'f64:
threshold = 1'f64
if threshold > 85'f64:
threshold = 85'f64
# Convert the threshold to radians and get the cosine
threshold = threshold.degToRad.cos
if iterations < 1:
iterations = 1
echo "Warning: Iterations must be between 1 and 50."
if iterations > 50:
iterations = 50
echo "Warning: Iterations must be between 1 and 50."
# Read the input files
echo("Reading input data...")
let dem = newRasterFromFile(inputFile)
var output = createRasterFromOther(outputFile, dem, copyData=true)
let t1 = cpuTime()
##########################
# Declare some variables #
##########################
let
# dx and dy are used as offsets for 3x3 neighbourhood scans
dx = [1, 1, 1, 0, -1, -1, -1, 0]
dy = [-1, 0, 1, 1, 1, 0, -1, -1]
eightGridRes = dem.resolutionX * 8'f64
# x and y are used in the estimates of elevation during the update process
x = [-dem.resolutionX, -dem.resolutionX, -dem.resolutionX, 0'f64, dem.resolutionX, dem.resolutionX, dem.resolutionX, 0'f64]
y = [-dem.resolutionY, 0'f64, dem.resolutionY, dem.resolutionY, dem.resolutionY, 0'f64, -dem.resolutionY, -dem.resolutionY]
# midPoint is used to create the smoothing convolution kernel
midPoint = int(float(filterSize) / 2.0)
# intercellBreakSlope = degToRad(60'f64)
# maxZDiffEW = intercellBreakSlope.tan() * dem.resolutionX
# maxZDiffNS = intercellBreakSlope.tan() * dem.resolutionY
# maxZDiffDiag = intercellBreakSlope.tan() * (dem.resolutionX*dem.resolutionX + dem.resolutionY*dem.resolutionY).sqrt()
# maxZDiff = [ maxZDiffNS, maxZDiffDiag, maxZDiffEW, maxZDiffDiag, maxZDiffNS, maxZDiffDiag, maxZDiffEW, maxZDiffDiag, maxZDiffNS ]
var
values: array[0..7, float64]
z: float64
xn: int
yn: int
zn: float64
a, b, c: float64
progress: int
oldProgress: int = 1
dx2 = newSeq[int]()
dy2 = newSeq[int]()
numNeighbours = filterSize * filterSize
sumW: float64
w: float64
diff: float64
zeroVector = Normal(a: 0'f64, b: 0'f64, c: 0'f64)
nv: Array2D[Normal] = newArray2D(dem.rows, dem.columns, zeroVector, zeroVector) # normal vectors
nvSmooth: Array2D[Normal] = newArray2D(dem.rows, dem.columns, zeroVector, zeroVector)
# Note that this is used to figure out the column (dx2) and
# row (dy2) offsets for the filter that is used for smoothing,
# relative to the convolution filter's mid-point cell.
for r in 0..<filterSize:
for c in 0..<filterSize:
dx2.add(c - mid_point)
dy2.add(r - mid_point)
# Note that there is a lot of duplicated code blocks below which
# have resulted because of the option to use the simple mean weighting
# scheme or the original Sun method. There are ways of reducing this code
# duplication, e.g. by using a closure to provide a hillslope value (see
# below), but this duplication approach is used because it produces maximal
# efficiency.
################################
# Calculate the normal vectors #
################################
echo "Calculating normal vectors..."
for row in 0..<dem.rows:
for col in 0..<dem.columns:
z = dem[row, col]
if z != dem.nodata:
for n in 0..7:
zn = dem[row + dy[n], col + dx[n]]
if zn != dem.nodata:
# if (zn - z).abs() > maxZDiff[n]:
# # This indicates a very steep inter-cell slope.
# # Don't use this neighbouring cell value to
# # calculate the vector.
# zn = z
values[n] = zn
else:
values[n] = z
a = -(values[2] - values[4] + 2'f64 * (values[1] - values[5]) + values[0] - values[6])
b = -(values[6] - values[4] + 2'f64 * (values[7] - values[3]) + values[0] - values[2])
nv[row, col] = Normal(a: a, b: b, c: eightGridRes)
progress = int(100'f32 * float32(row)/float32(dem.rows - 1))
if progress != oldProgress:
stdout.write("\rProgress: $1%".format(progress))
stdout.flushFile()
oldProgress = progress
if not simpleMeanFilter:
# The following version of normal vector smoothing and elevation updates
# uses Sun's original weighting scheme of (ni . nj - threshold)^2
##################################
# smooth the normal vector field #
##################################
echo ""
echo "Smoothing the normal vectors..."
for row in 0..<dem.rows:
for col in 0..<dem.columns:
z = dem[row, col]
if z != dem.nodata:
sumW = 0'f64
a = 0'f64
b = 0'f64
c = 0'f64
for n in 0..<numNeighbours:
xn = col + dx2[n]
yn = row + dy2[n]
if dem[yn, xn] != dem.nodata:
diff = nv[row, col].angleBetween(nv[yn, xn])
if diff > threshold:
w = (diff - threshold)*(diff - threshold)
sumW += w
a += nv[yn, xn].a * w
b += nv[yn, xn].b * w
c += nv[yn, xn].c * w
a /= sumW
b /= sumW
c /= sumW
nvSmooth[row, col] = Normal(a: a, b: b, c: c)
progress = int(100'f32 * float32(row)/float32(dem.rows - 1))
if progress != oldProgress:
stdout.write("\rProgress: $1%".format(progress))
stdout.flushFile()
oldProgress = progress
echo ""
#########################################################################
# Update the elevations of the DEM based on the smoothed normal vectors #
#########################################################################
echo "Updating elevations..."
for i in 1..iterations:
echo "Iteration $1 of $2...".format(i, iterations)
for row in 0..<dem.rows:
for col in 0..<dem.columns:
z = output[row, col]
if z != output.nodata:
sumW = 0'f64
z = 0'f64
for n in 0..7:
xn = col + dx[n]
yn = row + dy[n]
zn = output[yn, xn]
if zn != output.nodata:
diff = nvSmooth[row, col].angleBetween(nvSmooth[yn, xn])
if diff > threshold:
w = (diff - threshold)*(diff - threshold)
sumW += w
z += -(nvSmooth[yn, xn].a * x[n] + nvSmooth[yn, xn].b * y[n] - nvSmooth[yn, xn].c * zn) / nvSmooth[yn, xn].c * w
if sumW > 0'f64: # this is a division-by-zero safeguard and must be in place.
output[row, col] = z / sumW
else:
# The following version of normal vector smoothing and elevation updates
# uses a simple mean filter for all neighbours with differences in normal
# vectors less than the threshold. This is more efficient than the Sun
# normal smoothing scheme and provides a smoother surface.
##################################
# smooth the normal vector field #
##################################
echo ""
echo "Smoothing the normal vectors..."
for row in 0..<dem.rows:
for col in 0..<dem.columns:
z = dem[row, col]
if z != dem.nodata:
sumW = 0'f64
a = 0'f64
b = 0'f64
c = 0'f64
for n in 0..<numNeighbours:
xn = col + dx2[n]
yn = row + dy2[n]
if dem[yn, xn] != dem.nodata:
diff = nv[row, col].angleBetween(nv[yn, xn])
if diff > threshold:
sumW += 1'f64
a += nv[yn, xn].a
b += nv[yn, xn].b
c += nv[yn, xn].c
a /= sumW
b /= sumW
c /= sumW
nvSmooth[row, col] = Normal(a: a, b: b, c: c)
progress = int(100'f32 * float32(row)/float32(dem.rows - 1))
if progress != oldProgress:
stdout.write("\rProgress: $1%".format(progress))
stdout.flushFile()
oldProgress = progress
echo ""
#########################################################################
# Update the elevations of the DEM based on the smoothed normal vectors #
#########################################################################
echo "Updating elevations..."
for i in 1..iterations:
echo "Iteration $1 of $2...".format(i, iterations)
for row in 0..<dem.rows:
for col in 0..<dem.columns:
z = output[row, col]
if z != output.nodata:
sumW = 0'f64
z = 0'f64
for n in 0..7:
xn = col + dx[n]
yn = row + dy[n]
zn = output[yn, xn]
if zn != output.nodata:
diff = nvSmooth[row, col].angleBetween(nvSmooth[yn, xn])
if diff > threshold:
sumW += 1'f64
z += -(nvSmooth[yn, xn].a * x[n] + nvSmooth[yn, xn].b * y[n] - nvSmooth[yn, xn].c * zn) / nvSmooth[yn, xn].c
if sumW > 0'f64: # this is a division-by-zero safeguard and must be in place.
output[row, col] = z / sumW
let t2 = cpuTime()
####################
# Save the new DEM #
####################
echo("Saving data...")
output.metadata.add("Created by the fp_denoise tool")
output.metadata.add("Filter Size: $1".format(filterSize))
output.metadata.add("Threshold: $1".format(threshold))
output.metadata.add("Iterations: $1".format(iterations))
output.write()
let t3 = cpuTime()
echo "Elapsed times (without i/o): ", (t2 - t1).formatFloat(ffDecimal, 2), "s"
echo "Elapsed times (with i/o): ", (t3 - t0).formatFloat(ffDecimal, 2), "s"
if createShadedRelief:
################################################
# Output the a hillshade (shaded relief) image #
################################################
var
hillshadeRaster = createRasterFromOther(shadedReliefFile, dem)
aspect, tanSlope, hillshade: float64
fx, fy: float64
term1: float64
term2: float64
term3: float64
let
azimuth = (315'f64 - 90'f64).degToRad()
altitude = 30'f64.degToRad()
sinTheta = altitude.sin()
cosTheta = altitude.cos()
echo "Creating a hillshade image..."
for row in 0..<dem.rows:
for col in 0..<dem.columns:
z = output[row, col]
if z != dem.nodata:
for n in 0..7:
xn = col + dx[n]
yn = row + dy[n]
zn = output[yn, xn]
if zn != dem.nodata:
values[n] = zn
else:
values[n] = z
a = -(values[2] - values[4] + 2'f64 * (values[1] - values[5]) + values[0] - values[6])
b = -(values[6] - values[4] + 2'f64 * (values[7] - values[3]) + values[0] - values[2])
fx = -a / eightGridRes
fy = -b / eightGridRes
# fx = -nvSmooth[row, col].a / nvSmooth[row, col].c
# fy = -nvSmooth[row, col].b / nvSmooth[row, col].c
if fx != 0'f64:
tanSlope = (fx * fx + fy * fy).sqrt()
aspect = (180'f64 - ((fy / fx).arctan()).radToDeg() + 90'f64 * (fx / (fx).abs())).degToRad()
term1 = tanSlope / (1'f64 + tanSlope * tanSlope).sqrt()
term2 = sinTheta / tanSlope
term3 = cosTheta * (azimuth - aspect).sin()
hillshade = term1 * (term2 - term3)
else:
hillshade = 0.5'f64
if hillshade < 0'f64:
hillshade = 0'f64
hillshadeRaster[row, col] = hillshade * 255'f64
progress = int(100'f32 * float32(row)/float32(dem.rows - 1))
if progress != oldProgress:
stdout.write("\rProgress: $1%".format(progress))
stdout.flushFile()
oldProgress = progress
hillshadeRaster.palette = "grey.pal"
hillshadeRaster.metadata.add("Created by the fp_denoise tool")
hillshadeRaster.metadata.add("Filter Size: $1".format(filterSize))
hillshadeRaster.metadata.add("Threshold: $1".format(threshold))
hillshadeRaster.metadata.add("Iterations: $1".format(iterations))
hillshadeRaster.write()
echo ""
# All done!
echo "Done"