forked from tsinghua-fib-lab/Traffic-Benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_benchmark.py
executable file
·136 lines (128 loc) · 5.75 KB
/
train_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import random
import numpy as np
import torch
# import setproctitle
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model',type=str,default='DAGRU',help='model')
parser.add_argument('--data',type=str,default='METR-LA',help='dataset')
args = parser.parse_args()
model = args.model
data = args.data
# setproctitle.setproctitle(model + '_' + data + "@lifuxian")
def main():
if model == 'DAGRU':
pass
elif model == 'FNN':
if data == 'BJ':
run = 'CUDA_VISIBLE_DEVICES=2 python dcrnn_train_pytorch.py --config_filename=data/model/stmetanet_BJ500.yaml'
os.system(run)
elif data == 'METR-LA':
run = ''
os.system(run)
elif data == 'PEMS-BAY':
run = ''
os.system(run)
elif model == 'FC-LSTM':
if data == 'BJ':
run = 'CUDA_VISIBLE_DEVICES=0 python ./methods/LSTM/dcrnn_train_pytorch.py --config_filename=data/model/LSTM_BJ500.yaml '
os.system(run)
elif data == 'METR-LA':
run = ''
os.system(run)
elif data == 'PEMS-BAY':
run = ''
os.system(run)
elif model == 'DCRNN':
if data == 'BJ':
run = 'CUDA_VISIBLE_DEVICES=1 python ./methods/DCRNN/dcrnn_train_pytorch.py --config_filename=data/BJ/dcrnn_BJ.yaml'
os.system(run)
elif data == 'METR-LA':
run = 'CUDA_VISIBLE_DEVICES=3 python ./methods/DCRNN/dcrnn_train_pytorch.py --config_filename=data/model/dcrnn_la.yaml'
os.system(run)
elif data == 'PEMS-BAY':
run = 'CUDA_VISIBLE_DEVICES=1 python ./methods/DCRNN/dcrnn_train_pytorch.py --config_filename=data/model/dcrnn_bay.yaml'
os.system(run)
elif model == 'STGCN':
if data == 'BJ':
run = ''
os.system(run)
elif data == 'METR-LA':
run = ''
os.system(run)
elif data == 'PEMS-BAY':
run = ''
os.system(run)
elif model == 'Graph-WaveNet':
if data == 'BJ':
run = 'python ./methods/Graph-WaveNet/train.py --data ~/NE-BJ --adjdata ~/NE-BJ/adj_mat_BJ.pkl --save ./garage/BJ_500_nodedim100 --gcn_bool --adjtype doubletransition --addaptadj --randomadj --device cuda:2 --batch_size 64 --epoch 200 --print_every 10'
os.system(run)
elif data == 'METR-LA':
run = 'python ./methods/Graph-WaveNet/train.py --data=data/METR-LA --gcn_bool --adjtype doubletransition --addaptadj --randomadj'
os.system(run)
elif data == 'PEMS-BAY':
run = 'python ./methods/Graph-WaveNet/train.py --data=data/PEMS-BAY --adjdata data/sensor_graph/adj_mx_bay.pkl --save ./garage/pems --gcn_bool --adjtype doubletransition --addaptadj --randomadj'
os.system(run)
elif model == 'ST-MetaNet':
if data == 'BJ':
run = 'CUDA_VISIBLE_DEVICES=1 python ./methods/ST-MetaNet/dcrnn_train_pytorch.py --config_filename=data/model/stmetanet_BJ500.yaml'
os.system(run)
elif data == 'METR-LA':
run = ''
os.system(run)
elif data == 'PEMS-BAY':
run = ''
os.system(run)
elif model == 'ASTGCN':
if data == 'BJ':
run = 'python ./methods/ASTGCN/train_ASTGCN_r.py --config configurations/BJ.conf'
os.system(run)
elif data == 'METR-LA':
run = 'python ./methods/ASTGCN/train_ASTGCN_r.py --config configurations/METR-LA.conf'
os.system(run)
elif data == 'PEMS-BAY':
run = 'python ./methods/ASTGCN/train_ASTGCN_r.py --config configurations/PEMS-BAY.conf'
os.system(run)
elif model == 'STSGCN': #mxnet-1.41-py3
if data == 'BJ':
run = 'python3 ./method/STSGCN/main.py --config config/BJ/individual_GLU_mask_emb.json --save'
os.system(run)
elif data == 'METR-LA':
run = 'python3 ./method/STSGCN/main.py --config config/METR-LA/individual_GLU_mask_emb.json --save'
os.system(run)
elif data == 'PEMS-BAY':
run = 'python3 ./method/STSGCN/main.py --config config/PEMS-BAY/individual_GLU_mask_emb.json --save'
os.system(run)
elif model == 'AGCRN':
if data == 'BJ':
run = 'python ./methods/AGCRN/model/Run_BJ.py --dataset_dir /data/lifuxian/NE-BJ/ --device cuda:6'
os.system(run)
elif data == 'METR-LA':
run = 'python ./methods/AGCRN/model/Run_METR-LA.py --dataset_dir /data/lifuxian/DCRNN_PyTorch-pytorch_scratch/data/METR-LA --device cuda:5'
os.system(run)
elif data == 'PEMS-BAY':
run = 'python ./methods/AGCRN/model/Run_PEMS-BAY.py --dataset_dir /data/lifuxian/DCRNN_PyTorch-pytorch_scratch/data/PEMS-BAY --device cuda:6'
os.system(run)
elif model == 'GMAN': #tf-2.3-py3
if data == 'BJ':
run = 'CUDA_VISIBLE_DEVICES=4 python ./methods/GMAN/BJ500/train.py --batch_size 8'
os.system(run)
elif data == 'METR-LA':
run = 'CUDA_VISIBLE_DEVICES=4 python ./methods/GMAN/METR/train.py'
os.system(run)
elif data == 'PEMS-BAY':
run = 'CUDA_VISIBLE_DEVICES=4 python ./methods/GMAN/PeMS/train.py'
os.system(run)
elif model == 'MTGNN':
if data == 'BJ':
run = 'python ./methods/MTGNN/train_multi_step.py --adj_data ~/NE-BJ/adj_mat_BJ.pkl --data ~/NE-BJ --num_nodes 500 --runs 3 --device cuda:1 --epochs 1000 --print_every 1000 --buildA_true True --expid 80 --node_dim 80'
os.system(run)
elif data == 'METR-LA':
run = ''
os.system(run)
elif data == 'PEMS-BAY':
run = ''
os.system(run)
if __name__ == "__main__":
main()