-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
413 lines (267 loc) · 12 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<title>Regional Disparities, Aggregation Effects and the Role of Space</title>
<meta charset="utf-8" />
<meta name="author" content="Felipe Santos M1 research student Graduate School of International Development Nagoya University, JAPAN Prof. Carlos Mendez Graduate School of International Development Nagoya University, JAPAN" />
<link href="libs/remark-css/default.css" rel="stylesheet" />
<link href="libs/remark-css/metropolis-fonts.css" rel="stylesheet" />
<link rel="stylesheet" href="svm-xaringan-style.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
# Regional Disparities, Aggregation Effects and the Role of Space
## Evidence from Homicide Rates in Colombia 2010-2018
### Felipe Santos <br />M1 research student<br />Graduate School of International Development<br />Nagoya University, JAPAN <br /> <br /> Prof. Carlos Mendez <br /> Graduate School of International Development<br />Nagoya University, JAPAN <br />
### July 24th 2019
---
## Motivation:
- Beyond GDP, social variables and their convergence are relevant for development studies (Royuela et al 2015)
- Persistent income differences, differences in health indicators and in "general" regional inequality in Colombia.
- Scarce academic literature on inequality (convergence approach) at the municipality level.
## Research Objective:
- Study convergence/divergence of homicide rates across municipalities and departments in Colombia 2010-2018
- Analyze spatial autocorrelation and its robustness at different disaggregate levels
## Methods:
- Classical convergence framework (Barro and Sala-i-Martin 1992)
- Distributional convergence framework (Quah 1996; Hyndman et. al 1996)
- Spatial autocorrelation (Moran's I)
---
class: middle
# Main Results:
1. **Sigma Convergence** for homicide rates at the state level, **Beta Convergence** at the municipality level
2. Regional disaggretation matters: **Local convergence clusters**
3. **Clustering dynamics**
- State level: 4+? convergence clusters
- Municipality level: 2+? convergence clusters
4. **Spatial Autocorrelation** robust only at the municipality level
---
class: middle
# Outline of this presentation
1. **Data description** Survival rates (not homicide rates)
2. **Global convergence:** Using classical summary measures
- Beta convergence
- Sigma convergence
3. **Regional disaggregation:**
- Distribution dynamics framework
- Distributional convergence
4. **Local convergence clusters**
5. **Global spatial autocorrelation:**
- Disaggreagation effects
5. **Concluding Remarks**
---
class: middle
# Data:
- Total number of homicides in Colombia per year from 2010 until 2018 (data taken from the National police).
- Data is agreggated at the municipality and departament level.
- Population census and estimates for states and municipalitites.
- Raw rates computed `$$Hrate= homicides/population$$`
- Survival rates (non- murder rates) computed
`$$NMR= 10000- raw\ rate * 10000$$`
- **Survival rates** are chosen because positively defined variables are a **standard** in the convergence literature.
---
class: center, middle
# (2) **Global convergence:**
**Using classical summary measures**
Beta convergence
Sigma convergence
---
class: middle,center
## States- Sigma and Beta convergence
`$$\sigma (Standard \ \space deviation)\space\sigma_{2010}= 1.84\space\space\space\space\space \sigma_{2018}=1.26$$`
`$$log{\frac{Y_t}{Y_0}}=\alpha +\beta *logY_0+ \epsilon \space\space\space\space\space\beta=-0.476^{***} \space\space\space\space halflife=8.59\space years$$`
![](figs/beta1.png)
---
class: middle, center
## Municipalities - Beta convergence (only)
`$$log{\frac{Y_t}{Y_0}}=\alpha +\beta *logY_0+ \epsilon \space\space\space\space\space\beta=-0.551^{***} \space\space\space\space halflife=6.92\space years$$`
![](figs/beta2.png)
---
class: center, middle
# (3) **State and Municipality disaggregation:**
Distribution dynamics framework
Distributional convergence
class: middle
# Regional heterogeneity matters
Dynamics of the **entire regional distribution**
**conditional density** estimation
---
class: middle, center
## The distribution dynamics framework
![](figs/dynt.PNG)
---
class: middle, center
# (4) Local convergence clusters
State level: 4+? convergence clusters
Municipality level: 2+? convergence clusters
---
class: middle, center
# Where are the clusters?
Municipality level **- - - - - - - - - - - - - -** Department Level
![](figs/rawdyn.png)
Those lines are not regression trends!
---
class: middle, center
# State level: 4+? convergence clusters
![](figs/depdyn.png)
Multimodal distribution with sigma convergence
---
class: middle, center
# Municipality level: 2+? convergence clusters
![](figs/mundyn.png)
Interesting results; there are fewer clusters but sigma convergence is not present.
---
class: middle
# (4) Spatial Autocorrelation (moran I definition)
##**High Intuition Concept**
![](figs/moran.png)
##More Formal (less intuitive)
![](figs/moran2.png)
---
class: justify, center, middle
`$$I = \frac{\sum_i\sum_j w_{ij} z_i.z_j}{\sum_i z_i^2} = \frac{\sum_i (z_i \times \sum_j w_{ij} z_j)}{\sum_i z_i^2}.$$`
In the linear regression **y=α+βx**
, the estimate for
**β**
is `\(\sum_i (x_i \times y_i) / \sum_i x_i^2\)`.In the Moran scatter plot shown below, **y** is the spatial lag variable `\(\sum_j w_{ij} z_j\)`
![](figs/moran3.png)
##Differential Moran Scatter Plot ( `\(y_{i,t}−y_{i,t−1}\)` )
Differencing the variable to control for the locational fixed effects: We computate the Moran's I for the variable
`\(y_{i,t}−y_{i,t−1}\)`. If we consider there is a fixed effect `\(\mu_i\)` related to location `\(i\)`, it is possible to present the value at each location for time `\(t\)` as the sum of some intrinsic value and the fixed effect. `\(y_{i,t} = y*_{i,t} + \mu_i\)` (Geoda documentation 2019)
---
class: middle, center
# (4) Spatial autocorrelation
**State level**: Moran's I statistic significant from 2012, differntial Moran's I is not significan (**not robust**)
**Municipality level**: Differential Moran's I significant from 2010 (**robust**)
---
# (4) Spatial autocorrelation
## State level (not robust)
- Univatiate Moran's I is significant from 2012.
- But, **The differential moran statistic is not significant**. It is then considered that the significance of Spatial Autocorrelation is **not robust**.
- See plots for 2014 and 2014-2013, similar for other years (standarized variables)
![](figs/moranst.png)
---
# (4) Spatial autocorrelation
## Municipality level (**Robust**)
- The univariate Moran's I is not significant in 2010 and 2011. however, it is significant from 2012 to 2018; reaching a maximum value in 2016.
- Differential Moran's I ( `\(sur_{2018}-sur_{2010}\)` ) is **significant** `\(Moran's\ I = 0.22^{***}\)`
- Subsequent Differential Moran's I `\(sur_{t}-sur_{t-1}\)` **statistically significant at the municipality level**. Except 2014-2013 (not statistically significant) see graphs
![](figs/moranmu2.png)
---
# (5) Concluding Remarks
## Uplifting results "on average" :
- Differences in overall raw rates at the state level **have decreased** and the means at both levels have increased (survival rate)
- **Global convergence on average at the state level**, while fast beta convergence at the municipality level.
## Beyond classical convergence :
- Regional differences matter in **both disaggreagation levels**.
- **Multiple local convergence clubs**; with more clubs at the state level.
## The Role of Space
- Subsequent Differential Moran's I are robust and significant at the **municipality level only**
- Results at the **state level** are not conlusive and similar to the ones reported by Royuela et al 2015.
---
# (5) Concluding Remarks
# Implications and further research
- Strong spatial autocorrelation suggest the posibility of applying the Getis filtering in order to filter the spatial component of homicide variables.
- Convergence clusters help us to find regions with similar outcomes, coordination among them can be promoted.
- Has crime followed a trajectory? can a speed and direction of contagious patterns be found?
- At the state or department level (including more variables) can a probit model help us to find the determinants for a conditional "jump" to the upper clusters.
---
class: center, middle
# Thank you very much for your attention
If you are interested in our research, please check Prof. Carlos Mendez website
https://carlos-mendez.rbind.io
And the research semminar's website
https://carlos-seminar.rbind.io/
***
Stay tuned for my Felipe's Master's thesis
##Will the SGDs be Achieved in Colombia? A Study of National Convergence and Regional differences.
Gender inequality, Income, Eduacation, Crime... Classical convergence, Distributional Dynamics, Spatial Filtering, Spatial econometrics, long-run Filtering...
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();</script>
<script>
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>