-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathddpg.py
207 lines (161 loc) · 5.74 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# /usr/bin/env python 3.6
# -*-coding:utf-8-*-
'''
Deep Deterministic Policy Gradient (DDPG)
Reference Link:
Author: Jing Wang
'''
# set up
import numpy as np
import util
import model
import gym
import matplotlib.pyplot as plt
import random
from copy import deepcopy
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical
from torch.autograd import Variable
from torch.nn.utils.convert_parameters import vector_to_parameters, parameters_to_vector
CAPACITY = 100000
BATCHSIZE = 128
GAMMA = 0.99
# set device cpu or gpu
random.seed(100)
replay_memory = util.ReplayMemory(CAPACITY)
class DDPG(object):
def __init__(self, env, actor, critic, target_actor, target_critic, num_episode, replay_memory, gamma, lr = 0.001):
self.env = env
self.actor = actor
self.critic = critic
self.target_actor = target_actor
self.target_critic = target_critic
self.num_episode = num_episode
self.gamma = gamma
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr = 1e-3)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr = 1e-4)
self.replay_memory = replay_memory
self.lr = lr
self.tau = 0.001
self.loss_func = nn.MSELoss()
def step(self):
'''Optimize step'''
reward_list = []
for i in range(self.num_episode):
state = self.env.reset()
# random exploration noise
done = False
reward_sum = 0
# noise = np.random.random(action_size)
noise = np.zeros(action_size)
while not done:
# select action
action = self.select_action(state)
selected_action = np.argmax(action + noise)
new_state, reward, done, _ = self.env.step(selected_action)
# push memory
if done:
new_state = None
self.replay_memory.push(util.Transition(state, action, new_state, reward))
state = new_state
reward_sum += reward
reward_list.append(reward_sum)
for _ in range(20):
self.train()
average_reward = np.mean(reward_list[-100:])
if i % 100 == 0:
print("Iteration: {}, last 100 average reward: {}, average reward: {}".format(i + 1, \
average_reward, np.mean(reward_list)))
if average_reward > self.env.spec.reward_threshold:
print("Solved!")
break
return reward_list
def select_action(self, state):
state = torch.Tensor(state).float().unsqueeze(0)
action_scores = self.actor(state)
return action_scores.data.numpy()
def train(self):
if len(self.replay_memory) < BATCHSIZE:
return
# transitions = memory.sample(BATCHSIZE)
batch = self.replay_memory.sample(BATCHSIZE)
# batch = util.Transition(*zip(*transitions))
not_end_index = torch.tensor(tuple(map(lambda s:
s.next_state is not None, batch)),
dtype = torch.uint8)
not_end = torch.cat([torch.Tensor(b.next_state).float() for b in batch
if b.next_state is not None]).view(-1, state_size)
state_batch= torch.cat([torch.Tensor(b.state).float() for b in batch]).view(-1, state_size)
action_batch = torch.cat([torch.Tensor(b.action).float() for b in batch]).view(-1, action_size)
reward_batch = torch.cat([torch.Tensor([b.reward]).float() for b in batch])
# print("action batch: ", action_batch.unsqueeze(1))
# print("state batch size: ", state_batch.size())
# get q value by correspondent action position
# print(action_batch.long().view(-1).size())
# print(self.critic([state_batch, action_batch]).size())
Qval = self.critic([state_batch, action_batch]).view(-1)
# get new q value
new_Qval = torch.zeros_like(not_end_index, dtype = torch.float) # by default,
# the q-value of ending state is 0
next_action_batch = self.target_actor(not_end).view(-1, action_size).float()
new_Qval[not_end_index] = self.target_critic([not_end, next_action_batch]).view(-1).detach() # detach copy
target = new_Qval * self.gamma + reward_batch
# compute loss using Huber loss
# reference: https://en.wikipedia.org/wiki/Huber_loss
# newQval shape (BATCHSIZE,), should add one dimension, unsqueeze 1
# clear gradients
self.critic_optimizer.zero_grad()
loss = self.loss_func(Qval, target)
# self.critic.zero_grad()
loss.backward()
self.critic_optimizer.step()
# update actor
# self.actor.zero_grad()
self.actor_optimizer.zero_grad()
actions = self.actor(state_batch).view(-1, action_size).float()
policy_loss = - self.critic([state_batch, actions]).mean()
policy_loss.backward()
self.actor_optimizer.step()
self.target_actor = self.update_target(self.actor, self.target_actor)
self.target_critic = self.update_target(self.critic, self.target_critic)
def update_target(self, source, target):
new_target_param = parameters_to_vector(source.parameters()) * self.tau + \
(1 - self.tau) * parameters_to_vector(target.parameters())
vector_to_parameters(new_target_param, target.parameters())
return target
if __name__ == '__main__':
env = gym.make("CartPole-v0")
global state_size, action_size
state_size = int(np.product(env.observation_space.shape))
action_size = int(env.action_space.n)
num_episode = 800
critic = model.Critic(state_size, action_size)
actor = model.Actor(state_size, action_size)
# actor.eval()
# critic.eval()
# target network
target_critic = deepcopy(critic)
target_actor = deepcopy(actor)
ddpg = DDPG(env, actor, critic, target_actor, target_critic, num_episode, replay_memory, gamma = 0.99)
running_rewards = ddpg.step()
rewards = np.array(running_rewards)
rewards_mean = np.mean(rewards)
rewards_std = np.std(rewards)
plt.plot(running_rewards)
plt.fill_between(
range(len(rewards)),
rewards-rewards_std,
rewards+rewards_std,
color='orange',
alpha=0.2
)
plt.title(
'DDPG Rewards Mean: {:.2f}, Standard Deviation: {:.2f}'.format(
np.mean(running_rewards),
np.std(running_rewards)
)
)
plt.show()