-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdesign.R
938 lines (880 loc) · 34.1 KB
/
design.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
#' Make a choice-based conjoint survey design
#'
#' This function creates a data frame containing a choice-based conjoint survey
#' design where each row is an alternative. Generate a variety of survey
#' designs, including full factorial designs, orthogonal designs, and Bayesian
#' D-efficient designs as well as designs with "no choice" options and "labeled"
#' (also known as "alternative specific") designs.
#'
#' @keywords experiment design mnl mxl mixed logit logitr idefix DoE.base
#' @param profiles A data frame in which each row is a possible profile. This
#' can be generated using the `cbc_profiles()` function.
#' @param n_resp Number of survey respondents.
#' @param n_alts Number of alternatives per choice question.
#' @param n_q Number of questions per respondent.
#' @param n_blocks Number of blocks used in Orthogonal or Bayesian D-efficient
#' designs. Max allowable is one block per respondent. Defaults to `1`,
#' meaning every respondent sees the same choice set.
#' @param n_draws Number of draws used in simulating the prior distribution used
#' in Bayesian D-efficient designs. Defaults to `50`.
#' @param n_start A numeric value indicating the number of random start designs
#' to use in obtaining a Bayesian D-efficient design. The default is `5`.
#' Increasing `n_start` can result in a more efficient design at the expense
#' of increased computational time.
#' @param no_choice Include a "no choice" option in the choice sets? Defaults to
#' `FALSE`. If `TRUE`, the total number of alternatives per question will be
#' one more than the provided `n_alts` argument.
#' @param label The name of the variable to use in a "labeled" design (also
#' called an "alternative-specific design") such that each set of alternatives
#' contains one of each of the levels in the `label` attribute. Currently not
#' compatible with Bayesian D-efficient designs. If used, the `n_alts`
#' argument will be ignored as its value is defined by the unique number of
#' levels in the `label` variable. Defaults to `NULL`.
#' @param method Choose the design method to use: `"random"`, `"full"`,
#' `"orthogonal"`, `"dopt"`, `"CEA"`, or `"Modfed"`. Defaults to `"random"`.
#' See details below for complete description of each method.
#' @param priors A list of one or more assumed prior parameters used to generate
#' a Bayesian D-efficient design. Defaults to `NULL`
#' @param prior_no_choice Prior utility value for the "no choice" alternative.
#' Only required if `no_choice = TRUE`. Defaults to `NULL`.
#' @param probs If `TRUE`, for Bayesian D-efficient designs the resulting design
#' includes average predicted probabilities for each alternative in each
#' choice set given the sample from the prior preference distribution.
#' Defaults to `FALSE`.'
#' @param keep_d_eff If `TRUE`, for D-optimal designs (`method = "dopt"`) the
#' returned object will be a list containing the design and the D-efficiency
#' score. Defaults to `FALSE`.
#' @param keep_db_error If `TRUE`, for Bayesian D-efficient designs the
#' returned object will be a list containing the design and the DB-error
#' score. Defaults to `FALSE`.
#' @param max_iter A numeric value indicating the maximum number allowed
#' iterations when searching for a Bayesian D-efficient design. The default is
#' 50.
#' @param parallel Logical value indicating whether computations should be done
#' over multiple cores. The default is `FALSE`.
#' @details The `method` argument determines the design method used. Options
#' are:
#'
#' - `"random"`
#' - `"full"`
#' - `"orthogonal"`
#' - `"dopt"`
#' - `"CEA"`
#' - `"Modfed"`
#'
#' All methods ensure that the two following criteria are met:
#'
#' 1. No two profiles are the same within any one choice set.
#' 2. No two choice sets are the same within any one respondent.
#'
#' The table below summarizes method compatibility with other design options,
#' including the ability to include a "no choice" option, the creation of a
#' "labeled" design (also called a "alternative-specific" design), the use
#' of restricted profile, and the use of blocking.
#'
#' Method | Include "no choice"? | Labeled designs? | Restricted profiles? | Blocking?
#' ---|---|---|---|---
#' `"random"` | Yes | Yes | Yes | No
#' `"full"` | Yes | Yes | Yes | Yes
#' `"orthogonal"` | Yes | No | No | Yes
#' `"dopt"` | Yes | No | Yes | Yes
#' `"CEA"` | Yes | No | No | Yes
#' `"Modfed"` | Yes | No | Yes | Yes
#'
#' The `"random"` method (the default) creates a design where choice sets are
#' created by randomly sampling from the full set of `profiles` *with
#' *replacement. This means that few (if any) respondents will see the same
#' sets of choice sets. This method is less efficient than other approaches
#' and may lead to a deficient experiment in smaller sample sizes, though it
#' guarantees equal ability to estimate main and interaction effects.
#'
#' The `"full"` method for ("full factorial") creates a design where choice
#' sets are created by randomly sampling from the full set of `profiles`
#' *without replacement*. The choice sets are then repeated to meet the
#' desired number of survey respondents (determined by `n_resp`). If blocking
#' is used, choice set blocks are created using mutually exclusive subsets of
#' `profiles` within each block. This method produces a design with similar
#' performance with that of the `"random"` method, except the choice sets are
#' repeated and thus there will be many more opportunities for different
#' respondents to see the same choice sets. This method is less efficient than
#' other approaches and may lead to a deficient experiment in smaller sample
#' sizes, though it guarantees equal ability to estimate main and interaction
#' effects. For more information about blocking with full factorial designs,
#' see `?DoE.base::fac.design` as well as the JSS article on the {DoE.base}
#' package (Grömping, 2018).
#'
#' The `"orthogonal"` method creates a design where an orthogonal array from
#' the full set of `profiles` is found and then choice sets are created by
#' randomly sampling from this orthogonal array *without replacement*. The
#' choice sets are then repeated to meet the desired number of survey
#' respondents (determined by `n_resp`). If blocking is used, choice set
#' blocks are created using mutually exclusive subsets of the orthogonal array
#' within each block. For cases where an orthogonal array cannot be found, a
#' full factorial design is used. This approach is also sometimes called a
#' "main effects" design since orthogonal arrays focus the information on the
#' main effects at the expense of information about interaction effects. For
#' more information about orthogonal designs, see `?DoE.base::oa.design` as
#' well as the JSS article on the {DoE.base} package (Grömping, 2018).
#'
#' The `"dopt"` method creates a "D-optimal" design where an array from
#' `profiles` is found that maximizes the D-efficiency of a linear model
#' using the Federov algorithm, with the total number of unique choice sets
#' determined by `n_q*n_blocks`. Choice sets are then created by randomly
#' sampling from this array *without replacement*. The choice sets are then
#' repeated to meet the desired number of survey respondents (determined by
#' `n_resp`). If blocking is used, choice set blocks are created from the
#' D-optimal array. For more information about the underlying algorithm
#' for this method, see `?AlgDesign::optFederov`.
#'
#' The `"CEA"` and `"Modfed"` methods use the specified `priors` to create a
#' Bayesian D-efficient design for the choice sets, with the total number of
#' unique choice sets determined by `n_q*n_blocks`. The choice sets are then
#' repeated to meet the desired number of survey respondents (determined by
#' `n_resp`). If `"CEA"` or `"Modfed"` is used without specifying `priors`, a
#' prior of all `0`s will be used and a warning message stating this will be
#' shown. In the opposite case, if `priors` are specified but neither Bayesian
#' method is used, the `"CEA"` method will be used and a warning stating this
#' will be shown. Restricted sets of `profiles` can only be used with
#' `"Modfed"`. For more details on Bayesian D-efficient designs, see
#' `?idefix::CEA` and `?idefix::Modfed` as well as the JSS article on the
#' {idefix} package (Traets et al, 2020).
#' @references Grömping, U. (2018). R Package DoE.base for Factorial Experiments. Journal of Statistical Software, 85(5), 1–41
#' \doi{10.18637/jss.v085.i05}
#'
#' Traets, F., Sanchez, D. G., & Vandebroek, M. (2020). Generating Optimal Designs for Discrete Choice Experiments in R: The idefix Package. Journal of Statistical Software, 96(3), 1–41,
#' \doi{10.18637/jss.v096.i03}
#'
#' Wheeler B (2022)._AlgDesign: Algorithmic Experimental Design. R package version 1.2.1,
#' \href{https://CRAN.R-project.org/package=AlgDesign}{https://CRAN.R-project.org/package=AlgDesign}.
#' @return The returned `design` data frame contains a choice-based conjoint
#' survey design where each row is an alternative. It includes the following
#' columns:
#'
#' - `profileID`: Identifies the profile in `profiles`.
#' - `respID`: Identifies each survey respondent.
#' - `qID`: Identifies the choice question answered by the respondent.
#' - `altID`:Identifies the alternative in any one choice observation.
#' - `obsID`: Identifies each unique choice observation across all respondents.
#' - `blockID`: If blocking is used, identifies each unique block.
#' @export
#' @examples
#' library(cbcTools)
#'
#' # A simple conjoint experiment about apples
#'
#' # Generate all possible profiles
#' profiles <- cbc_profiles(
#' price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
#' type = c("Fuji", "Gala", "Honeycrisp"),
#' freshness = c('Poor', 'Average', 'Excellent')
#' )
#'
#' # Make a survey by randomly sampling from all possible profiles
#' # (This is the default setting where method = 'random')
#' design_random <- cbc_design(
#' profiles = profiles,
#' n_resp = 100, # Number of respondents
#' n_alts = 3, # Number of alternatives per question
#' n_q = 6 # Number of questions per respondent
#' )
#'
#' # Make a survey using a full factorial design and include a "no choice" option
#' design_full <- cbc_design(
#' profiles = profiles,
#' n_resp = 100, # Number of respondents
#' n_alts = 3, # Number of alternatives per question
#' n_q = 6, # Number of questions per respondent
#' method = 'full', # Change this to use a different method, e.g. 'orthogonal', or 'dopt'
#' no_choice = TRUE
#' )
#'
#' # Make a survey by randomly sampling from all possible profiles
#' # with each level of the "type" attribute appearing as an alternative
#' design_random_labeled <- cbc_design(
#' profiles = profiles,
#' n_resp = 100, # Number of respondents
#' n_alts = 3, # Number of alternatives per question
#' n_q = 6, # Number of questions per respondent
#' label = "type"
#' )
#'
#' # Make a Bayesian D-efficient design with a prior model specified
#' # Note that by speed can be improved by setting parallel = TRUE
#' design_bayesian <- cbc_design(
#' profiles = profiles,
#' n_resp = 100, # Number of respondents
#' n_alts = 3, # Number of alternatives per question
#' n_q = 6, # Number of questions per respondent
#' n_start = 1, # Defaults to 5, set to 1 here for a quick example
#' priors = list(
#' price = -0.1,
#' type = c(0.1, 0.2),
#' freshness = c(0.1, 0.2)
#' ),
#' method = "CEA",
#' parallel = FALSE
#' )
cbc_design <- function(
profiles,
n_resp,
n_alts,
n_q,
n_blocks = 1,
n_draws = 50,
n_start = 5,
no_choice = FALSE,
label = NULL,
method = "random",
priors = NULL,
prior_no_choice = NULL,
probs = FALSE,
keep_d_eff = FALSE,
keep_db_error = FALSE,
max_iter = 50,
parallel = FALSE
) {
method <- check_design_method(method, priors)
profiles_restricted <- nrow(expand.grid(get_profile_list(profiles))) > nrow(profiles)
check_inputs_design(
profiles,
n_resp,
n_alts,
n_q,
n_blocks,
n_draws,
n_start,
no_choice,
label,
method,
priors,
prior_no_choice,
probs,
keep_d_eff,
keep_db_error,
max_iter,
parallel,
profiles_restricted
)
profiles <- as.data.frame(profiles) # tibbles break things
if (method == 'random') {
design <- make_design_random(
profiles, n_resp, n_alts, n_q, no_choice, label
)
} else if (method == 'full') {
design <- make_design_full(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice, label
)
} else if (method == 'orthogonal') {
design <- make_design_orthogonal(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice
)
} else if (method == 'dopt') {
design <- make_design_dopt(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice, keep_d_eff
)
} else {
design <- make_design_bayesian(
profiles, n_resp, n_alts, n_q, n_blocks, n_draws, n_start, no_choice,
label, method, priors, prior_no_choice, probs, keep_db_error, max_iter,
parallel, profiles_restricted
)
}
design <- reorder_cols(design)
row.names(design) <- NULL
return(design)
}
# General helpers ----
get_profile_list <- function(profiles) {
profile_lvls <- profiles[, 2:ncol(profiles)]
varnames <- names(profile_lvls)
type_ids <- get_type_ids(profiles)
profile_list <- list()
for (i in seq_len(ncol(profile_lvls))) {
if (type_ids$discrete[i]) {
profile_list[[i]] <- levels(profile_lvls[,i])
} else {
profile_list[[i]] <- unique(profile_lvls[,i])
}
}
names(profile_list) <- varnames
return(profile_list)
}
get_type_ids <- function(profiles) {
types <- get_col_types(profiles[, 2:ncol(profiles)])
ids <- list()
ids$discrete <- types %in% c("factor", "character")
ids$continuous <- !ids$discrete
return(ids)
}
join_profiles <- function(design, profiles) {
# Preserve row order
design$row_order <- seq(nrow(design))
# Before joining profiles, ensure that all the data types are the same
# as in profiles, otherwise join won't work properly
type_ids <- get_type_ids(profiles)
# Convert numeric columns to actual numbers
for (id in which(type_ids$continuous)) {
design[,id] <- as.numeric(as.character(design[,id]))
}
# Convert character types to factors and set same levels as profiles
for (id in which(type_ids$discrete)) {
design[,id] <- factor(design[,id], levels = levels(profiles[,id+1]))
}
# Join on profileIDs, then reorder to retain design order
varnames <- names(profiles[, 2:ncol(profiles)])
design <- merge(design, profiles, by = varnames, all.x = TRUE, sort = FALSE)
design <- design[order(design$row_order),]
design$row_order <- NULL
if ('blockID' %in% names(design)) { varnames <- c(varnames, 'blockID') }
design <- design[c('profileID', varnames)]
return(design)
}
add_metadata <- function(design, n_resp, n_alts, n_q) {
design$respID <- rep(seq(n_resp), each = n_alts * n_q)
design$qID <- rep(rep(seq(n_q), each = n_alts), n_resp)
design$altID <- rep(seq(n_alts), n_resp * n_q)
design$obsID <- rep(seq(n_resp * n_q), each = n_alts)
return(design)
}
get_dup_obs <- function(design, n_alts) {
# Identify duplicate profiles for each observation (each choice set)
counts <- tapply(
design$profileID, design$obsID,
FUN = function(x) length(unique(x))
)
dup_ids <- which(counts != n_alts)
dup_rows <- which(design$obsID %in% dup_ids)
return(dup_rows)
}
get_dup_resp <- function(design, n_resp, n_q) {
# Identify duplicate choice sets for each respondent
dup_ids <- unlist(lapply(
1:n_resp,
function(x) dup_obs_by_resp(design[which(design$respID == x),])
))
dup_rows <- which(design$obsID %in% dup_ids)
return(dup_rows)
}
dup_obs_by_resp <- function(df) {
profiles_list <- tapply(
df$profileID, df$obsID,
FUN = function(x) sort(x)
)
# Convert vector list to a data frame to check for duplicates
dupe_df <- do.call(rbind, profiles_list)
dup_ids <- which(duplicated(dupe_df))
if (length(dup_ids) > 0) {
return(as.numeric(names(dup_ids)))
}
return(NULL)
}
add_no_choice <- function(design, n_alts) {
# Must dummy code categorical variables to include an outside good
design <- dummy_code(design)
# Create outside good rows
design_og <- design[which(design$altID == 1), ]
design_og[,!names(design_og) %in% c("respID", "qID", "altID", "obsID")] <- 0
design_og$altID <- n_alts + 1
design_og$no_choice <- 1
# Insert outside good rows into design
design$no_choice <- 0
design <- rbind(design, design_og)
design <- design[order(design$obsID), ]
return(design)
}
dummy_code <- function(design) {
types <- get_col_types(design)
nonnumeric <- names(types[!types %in% c("integer", "numeric")])
if (length(nonnumeric) > 0) {
design <- fastDummies::dummy_cols(design, nonnumeric)
design[, nonnumeric] <- NULL
}
return(design)
}
get_col_types <- function(data) {
types <- lapply(data, class)
test <- function(x) { x[1] }
return(unlist(lapply(types, test)))
}
reorder_cols <- function(design) {
metaNames <- c("profileID", "respID", "qID", "altID", "obsID")
if ('blockID' %in% names(design)) { metaNames <- c(metaNames, 'blockID') }
varNames <- setdiff(names(design), metaNames)
design <- as.data.frame(design)[, c(metaNames, varNames)]
return(design)
}
# Choice sets ----
make_random_sets <- function(profiles, n_alts) {
n_q <- nrow(profiles)
design <- sample_random_sets(profiles, n_alts, n_q)
# Replace rows with duplicated profiles in each obsID or
# duplicated choice sets in each respID
dup_rows_obs <- get_dup_obs(design, n_alts)
dup_rows_resp <- get_dup_resp(design, n_resp = 1, n_q)
while ((length(dup_rows_obs) > 0) | (length(dup_rows_resp) > 0)) {
design <- sample_random_sets(profiles, n_alts, n_q)
dup_rows_obs <- get_dup_obs(design, n_alts)
dup_rows_resp <- get_dup_resp(design, n_resp = 1, n_q)
}
return(design)
}
make_random_sets_by_block <- function(profiles, n_alts, n_blocks) {
# Make choice sets for each set of profileIDs
profiles <- split(profiles, profiles$blockID)
choice_sets <- list()
for (i in 1:n_blocks) {
choice_sets[[i]] <- make_random_sets(profiles[[i]], n_alts)
}
choice_sets <- do.call(rbind, choice_sets)
return(choice_sets)
}
sample_random_sets <- function(profiles, n_alts, n_q) {
# Make a randomized copy of the profiles for each alternative
sets <- lapply(seq(n_alts), function(x) profiles[order(stats::runif(n_q)),])
sets <- lapply(sets, function(x) {
x$order <- seq(nrow(x))
return(x)
})
sets <- do.call(rbind, sets)
sets <- sets[order(sets$order),]
sets <- add_metadata(sets, n_resp = 1, n_alts, n_q)
sets$order <- NULL
return(sets)
}
repeat_sets <- function(choice_sets, n_resp, n_alts, n_q, n_blocks) {
# Repeat choice sets to match number of respondents
if (n_blocks > 1) {
choice_sets <- split(choice_sets, choice_sets$blockID)
n_resp_block <- ceiling(n_resp / n_blocks)
n_reps <- ceiling(n_resp_block / (nrow(choice_sets[[1]]) / n_alts / n_q))
design <- list()
for (i in seq_len(n_blocks)) {
set <- choice_sets[[i]]
temp <- set[rep(seq_len(nrow(set)), n_reps), ]
design[[i]] <- temp[1:(n_resp_block*n_q*n_alts), ]
}
design <- do.call(rbind, design)
} else {
design <- choice_sets[rep(seq_len(nrow(choice_sets)), n_resp), ]
}
design <- design[1:(n_resp*n_q*n_alts), ]
design <- add_metadata(design, n_resp, n_alts, n_q)
return(design)
}
# Random Design ----
# Sample from profiles with replacement to create randomized choice sets
make_design_random <- function(
profiles, n_resp, n_alts, n_q, no_choice, label
) {
if (is.null(label)) {
design <- design_rand_sample(profiles, n_resp, n_alts, n_q)
} else {
design <- design_rand_sample_label(profiles, n_resp, n_alts, n_q, label)
}
if (no_choice) {
design <- add_no_choice(design, n_alts)
}
return(design)
}
design_rand_sample <- function(profiles, n_resp, n_alts, n_q) {
design <- sample_profiles(profiles, size = n_resp * n_alts * n_q)
design <- add_metadata(design, n_resp, n_alts, n_q)
# Replace rows with duplicated profiles in each obsID or
# duplicated choice sets in each respID
dup_rows_obs <- get_dup_obs(design, n_alts)
dup_rows_resp <- get_dup_resp(design, n_resp, n_q)
while ((length(dup_rows_obs) > 0) | (length(dup_rows_resp) > 0)) {
# cat('Number dupe rows by obs:', length(dup_rows_obs), '\n')
# cat('Number dupe rows by resp:', length(dup_rows_resp), '\n')
dup_rows <- unique(c(dup_rows_obs, dup_rows_resp))
new_rows <- sample_profiles(profiles, size = length(dup_rows))
design[dup_rows, 1:ncol(new_rows)] <- new_rows
# Recalculate duplicates
dup_rows_obs <- get_dup_obs(design, n_alts)
dup_rows_resp <- get_dup_resp(design, n_resp, n_q)
}
return(design)
}
design_rand_sample_label <- function(profiles, n_resp, n_alts, n_q, label) {
n_alts <- override_label_alts(profiles, label, n_alts)
# Randomize rows by label
labels <- split(profiles, profiles[label])
design <- sample_profiles_by_group(labels, size = n_resp * n_q)
# Replace rows with duplicated profiles in each obsID or
# duplicated choice sets in each respID
design <- add_metadata(design, n_resp, n_alts, n_q)
dup_rows_obs <- get_dup_obs(design, n_alts)
dup_rows_resp <- get_dup_resp(design, n_resp, n_q)
while ((length(dup_rows_obs) > 0) | (length(dup_rows_resp) > 0)) {
# cat('Number dupe rows by obs:', length(dup_rows_obs), '\n')
# cat('Number dupe rows by resp:', length(dup_rows_resp), '\n')
dup_rows <- unique(c(dup_rows_obs, dup_rows_resp))
new_rows <- sample_profiles_by_group(labels, size = length(dup_rows) / n_alts)
design[dup_rows, 1:ncol(new_rows)] <- new_rows
# Recalculate duplicates
dup_rows_obs <- get_dup_obs(design, n_alts)
dup_rows_resp <- get_dup_resp(design, n_resp, n_q)
}
return(design)
}
sample_profiles <- function(profiles, size) {
return(profiles[sample(
x = seq_len(nrow(profiles)), size = size, replace = TRUE), ]
)
}
sample_profiles_by_group <- function(labels, size) {
design <- lapply(labels, function(x) sample_profiles(x, size = size))
design <- lapply(design, function(x) add_label_id(x))
design <- do.call(rbind, design)
design <- design[order(design$labelID), ]
design$labelID <- NULL
return(design)
}
add_label_id <- function(design) {
design$labelID <- seq(nrow(design))
return(design)
}
override_label_alts <- function(profiles, label, n_alts) {
n_levels <- length(unique(profiles[, label]))
if (n_levels != n_alts) {
warning(
"The supplied 'n_alts' argument is being ignored and set to ", n_levels,
" to match the number of unique levels in the ", label,
" variable.\n"
)
# Over-ride user-provided n_alts as it is determined by the label
n_alts <- n_levels
}
return(n_alts)
}
# Full Factorial Design ----
# Arrange copies of the full set of profiles into choice sets by sampling
# without replacement
make_design_full <- function(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice, label
) {
if (!is.null(label)) {
return(make_design_full_labeled(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice, label
))
}
if (n_blocks > 1) {
# Make blocks
design <- suppressMessages(as.data.frame(DoE.base::fac.design(
factor.names = get_profile_list(profiles),
blocks = n_blocks,
block.name = "blockID"
)))
# Make blockID a number, then join on profileIDs
design$blockID <- as.numeric(as.character(design$blockID))
design <- design[,c(names(profiles)[2:ncol(profiles)], "blockID")]
profiles <- join_profiles(design, profiles)
# Create random choice sets within each block
choice_sets <- make_random_sets_by_block(profiles, n_alts, n_blocks)
} else {
choice_sets <- make_random_sets(profiles, n_alts)
}
design <- repeat_sets(choice_sets, n_resp, n_alts, n_q, n_blocks)
if (no_choice) {
design <- add_no_choice(design, n_alts)
}
return(design)
}
make_design_full_labeled <- function(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice, label
) {
n_alts <- override_label_alts(profiles, label, n_alts)
labels <- unique(profiles[,label])
profiles_orig <- profiles
# Remove the label column from profiles
profiles[label] <- NULL
profiles$profileID <- NULL
profiles <- profiles[!duplicated(profiles),]
profiles$profileID <- seq(nrow(profiles))
profiles <- profiles[c(
'profileID', names(profiles)[which(names(profiles) != 'profileID')])]
if (n_blocks > 1) {
# Make blocks
design <- suppressMessages(as.data.frame(DoE.base::fac.design(
factor.names = get_profile_list(profiles),
blocks = n_blocks,
block.name = "blockID"
)))
# Make blockID a number, then join on profileIDs
design$blockID <- as.numeric(as.character(design$blockID))
design <- design[,c(names(profiles)[2:ncol(profiles)], "blockID")]
profiles <- join_profiles(design, profiles)
# Create random choice sets within each block
choice_sets <- make_random_sets_by_block(profiles, n_alts, n_blocks)
} else {
choice_sets <- make_random_sets(profiles, n_alts)
}
# Add label attribute and original profileIDs
choice_sets[label] <- rep(labels, nrow(choice_sets) / length(labels))
choice_sets$profileID <- NULL
choice_sets <- merge(choice_sets, profiles_orig, all.x = TRUE, sort = FALSE)
design <- repeat_sets(choice_sets, n_resp, n_alts, n_q, n_blocks)
if (no_choice) {
design <- add_no_choice(design, n_alts)
}
return(design)
}
# Orthogonal Design ----
make_design_orthogonal <- function(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice
) {
# First obtain the orthogonal array
oa <- suppressMessages(as.data.frame(DoE.base::oa.design(
factor.names = get_profile_list(profiles)
)))
if (nrow(oa) == nrow(profiles)) {
message("No orthogonal array found; using full factorial for design")
} else {
message(
"Orthogonal array found; using ", nrow(oa), " out of ",
nrow(profiles), " profiles for design"
)
}
oa <- join_profiles(oa, profiles)
if (n_blocks > 1) {
q_per_resp <- nrow(oa) / n_blocks
if (q_per_resp %% 1 != 0) {
stop(
'The number of blocks used cannot be evenly divided into the ',
'orthogonal array. Use a different number for "n_blocks" that ',
'is as factor of ', nrow(oa)
)
}
if (q_per_resp < n_q) {
stop(
'The orthogonal array cannot be divided into ', n_blocks,
' blocks such that each respondent sees ', n_q,
' questions. Either decrease "n_blocks" or increase "n_q".'
)
}
oa$blockID <- rep(seq(n_blocks), each = q_per_resp)
# Create random choice sets within each block
choice_sets <- make_random_sets_by_block(oa, n_alts, n_blocks)
} else {
choice_sets <- make_random_sets(oa, n_alts)
}
design <- repeat_sets(choice_sets, n_resp, n_alts, n_q, n_blocks)
if (no_choice) {
warning(
'Using a "no choice" option with orthogonal designs may damage the ',
'orthogonality properties.'
)
design <- add_no_choice(design, n_alts)
}
return(design)
}
# D-optimal Design ----
make_design_dopt <- function(
profiles, n_resp, n_alts, n_q, n_blocks, no_choice, keep_d_eff
) {
# First obtain the d-optimal array
des <- AlgDesign::optFederov(~., profiles[,2:length(profiles)], n_q*n_blocks)
d_eff <- des$Ge
profiles <- merge(des$design, profiles, all.x = TRUE)
profiles <- profiles[c(
'profileID', names(profiles)[which(names(profiles) != 'profileID')])]
if (n_blocks > 1) {
profiles$blockID <- rep(seq(n_blocks), each = nrow(profiles) / n_blocks)
choice_sets <- make_random_sets_by_block(profiles, n_alts, n_blocks)
} else {
choice_sets <- make_random_sets(profiles, n_alts)
}
design <- repeat_sets(choice_sets, n_resp, n_alts, n_q, n_blocks)
if (no_choice) {
design <- add_no_choice(design, n_alts)
}
# Print D-efficiency
message("D-optimal design found with D-efficiency of ", round(d_eff, 5))
# Return list containing the design and DB error if keep_d_eff = TRUE
if (keep_d_eff) {
return(list(design = design, d_eff = d_eff))
}
return(design)
}
# Bayesian D-efficient Design ----
make_design_bayesian <- function(
profiles, n_resp, n_alts, n_q, n_blocks, n_draws, n_start, no_choice,
label, method, priors, prior_no_choice, probs, keep_db_error, max_iter,
parallel, profiles_restricted
) {
# Set up levels and coding
profile_list <- get_profile_list(profiles)
type_ids <- get_type_ids(profiles)
lvl.names <- unname(profile_list)
lvls <- unname(unlist(lapply(lvl.names, function(x) length(x))))
coding <- rep("C", length(lvls))
c.lvls <- NULL
if (any(type_ids$continuous)) {
c.lvls <- lvl.names[type_ids$continuous]
}
# lvl.names must be all characters for decoding process
lvl.names <- lapply(lvl.names, function(x) as.character(x))
if (any(type_ids$discrete)) {
coding[type_ids$discrete] <- "D"
}
no_choice_alt <- NULL
alt_cte <- rep(0, n_alts)
if (no_choice) {
n_alts <- n_alts + 1
alt_cte <- c(alt_cte, 1)
no_choice_alt <- n_alts
}
# Setup priors
profile_lvls <- profiles[, 2:ncol(profiles)]
varnames <- names(profile_lvls)
if (is.null(priors)) {
# No priors specified, so use all 0s
warning(
'Since the ', method, ' method is used but no priors were ',
'specified, a zero prior will be used (all coefficients set to 0)'
)
priors <- lapply(profile_list, function(x) rep(0, length(x) - 1))
priors[type_ids$continuous] <- 0
}
# Make sure order of priors matches order of attributes in profiles
mu <- unlist(priors[varnames])
if (no_choice) {
mu <- c(prior_no_choice, mu)
}
sigma <- diag(length(mu))
par_draws <- MASS::mvrnorm(n = n_draws, mu = mu, Sigma = sigma)
n_alt_cte <- sum(alt_cte)
if (n_alt_cte >= 1) {
par_draws <- list(
par_draws[, 1:n_alt_cte],
par_draws[, (n_alt_cte + 1):ncol(par_draws)])
}
# Make the design
if (profiles_restricted & (method == "CEA")) {
# "CEA" method only works with unrestricted profile set
method <- "Modfed"
warning(
'The "CEA" algorithm requires the use of an unrestricted set of ',
'profiles, so "Modfed" is being used instead.\n'
)
}
if (method == "CEA") {
D <- idefix::CEA(
lvls = lvls,
coding = coding,
par.draws = par_draws,
c.lvls = c.lvls,
n.alts = n_alts,
n.sets = n_q*n_blocks,
no.choice = no_choice,
n.start = n_start,
alt.cte = alt_cte,
parallel = parallel
)
} else {
D <- idefix::Modfed(
cand.set = defineCandidateSet(
lvls, coding, c.lvls, profile_lvls, type_ids, profiles_restricted
),
par.draws = par_draws,
n.alts = n_alts,
n.sets = n_q*n_blocks,
no.choice = no_choice,
n.start = n_start,
alt.cte = alt_cte,
parallel = parallel
)
}
# Decode the design
design_raw <- idefix::Decode(
des = D$design,
n.alts = n_alts,
alt.cte = alt_cte,
lvl.names = lvl.names,
c.lvls = c.lvls,
coding = coding,
no.choice = no_choice_alt
)
# Join on profileIDs to design
design <- design_raw$design
names(design) <- varnames
design <- join_profiles(design, profiles)
if (no_choice) {
design <- add_no_choice_bayesian(design, n_alts, varnames[type_ids$discrete])
}
if (probs) {
design$probs <- as.vector(t(D$probs))
}
design$blockID <- rep(seq(n_blocks), each = n_alts*n_q)
# Repeat design to match number of respondents
design <- repeat_sets(design, n_resp, n_alts, n_q, n_blocks)
# Print DB error
message(
"Bayesian D-efficient design found with DB-error of ",
round(D$error, 5)
)
# Return list containing the design and DB error if keep_db_error = TRUE
if (keep_db_error) {
return(list(design = design, db_err = D$error))
}
return(design)
}
defineCandidateSet <- function(
lvls, coding, c.lvls, profile_lvls, type_ids, profiles_restricted
) {
# Make candidate set with profiles, assuming non-restricted
cand_set <- idefix::Profiles(
lvls = lvls,
coding = coding,
c.lvls = c.lvls
)
if (!profiles_restricted) { return(cand_set) }
# If restricted, need to manually dummy-code profiles to avoid
# including restricted profiles
cand_set_res <- fastDummies::dummy_cols(
profile_lvls,
select_columns = names(profile_lvls)[type_ids$discrete],
remove_first_dummy = TRUE,
remove_selected_columns = TRUE
)
name_order <- names(profile_lvls)
names_coded <- names(cand_set_res)
cols <- c()
for (i in seq_len(length(coding))) {
if (coding[i] == "C") {
name_match <- name_order[i]
} else {
name_match <- names_coded[grepl(paste0(name_order[i], "_"), names_coded)]
}
cols <- c(cols, name_match)
}
cand_set_res <- cand_set_res[,cols]
names(cand_set_res) <- colnames(cand_set)
cand_set_res <- as.matrix(cand_set_res)
row.names(cand_set_res) <- seq(nrow(cand_set_res))
return(cand_set_res)
}
add_no_choice_bayesian <- function(design, n_alts, varnames_discrete) {
# First dummy code categorical variables
design$obsID <- rep(seq(nrow(design) / n_alts), each = n_alts)
design$altID <- rep(seq(n_alts), nrow(design) / n_alts)
design <- design[which(design$altID != n_alts), ]
design <- fastDummies::dummy_cols(
design,
select_columns = varnames_discrete,
remove_first_dummy = TRUE
)
design <- design[,which(! names(design) %in% varnames_discrete)]
design$no_choice <- 0
# Insert dummy-coded outside good rows
design_og <- design[which(design$altID == 1), ]
design_og$altID <- n_alts
design_og$profileID <- 0
design_og[,
which(! names(design_og) %in% c('profileID', 'altID', 'obsID'))] <- 0
design_og$no_choice <- 1
design <- rbind(design, design_og)
design <- design[order(design$obsID, design$altID), ]
design[,c('altID', 'obsID')] <- NULL
return(design)
}