-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
340 lines (295 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import os
from typing import Union
import hydra
import yaml
from hydra.utils import get_original_cwd, to_absolute_path
from omegaconf import DictConfig, OmegaConf
import time
import datetime
import logging
import torch
from torch import Tensor, nn
import MinkowskiEngine as ME
import lightning as L
from lightning.fabric import Fabric
from lightning.fabric.strategies import DDPStrategy
from lightning.fabric.loggers import TensorBoardLogger, CSVLogger
from torchmetrics.aggregation import RunningMean
from transformers import get_cosine_schedule_with_warmup
from emsim.networks import (
EMModel,
EMCriterion,
)
from emsim.geant.dataset import (
make_test_train_datasets,
electron_collate_fn,
worker_init_fn,
)
from emsim.geant.io import convert_electron_pixel_file_to_hdf5
from emsim.preprocessing import NSigmaSparsifyTransform
_logger = logging.getLogger(__name__)
torch._dynamo.config.capture_scalar_outputs = True
torch.set_float32_matmul_precision("high")
@hydra.main(version_base=None, config_path="./configs", config_name="config")
def main(cfg: DictConfig):
_logger.setLevel(cfg.log_level)
_logger.info("Starting...")
output_dir = hydra.core.hydra_config.HydraConfig.get().runtime.output_dir
if cfg.log_tensorboard:
tb_logger = TensorBoardLogger(
output_dir,
name=(
cfg.tensorboard_name
if cfg.tensorboard_name is not None
else "lightning_logs"
),
)
tb_logger.log_hyperparams(OmegaConf.to_container(cfg, resolve=True))
fabric = Fabric(
strategy=DDPStrategy(find_unused_parameters=cfg.ddp.find_unused_parameters),
# strategy="ddp_find_unused_parameters_true",
accelerator="gpu",
num_nodes=cfg.ddp.nodes,
devices=cfg.ddp.devices,
loggers=(
[
tb_logger,
# CSVLogger(output_dir + "/csv_logs"),
]
if cfg.log_tensorboard
else None
),
)
if fabric.is_global_zero:
_logger.info("Setting up...")
_logger.info(print(yaml.dump(OmegaConf.to_container(cfg, resolve=True))))
fabric.seed_everything(cfg.seed + fabric.global_rank)
fabric.launch()
model = EMModel.from_config(cfg)
if cfg.unet.convert_sync_batch_norm and fabric.world_size > 1:
model = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(model)
if cfg.compile:
if fabric.is_global_zero:
_logger.info("torch.compile-ing model...")
model = torch.compile(model, dynamic=True)
electron_hdf_file = os.path.join(
cfg.dataset.directory, os.path.splitext(cfg.dataset.pixels_file)[0] + ".hdf5"
)
if not os.path.exists(electron_hdf_file):
if fabric.is_global_zero:
pixels_file = os.path.join(cfg.dataset.directory, cfg.dataset.pixels_file)
_logger.info(f"Converting {pixels_file} to {electron_hdf_file}...")
convert_electron_pixel_file_to_hdf5(pixels_file, electron_hdf_file)
_logger.info("Done converting.")
fabric.barrier()
train_dataset, eval_dataset = make_test_train_datasets(
electron_hdf_file=electron_hdf_file,
events_per_image_range=cfg.dataset.events_per_image_range,
pixel_patch_size=cfg.dataset.pixel_patch_size,
hybrid_sparse_tensors=False,
train_percentage=cfg.dataset.train_percentage,
noise_std=cfg.dataset.noise_std,
transform=NSigmaSparsifyTransform(
cfg.dataset.n_sigma_sparsify,
cfg.dataset.pixel_patch_size,
max_pixels_to_keep=cfg.dataset.max_pixels_to_keep,
),
shared_shuffle_seed=cfg.seed,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
cfg.batch_size,
collate_fn=electron_collate_fn,
pin_memory=True,
num_workers=cfg.dataset.num_workers,
worker_init_fn=worker_init_fn,
)
eval_dataloader = torch.utils.data.DataLoader(
eval_dataset,
cfg.batch_size,
collate_fn=electron_collate_fn,
pin_memory=True,
num_workers=cfg.dataset.num_workers,
worker_init_fn=worker_init_fn,
)
optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.lr)
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer,
int(cfg.num_steps * cfg.warmup_percentage),
cfg.num_steps,
)
## prepare fabric
model, optimizer = fabric.setup(model, optimizer)
train_dataloader, eval_dataloader = fabric.setup_dataloaders(
train_dataloader, eval_dataloader
)
if cfg.resume_file is not None:
start_iter = load(cfg.resume_file, model, optimizer, fabric)
else:
start_iter = 0
train(
cfg,
fabric,
model,
optimizer,
lr_scheduler,
train_dataloader,
eval_dataloader,
os.path.join(output_dir, "checkpoints"),
start_iter,
)
def train(
cfg: DictConfig,
fabric: Fabric,
model,
optimizer,
lr_scheduler,
train_dataloader,
eval_dataloader,
save_dir,
start_iter: int = 0,
):
## main training loop
iter_timer = RunningMean(cfg.print_interval).to(fabric.device)
model.train()
iter_loader = iter(train_dataloader)
if fabric.is_global_zero:
_logger.info("Begin training.")
epoch = 0
criterion: EMCriterion = model.criterion
training_start_time = time.time()
for i in range(start_iter, cfg.num_steps):
t0 = time.time()
try:
batch = next(iter_loader)
except StopIteration:
eval(epoch, i, t0, model, eval_dataloader, fabric)
model.train()
epoch += 1
iter_loader = iter(train_dataloader)
batch = next(iter_loader)
loss_dict, model_output = model(batch)
total_loss = loss_dict["loss"]
fabric.backward(total_loss)
fabric.clip_gradients(model, optimizer, cfg.max_grad_norm)
# if cfg.ddp.find_unused_parameters:
# __debug_find_unused_parameters(model)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
with torch.no_grad():
log_dict = fabric.all_reduce(loss_dict, reduce_op="mean")
log_dict["lr"] = lr_scheduler.get_last_lr()[0]
if i > 0 and i % cfg.print_interval == 0:
criterion.update_detection_metrics(criterion.train_metrics["detection"], model_output, batch)
metric_log_dict = criterion.get_train_logs()
log_str = criterion.make_log_str(metric_log_dict)
elapsed_time = time.time() - training_start_time
elapsed_time_str = _elapsed_time_str(elapsed_time)
iter_time = iter_timer.compute()
log_str = f"Iter {i} (Epoch {epoch}) -- ({elapsed_time_str}) -- " + log_str
log_str = log_str + f" iter_time: {iter_time}\n"
if fabric.is_global_zero:
_logger.info(log_str)
metric_log_dict["iter_time"] = iter_time
log_dict.update(metric_log_dict)
log_dict = criterion.format_log_keys(log_dict)
fabric.log_dict(log_dict, step=i)
if i > 0 and i % cfg.eval_steps == 0:
save(save_dir, f"step_{i}", model, optimizer, fabric, i)
eval(epoch, i, t0, model, eval_dataloader, fabric)
model.train()
iter_timer.update(time.time() - t0)
# MinkowskiEngine says to clear the cache periodically
if i > 0 and i % cfg.clear_cache_interval == 0:
torch.cuda.empty_cache()
save(save_dir, "final", model, optimizer, fabric, i)
if fabric.is_global_zero:
elapsed_time_str = _elapsed_time_str(time.time() - training_start_time)
_logger.info(f"Training complete in {elapsed_time_str}.")
@torch.no_grad()
def eval(
epoch: int,
step: int,
start_time: float,
model: nn.Module,
eval_loader: torch.utils.data.DataLoader,
fabric: Fabric,
):
start_eval = time.time()
model.eval()
criterion: EMCriterion = model.criterion
for batch in eval_loader:
output = model(batch)
criterion.eval_batch(output, batch)
metric_log_dict = criterion.get_eval_logs()
metric_log_dict = criterion.format_log_keys(metric_log_dict)
log_str = criterion.make_log_str(metric_log_dict)
elapsed_time = time.time() - start_time
elapsed_time_str = _elapsed_time_str(elapsed_time)
eval_time_str = _elapsed_time_str(time.time() - start_eval)
log_str = (
f"Evaluation: Iter {step} (Epoch {epoch}) -- ({elapsed_time_str}) -- " + log_str
)
log_str = log_str + f"Eval time: {eval_time_str}"
if fabric.is_global_zero:
_logger.info(log_str)
fabric.log_dict(metric_log_dict, step)
def save(
save_dir: str, save_name: str, model, optimizer, fabric: Fabric, iteration: int
):
state = {"model": model, "optimizer": optimizer, "iteration": iteration}
save_file = os.path.join(save_dir, save_name + ".ckpt")
fabric.save(save_file, state)
if fabric.is_global_zero:
_logger.info(f"Saved to {save_file}\n")
def load(checkpoint_file: str, model, optimizer, fabric: Fabric):
state = {"model": model, "optimizer": optimizer}
remainder = fabric.load(checkpoint_file, state)
iteration = remainder["iteration"]
return iteration
def _elapsed_time_str(elapsed_time):
return str(datetime.timedelta(seconds=int(elapsed_time)))
class CudaUsageMonitor(nn.Module):
MB = 1024**2
def __init__(self, sample_window: int):
self.utilization = RunningMean(sample_window)
self.memory = RunningMean(sample_window)
self.max_memory = RunningMean(sample_window)
def update(self):
self.utilization.update(torch.cuda.utilization(device=self.utilization.device))
self.memory.update(torch.cuda.memory_allocated(device=self.memory.device))
self.max_memory.update(
torch.cuda.max_memory_allocated(device=self.max_memory.device)
)
def compute(self):
utilization = self.utilization.compute()
memory = self.memory.compute() // self.MB
max_memory = self.max_memory.compute() // self.max_memory
return utilization, memory, max_memory
def __debug_find_unused_parameters(model):
unused_parameters = []
for name, param in model.named_parameters():
if param.grad is None:
unused_parameters.append(name)
if len(unused_parameters) > 0:
_logger.debug(f"Unused parameters: {unused_parameters}")
# Doesn't work because can't get each worker's dataset's state
# def verify_data_integrity(dataloader: torch.utils.data.DataLoader, fabric: Fabric):
# if fabric.world_size <= 1:
# return
# dataset: GeantElectronDataset = dataloader.dataset
# electron_order = torch.tensor(dataset._shuffled_elec_indices, device=fabric.device)
# rank0_electron_order = fabric.broadcast(electron_order, 0)
# assert torch.equal(electron_order, rank0_electron_order)
# thisrank_indices = torch.cat([
# torch.tensor(chunk, device=fabric.device)
# for chunk in dataset._chunks_this_loader
# ])
# rank0_indices = fabric.broadcast(thisrank_indices, 0)
# if not fabric.is_global_zero:
# combined = torch.cat(rank0_indices, thisrank_indices)
# assert torch.unique(combined).shape[0] == combined.shape[0]
# fabric.barrier()
if __name__ == "__main__":
main()