-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmdp_dp_solver.py
304 lines (245 loc) · 6.21 KB
/
mdp_dp_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/python 3.5
# -*-coding:utf-8:-*-
'''
Markov Decision Process Dynamic Programming Solver
Note: it is for action -> state mapping
Author: Jing Wang
'''
import numpy as np
from copy import deepcopy
import random
class MDP(object):
def __init__(self, N):
self.gamma = 1
self.N = N
def isEnd(self, state):
'''
check if the state is end state
Args:
state
Return:
boolean variable
'''
return state == self.N
def getActions(self, state):
'''
get actions and probability of actions
'''
result = []
if state + 1 <= self.N:
result.append((0.5, 'walk'))
if state * 2 <= self.N:
result.append((0.5, 'tram'))
return result
def succAndReward(self, state, action):
if action == 'walk':
return (state + 1, -1)
if action == 'tram':
return (state * 2, -2)
def transform(self, s1, s2):
return 1
def states(self):
return list(range(1, N+1))
class PolicyIteration(object):
def __init__(self):
self.pi = {}
def initializePolicy(self, mdp):
for state in mdp.states():
actions = mdp.getActions(state)
if len(actions) != 0:
self.pi[state] = random.choice(actions)[1]
else:
self.pi[state] = None
def policyEvaluation(self, mdp):
'''
evaluate current policy
Args:
mdp (class object)
Return:
V (dict): value function, key is state,
value is value of each state
'''
epsilon = 1e-6
## initialize value function
V = {}
for state in mdp.states():
V[state] = 0
def Value(state, action):
newState, reward = mdp.succAndReward(state, action)
return reward + mdp.gamma * V[newState] * mdp.transform(state, newState)
## repeat to converge
while True:
newV = {}
for state in mdp.states(): # loop for each state
# check end state
if mdp.isEnd(state):
newV[state] = 0
continue
action = self.pi[state]
# update value function
newV[state] = Value(state, action)
# check tolerance
if max([abs(newV[state] - V[state]) for state in mdp.states()]) <= epsilon:
break
else:
V = newV
return V
def policyImprovement(self, mdp):
'''
improve policy
Args:
mdp (class object)
Return:
pi (dict): best action for each state
'''
for state in mdp.states():
if mdp.isEnd(state): continue
V = self.policyEvaluation(mdp)
qValues = []
for (prob, action) in mdp.getActions(state):
newState, reward = mdp.succAndReward(state, action)
q = reward + mdp.gamma * V[newState] * mdp.transform(state, newState)
qValues.append(q)
bestIndex = qValues.index(max(qValues))
bestAction = mdp.getActions(state)[bestIndex][1]
self.pi[state] = bestAction
def solve(self, mdp):
iterCnt = 0
stop = True
self.initializePolicy(mdp)
while True:
iterCnt += 1
print('Iteration: ', iterCnt)
piCopy = deepcopy(self.pi)
# self.policyEvaluation(mdp)
self.policyImprovement(mdp)
for state in mdp.states():
if piCopy[state] != self.pi[state]:
stop = False
if stop:
break
stop = True
class ValueIteration(object):
def __init__(self):
self.pi = {}
def solve(self, mdp):
iterCnt = 0
epsilon = 1e-6
## initialize value function
V = {}
for state in mdp.states():
V[state] = 0
def Value(state, action):
newState, reward = mdp.succAndReward(state, action)
return reward + mdp.gamma * V[newState] * mdp.transform(state, newState)
while True:
newV = {}
iterCnt += 1
print('Iteration: ', iterCnt)
for state in mdp.states():
if mdp.isEnd(state):
newV[state] = 0
self.pi[state] = None
continue
newV[state] = max([Value(state, action) \
for (prob, action) in mdp.getActions(state)])
self.pi[state] = max([(Value(state, action), action) \
for (prob, action) in mdp.getActions(state)], \
key = lambda x: x[0])[1]
# check tolerance
if max([abs(newV[state] - V[state]) for state in mdp.states()]) <= epsilon:
break
else:
V = newV
class MazeMDP(object):
def __init__(self, size):
'''
Args:
size (int): e.g. 5, which is 5 * 5 grid world
'''
self.size = size
self.gamma = 0.9
self.walls = [(3, 0), (3, 1), (0, 2), (1, 2), (2, 4), (3, 4), (4, 4)]
def isEnd(self, state):
return state == (4, 2)
def startState(self):
return (0, 0)
def getActions(self, state):
actions = []
x, y = state
xmin, ymin = 0, 0
cnt = 0
xmax, ymax = self.size - 1, self.size - 1
if x + 1 <= xmax and (x + 1, y) not in self.walls:
cnt += 1
actions.append((0.25, 'right'))
if x - 1 >= xmin and (x - 1, y) not in self.walls:
cnt += 1
actions.append((0.25, 'left'))
if y - 1 >= ymin and (x, y - 1) not in self.walls:
cnt += 1
actions.append((0.25, 'up'))
if y + 1 <= ymax and (x, y + 1) not in self.walls:
cnt += 1
actions.append((0.25, 'down'))
actions = [(1./ cnt, act) for _, act in actions]
# random.shuffle(actions)
return actions
def succAndReward(self, state, action):
newState = None
x, y = state
if action == 'up':
newy = y - 1
if (x, newy) in self.states():
newState = (x, newy)
else:
newState = (x, y)
elif action == 'down':
newy = y + 1
if (x, newy) in self.states():
newState = (x, newy)
else:
newState = (x, y)
elif action == 'left':
newx = x - 1
if (newx, y) in self.states():
newState = (newx, y)
else:
newState = (x, y)
elif action == 'right':
newx = x + 1
if (newx, y) in self.states():
newState = (newx, y)
else:
newState = (x, y)
if newState in self.walls:
reward = -float('inf')
elif newState == (4, 2):
reward = 100
else:
reward = 0
return (newState, reward)
def transform(self, s1, s2):
return 1
def states(self):
result = []
for x in range(self.size):
for y in range(self.size):
result.append((x, y))
return result
if __name__ == '__main__':
mdp = MazeMDP(5)
## It is likely not to converge
# print('State: ', mdp.states())
# piter = PolicyIteration()
# piter.solve(mdp)
# print('policy iteration: ', piter.pi)
viter = ValueIteration()
viter.solve(mdp)
print('value iteration: ', viter.pi)
state = mdp.startState()
while not mdp.isEnd(state):
action = viter.pi[state]
newState, _ = mdp.succAndReward(state, action)
print('State {} -> New State {} by Action {}'.format(state, newState, action))
state = newState