|
56 | 56 | },
|
57 | 57 | {
|
58 | 58 | "cell_type": "code",
|
59 |
| - "execution_count": 28, |
| 59 | + "execution_count": 2, |
60 | 60 | "metadata": {},
|
61 | 61 | "outputs": [
|
62 | 62 | {
|
63 | 63 | "data": {
|
64 | 64 | "text/plain": [
|
65 |
| - "array([[0, 0],\n", |
66 |
| - " [1, 0],\n", |
67 |
| - " [2, 0],\n", |
68 |
| - " [3, 0],\n", |
69 |
| - " [4, 0],\n", |
70 |
| - " [5, 0],\n", |
71 |
| - " [6, 0],\n", |
72 |
| - " [0, 1],\n", |
73 |
| - " [1, 1],\n", |
74 |
| - " [2, 1],\n", |
75 |
| - " [3, 1],\n", |
76 |
| - " [4, 1],\n", |
77 |
| - " [5, 1],\n", |
78 |
| - " [6, 1],\n", |
79 |
| - " [0, 2],\n", |
80 |
| - " [1, 2],\n", |
81 |
| - " [2, 2],\n", |
82 |
| - " [3, 2],\n", |
83 |
| - " [4, 2],\n", |
84 |
| - " [5, 2],\n", |
85 |
| - " [6, 2],\n", |
86 |
| - " [0, 3],\n", |
87 |
| - " [1, 3],\n", |
88 |
| - " [2, 3],\n", |
89 |
| - " [3, 3],\n", |
90 |
| - " [4, 3],\n", |
91 |
| - " [5, 3],\n", |
92 |
| - " [6, 3],\n", |
93 |
| - " [0, 4],\n", |
94 |
| - " [1, 4],\n", |
95 |
| - " [2, 4],\n", |
96 |
| - " [3, 4],\n", |
97 |
| - " [4, 4],\n", |
98 |
| - " [5, 4],\n", |
99 |
| - " [6, 4],\n", |
100 |
| - " [0, 5],\n", |
101 |
| - " [1, 5],\n", |
102 |
| - " [2, 5],\n", |
103 |
| - " [3, 5],\n", |
104 |
| - " [4, 5],\n", |
105 |
| - " [5, 5],\n", |
106 |
| - " [6, 5]])" |
| 65 | + "array([[0., 0., 0.],\n", |
| 66 | + " [0., 0., 0.],\n", |
| 67 | + " [0., 0., 0.],\n", |
| 68 | + " [0., 0., 0.],\n", |
| 69 | + " [0., 0., 0.],\n", |
| 70 | + " [0., 0., 0.],\n", |
| 71 | + " [0., 0., 0.],\n", |
| 72 | + " [0., 0., 0.],\n", |
| 73 | + " [0., 0., 0.],\n", |
| 74 | + " [0., 0., 0.],\n", |
| 75 | + " [0., 0., 0.],\n", |
| 76 | + " [0., 0., 0.],\n", |
| 77 | + " [0., 0., 0.],\n", |
| 78 | + " [0., 0., 0.]], dtype=float32)" |
107 | 79 | ]
|
108 | 80 | },
|
109 |
| - "execution_count": 28, |
| 81 | + "execution_count": 2, |
110 | 82 | "metadata": {},
|
111 | 83 | "output_type": "execute_result"
|
112 | 84 | }
|
|
120 | 92 | },
|
121 | 93 | {
|
122 | 94 | "cell_type": "code",
|
123 |
| - "execution_count": 29, |
| 95 | + "execution_count": null, |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [ |
| 98 | + { |
| 99 | + "name": "stdout", |
| 100 | + "output_type": "stream", |
| 101 | + "text": [ |
| 102 | + "X:\n", |
| 103 | + " [[0 1 2 3 4 5 6]\n", |
| 104 | + " [0 1 2 3 4 5 6]]\n", |
| 105 | + "Y:\n", |
| 106 | + " [[0 0 0 0 0 0 0]\n", |
| 107 | + " [1 1 1 1 1 1 1]]\n" |
| 108 | + ] |
| 109 | + } |
| 110 | + ], |
| 111 | + "source": [ |
| 112 | + "# mgrid: multi-dimensional meshgrid\n", |
| 113 | + "# two 1D arrays -> two 2D arrays.\n", |
| 114 | + "\n", |
| 115 | + "x = np.arange(0,7)\n", |
| 116 | + "y = np.arange(0,2)\n", |
| 117 | + "\n", |
| 118 | + "X, Y = np.meshgrid(x, y)\n", |
| 119 | + "\n", |
| 120 | + "print(\"X:\\n\", X)\n", |
| 121 | + "print(\"Y:\\n\", Y)" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": null, |
| 127 | + "metadata": {}, |
| 128 | + "outputs": [ |
| 129 | + { |
| 130 | + "name": "stdout", |
| 131 | + "output_type": "stream", |
| 132 | + "text": [ |
| 133 | + "X:\n", |
| 134 | + " [[0 1 2 3 4 5 6]\n", |
| 135 | + " [0 1 2 3 4 5 6]]\n", |
| 136 | + "Y:\n", |
| 137 | + " [[0 0 0 0 0 0 0]\n", |
| 138 | + " [1 1 1 1 1 1 1]]\n" |
| 139 | + ] |
| 140 | + } |
| 141 | + ], |
| 142 | + "source": [ |
| 143 | + "x = np.array([0, 1, 2, 3, 4, 5, 6])\n", |
| 144 | + "y = np.array([0, 1])\n", |
| 145 | + "\n", |
| 146 | + "X, Y = np.meshgrid(x, y)\n", |
| 147 | + "\n", |
| 148 | + "print(\"X:\\n\", X)\n", |
| 149 | + "print(\"Y:\\n\", Y)\n", |
| 150 | + "\n" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": 26, |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [ |
| 158 | + { |
| 159 | + "name": "stdout", |
| 160 | + "output_type": "stream", |
| 161 | + "text": [ |
| 162 | + "X:\n", |
| 163 | + " [[0 0]\n", |
| 164 | + " [1 1]\n", |
| 165 | + " [2 2]\n", |
| 166 | + " [3 3]\n", |
| 167 | + " [4 4]\n", |
| 168 | + " [5 5]\n", |
| 169 | + " [6 6]]\n", |
| 170 | + "Y:\n", |
| 171 | + " [[0 1]\n", |
| 172 | + " [0 1]\n", |
| 173 | + " [0 1]\n", |
| 174 | + " [0 1]\n", |
| 175 | + " [0 1]\n", |
| 176 | + " [0 1]\n", |
| 177 | + " [0 1]]\n" |
| 178 | + ] |
| 179 | + } |
| 180 | + ], |
| 181 | + "source": [ |
| 182 | + "X, Y = np.mgrid[0:7,0:2]\n", |
| 183 | + "\n", |
| 184 | + "print(\"X:\\n\", X)\n", |
| 185 | + "print(\"Y:\\n\", Y)" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [ |
| 193 | + { |
| 194 | + "data": { |
| 195 | + "text/plain": [ |
| 196 | + "array([[[0, 0],\n", |
| 197 | + " [1, 0],\n", |
| 198 | + " [2, 0],\n", |
| 199 | + " [3, 0],\n", |
| 200 | + " [4, 0],\n", |
| 201 | + " [5, 0],\n", |
| 202 | + " [6, 0]],\n", |
| 203 | + "\n", |
| 204 | + " [[0, 1],\n", |
| 205 | + " [1, 1],\n", |
| 206 | + " [2, 1],\n", |
| 207 | + " [3, 1],\n", |
| 208 | + " [4, 1],\n", |
| 209 | + " [5, 1],\n", |
| 210 | + " [6, 1]]])" |
| 211 | + ] |
| 212 | + }, |
| 213 | + "execution_count": 12, |
| 214 | + "metadata": {}, |
| 215 | + "output_type": "execute_result" |
| 216 | + } |
| 217 | + ], |
| 218 | + "source": [ |
| 219 | + "np.mgrid[0:7,0:2].T # transpose; matching x, y" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "code", |
| 224 | + "execution_count": null, |
124 | 225 | "metadata": {},
|
125 | 226 | "outputs": [
|
126 | 227 | {
|
|
139 | 240 | " [3, 1],\n",
|
140 | 241 | " [4, 1],\n",
|
141 | 242 | " [5, 1],\n",
|
142 |
| - " [6, 1],\n", |
143 |
| - " [0, 2],\n", |
144 |
| - " [1, 2],\n", |
145 |
| - " [2, 2],\n", |
146 |
| - " [3, 2],\n", |
147 |
| - " [4, 2],\n", |
148 |
| - " [5, 2],\n", |
149 |
| - " [6, 2],\n", |
150 |
| - " [0, 3],\n", |
151 |
| - " [1, 3],\n", |
152 |
| - " [2, 3],\n", |
153 |
| - " [3, 3],\n", |
154 |
| - " [4, 3],\n", |
155 |
| - " [5, 3],\n", |
156 |
| - " [6, 3],\n", |
157 |
| - " [0, 4],\n", |
158 |
| - " [1, 4],\n", |
159 |
| - " [2, 4],\n", |
160 |
| - " [3, 4],\n", |
161 |
| - " [4, 4],\n", |
162 |
| - " [5, 4],\n", |
163 |
| - " [6, 4],\n", |
164 |
| - " [0, 5],\n", |
165 |
| - " [1, 5],\n", |
166 |
| - " [2, 5],\n", |
167 |
| - " [3, 5],\n", |
168 |
| - " [4, 5],\n", |
169 |
| - " [5, 5],\n", |
170 |
| - " [6, 5]])" |
| 243 | + " [6, 1]])" |
| 244 | + ] |
| 245 | + }, |
| 246 | + "execution_count": 10, |
| 247 | + "metadata": {}, |
| 248 | + "output_type": "execute_result" |
| 249 | + } |
| 250 | + ], |
| 251 | + "source": [ |
| 252 | + "np.mgrid[0:7,0:2].T.reshape(-1,2) # -1 : calculated with remaining col and dimension \n", |
| 253 | + "# 2: col" |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "code", |
| 258 | + "execution_count": 29, |
| 259 | + "metadata": {}, |
| 260 | + "outputs": [ |
| 261 | + { |
| 262 | + "data": { |
| 263 | + "text/plain": [ |
| 264 | + "array([[0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0],\n", |
| 265 | + " [0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1]])" |
171 | 266 | ]
|
172 | 267 | },
|
173 | 268 | "execution_count": 29,
|
|
176 | 271 | }
|
177 | 272 | ],
|
178 | 273 | "source": [
|
179 |
| - "np.mgrid[0:7,0:6].T.reshape(-1,2)" |
| 274 | + "np.mgrid[0:7,0:2].T.reshape(-1, 14) " |
180 | 275 | ]
|
181 | 276 | },
|
182 | 277 | {
|
|
0 commit comments