-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfullsolver.py
599 lines (530 loc) · 20.3 KB
/
fullsolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import argparse
import os
import sys
import cv2
import numpy as np
from tensorflow.keras.models import load_model
from settings import *
save_folder = "images_save/"
images_extension = [".jpg", ".jpeg", ".png"]
font = cv2.FONT_HERSHEY_SIMPLEX
def recreate_img_filled(frame, im_grids, pointGrid, transform_matrix, ratio=None):
target_h, target_w = frame.shape[:2]
if ratio:
im_final = frame.copy()
for i, points_grid in enumerate(pointGrid):
pointGrid[i] = np.array(points_grid, dtype=np.float32) * ratio
else:
im_final = frame
new_im = np.zeros((frame.shape[0], frame.shape[1], 3), np.uint8)
for im_grid, points_grid, transform_matrix in zip(im_grids, pointGrid, transform_matrix):
if im_grid is None:
for point in points_grid:
x, y = point
cv2.circle(new_im, (x, y), 6, (255, 0, 0), 3)
else:
if ratio:
init_pts = np.array([[0, 0], [target_w_grid - 1, 0], [target_w_grid - 1, target_h_grid - 1],
[0, target_h_grid - 1]], dtype=np.float32)
transform_matrix = cv2.getPerspectiveTransform(
init_pts, points_grid)
new_im = cv2.add(new_im, cv2.warpPerspective(
im_grid, transform_matrix, (target_w, target_h)))
_, mask = cv2.threshold(cv2.cvtColor(
new_im, cv2.COLOR_BGR2GRAY), 1, 255, cv2.THRESH_BINARY)
im_final = cv2.bitwise_and(im_final, im_final, mask=cv2.bitwise_not(mask))
im_final = cv2.add(im_final, new_im)
return im_final
def write_solved_grids(frames, grids_matrix, solved_grids):
ims_filled_grid = []
for frame, grid_init, solved_grid in zip(frames, grids_matrix, solved_grids):
if solved_grid is None:
ims_filled_grid.append(None)
continue
im_filled_grid = np.zeros_like(frame)
h_im, w_im = frame.shape[:2]
for y in range(9):
for x in range(9):
if grid_init[y, x] != 0:
continue
true_y, true_x = int((y + 0.5) * h_im /
9), int((x + 0.5) * w_im / 9)
digit = str(solved_grid[y, x])
(text_width, text_height) = cv2.getTextSize(
digit, font, fontScale=1.2, thickness=2)[0]
cv2.putText(im_filled_grid, digit,
(true_x - int(text_width / 2),
true_y + int(text_height / 2)),
font, 1.2, (0, 3, 0), 2 * 3)
cv2.putText(im_filled_grid, digit,
(true_x - int(text_width / 2),
true_y + int(text_height / 2)),
font, 1.2, (255, 0, 0), 2)
ims_filled_grid.append(im_filled_grid)
return ims_filled_grid
def is_affected(x1, y1, x2, y2):
if x1 == x2:
return True
if y1 == y2:
return True
if x1 // 3 == x2 // 3 and y1 // 3 == y2 // 3:
return True
return False
class Sudoku:
def __init__(self, sudo=None, grid=None):
self.possible_values_grid = np.empty((9, 9), dtype=list)
if sudo is None:
self.grid = np.zeros((9, 9), dtype=int)
self.count_possible_grid = np.zeros((9, 9), dtype=int)
self.init_sudo(grid)
else:
self.grid = sudo.grid.copy()
for y in range(9):
for x in range(9):
self.possible_values_grid[y,
x] = sudo.possible_values_grid[y, x].copy()
self.count_possible_grid = sudo.count_possible_grid.copy()
def __str__(self):
string = "-" * 18
for y in range(9):
string += "\n|"
for x in range(9):
string += str(self.grid[y, x]) + "|"
string += "\n"
string += "-" * 18
return string
def apply_hypothesis_value(self, x, y, value):
self.grid[y, x] = value
self.possible_values_grid[y, x] = []
self.count_possible_grid[y, x] = 0
for y2 in range(9):
for x2 in range(9):
if is_affected(x, y, x2, y2) and self.grid[y2, x2] == 0:
list_possible_values = self.possible_values_grid[y2, x2]
if value in list_possible_values:
list_possible_values.remove(value)
new_len = len(list_possible_values)
self.count_possible_grid[y2, x2] = new_len
def init_sudo(self, grid):
for y in range(9):
for x in range(9):
value = grid[y][x]
self.grid[y, x] = value
if value == 0:
self.possible_values_grid[y, x] = [
1, 2, 3, 4, 5, 6, 7, 8, 9]
self.count_possible_grid[y, x] = 9
else:
self.possible_values_grid[y, x] = []
self.get_possible_values()
def is_filled(self):
return 0 not in self.grid
def get_possible_values(self):
for y in range(9):
for x in range(9):
if self.grid[y, x] != 0:
continue
possible_values = self.get_1_possible_values(x, y)
self.possible_values_grid[y, x] = possible_values
self.count_possible_grid[y, x] = len(possible_values)
def get_1_possible_values(self, x, y):
possible_values = self.possible_values_grid[y, x]
self.check_line(y, possible_values)
self.check_column(x, possible_values)
self.check_square(x, y, possible_values)
return possible_values
def check_line(self, y, possible_values):
line = self.grid[y, :]
for value in reversed(possible_values):
if value in line:
possible_values.remove(value)
def check_column(self, x, possible_values):
column = self.grid[:, x]
for value in reversed(possible_values):
if value in column:
possible_values.remove(value)
def check_square(self, x, y, possible_values):
x1 = 3 * (x // 3)
y1 = 3 * (y // 3)
x2, y2 = x1 + 3, y1 + 3
square = self.grid[y1:y2, x1:x2]
for value in reversed(possible_values):
if value in square:
possible_values.remove(value)
def apply_and_actualize(self, x, y, value):
self.grid[y, x] = value
self.possible_values_grid[y, x] = []
self.count_possible_grid[y, x] = 0
for y2 in range(9):
for x2 in range(9):
if is_affected(x, y, x2, y2) and self.grid[y2, x2] == 0:
list_possible_values = self.possible_values_grid[y2, x2]
if value in list_possible_values:
list_possible_values.remove(value)
new_len = len(list_possible_values)
if new_len == 0:
return False
self.count_possible_grid[y2, x2] = new_len
return True
def apply_unique_possibilities(self):
for y in range(9):
for x in range(9):
if self.grid[y, x] == 0 and self.count_possible_grid[y, x] == 1:
value = self.possible_values_grid[y, x][0]
if not self.apply_and_actualize(x, y, value):
return False
return True
def verify_new_result(self, my_zip):
for x, y in my_zip:
val = self.grid[y, x]
self.grid[y, x] = 0
line = self.grid[y, :]
column = self.grid[:, x]
x1 = 3 * (x // 3)
y1 = 3 * (y // 3)
x2, y2 = x1 + 3, y1 + 3
square = self.grid[y1:y2, x1:x2]
test = val in line or val in column or val in square
self.grid[y, x] = val
if test:
return False
return True
def should_make_hypothesis(self):
return 1 not in self.count_possible_grid
def best_hypothesis(self):
count_less_options = 9
best_x = 0
best_y = 0
for y in range(9):
for x in range(9):
if self.grid[y, x] != 0:
continue
if self.count_possible_grid[y, x] == 2:
return x, y, self.possible_values_grid[y, x]
elif self.count_possible_grid[y, x] < count_less_options:
best_x, best_y = x, y
count_less_options = self.count_possible_grid[y, x]
if count_less_options == 0:
return None, None, []
return best_x, best_y, self.possible_values_grid[best_y, best_x]
def verify_result(self):
for y in range(9):
for x in range(9):
grid = self.grid.copy()
grid[y, x] = 0
line = grid[y, :]
column = grid[:, x]
x1 = 3 * (x // 3)
y1 = 3 * (y // 3)
x2, y2 = x1 + 3, y1 + 3
square = grid[y1:y2, x1:x2]
val = self.grid[y, x]
if val in line or val in column or val in square:
return False
return True
def solve_grid(sudo):
while not sudo.is_filled():
if sudo.should_make_hypothesis():
x, y, possible_values_hyp = sudo.best_hypothesis()
if not possible_values_hyp:
return False, None
for val in possible_values_hyp:
new_sudo = Sudoku(sudo=sudo)
new_sudo.apply_hypothesis_value(x, y, val)
ret, solved_sudo = solve_grid(new_sudo)
if ret:
return True, solved_sudo
else:
del new_sudo
return False, None
else:
ret = sudo.apply_unique_possibilities()
if ret is False:
del sudo
return False, None
return True, sudo
def main_solve_grid(grid):
if grid is None:
return None
sudo = Sudoku(grid=grid)
ret, finished_sudo = solve_grid(sudo)
if ret:
return finished_sudo.grid
else:
return None
def solve_grids(grids):
finished_grids = []
for grid in grids:
finished_grids.append(main_solve_grid(grid))
if all(elem is None for elem in finished_grids):
return None
return finished_grids
def extract_digits_single(img, model, display=False):
h_im, w_im = img.shape[:2]
im_prepro, gray_enhance = processing_im_grid(img)
im_contours = img.copy()
contours, _ = cv2.findContours(
im_prepro, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img_digits = []
loc_digits = []
i = 1
j = 1
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
y_true, x_true = y + h / 2, x + w / 2
if x_true < lim_bord or y_true < lim_bord or x_true > w_im - lim_bord or y_true > h_im - lim_bord:
print("i", i)
i = i+1
continue
if thresh_h_low < h < thresh_h_high and thresh_area_low < w * h < thresh_area_high:
# if there is digit inside a box grid
print("j", j)
j = j+1
if True:
cv2.drawContours(im_contours, [cnt], -1, (0, 255, 0), 1)
y1, y2 = y - offset_y, y + h + offset_y
border_x = max(1, int((y2 - y1 - w) / 2))
x1, x2 = x - border_x, x + w + border_x
digit_cut = gray_enhance[max(y1, 0):min(
y2, h_im), max(x1, 0):min(x2, w_im)]
_, digit_thresh = cv2.threshold(digit_cut,
0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img_digits.append(cv2.resize(digit_thresh, (28, 28),
interpolation=cv2.INTER_NEAREST).reshape(28, 28, 1))
loc_digits.append([y_true, x_true])
cv2.imshow("im_contours", im_contours)
cv2.waitKey()
print("img_digits", img_digits[0][0])
img_digits_np = np.array(img_digits) / 255.0
print("img_digits_np", img_digits_np[0][0])
preds_proba = model.predict(img_digits_np)
print("preds_proba", preds_proba)
preds = []
nbr_digits_extracted = 0
adapted_thresh_conf_cnn = thresh_conf_cnn
for pred_proba in preds_proba:
arg_max = np.argmax(pred_proba)
if pred_proba[arg_max] > adapted_thresh_conf_cnn and arg_max < 9:
preds.append(arg_max + 1)
nbr_digits_extracted += 1
else:
preds.append(-1)
if nbr_digits_extracted < min_digits_extracted:
cv2.imshow("im_contours", im_contours)
cv2.waitKey()
return None
print("preds")
print(preds)
grid = fill_grid(preds, loc_digits, h_im, w_im)
return grid
def extract_digits(img_grids, model):
print("Extracting")
print(img_grids)
grids = []
for img in img_grids:
grids.append(extract_digits_single(img, model))
print("grids")
print(grids)
return grids
def processing_im_grid(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_enhance = (gray - gray.min()) * int(255 / (gray.max() - gray.min()))
blurred = cv2.GaussianBlur(gray_enhance, (11, 11), 0)
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, block_size_grid, mean_sub_grid)
return thresh, gray_enhance
def fill_grid(preds, loc_digits, h_im, w_im):
grid = np.zeros((9, 9), dtype=int)
for pred, loc in zip(preds, loc_digits):
if pred > 0:
y, x = loc
true_y = int(9 * y // h_im)
true_x = int(9 * x // w_im)
grid[true_y, true_x] = pred
return grid
def undistorted_grids(frame, extreme_points):
undistorted = []
true_pointGrid = []
transform_matrix = []
print("extreme_points")
print(extreme_points)
for points_grid in extreme_points:
print("points grid")
print(points_grid)
points_grid = np.array(points_grid, dtype=np.float32)
print(points_grid)
final_pts = np.array(
[[0, 0], [target_w_grid - 1, 0],
[target_w_grid - 1, target_h_grid - 1], [0, target_h_grid - 1]],
dtype=np.float32)
print("final_pts")
print(final_pts)
M = cv2.getPerspectiveTransform(points_grid, final_pts)
print("M")
print(M)
undistorted.append(cv2.warpPerspective(
frame, M, (target_w_grid, target_h_grid)))
print("undistorted")
print(undistorted[-1])
cv2.imshow("test", undistorted[-1])
cv2.waitKey()
true_pointGrid.append(points_grid)
transform_matrix.append(np.linalg.inv(M))
return undistorted, true_pointGrid, transform_matrix
def find_corners(contour):
top_left = [10000, 10000]
top_right = [0, 10000]
bottom_right = [0, 0]
bottom_left = [10000, 0]
mean_x = np.mean(contour[:, :, 0])
mean_y = np.mean(contour[:, :, 1])
for j in range(len(contour)):
x, y = contour[j][0]
if x > mean_x:
if y > mean_y:
bottom_right = [x, y]
else:
top_right = [x, y]
else:
if y > mean_y:
bottom_left = [x, y]
else:
top_left = [x, y]
return [top_left, top_right, bottom_right, bottom_left]
def get_corners(preprocessed_img):
img_contours = preprocessed_img.copy()
contours, _ = cv2.findContours(
preprocessed_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
best_contours = []
contours = sorted(contours, key=cv2.contourArea, reverse=True)
biggest_area = cv2.contourArea(contours[0])
for cnt in contours:
area = cv2.contourArea(cnt)
if area < smallest_area_allow:
break
if area > biggest_area / ratio_lim:
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, approx_poly_coef * peri, True)
if len(approx) == 4:
best_contours.append(approx)
if not best_contours:
return None
print("\n best_contours")
print(best_contours)
corners = []
for best_contour in best_contours:
print("\n best_contour")
print(best_contour)
corners.append(find_corners(best_contour))
print("\n cornrs")
print(corners)
i = 1
j = 1
for best_contour in best_contours:
print("best contour", i)
print(best_contour)
i = i+1
cv2.drawContours(img_contours, [best_contour], 0, (0, 0, 255), 3)
for corner in corners:
print("corner", j)
print(corner)
for point in corner:
print(point, j)
j = j+1
x, y = point
cv2.circle(img_contours, (x, y), 10, (255, 0, 0), 3)
cv2.imshow('bestcntro', img_contours)
cv2.waitKey()
return corners
def preprocess_img(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
cv2.imshow('hello', blurred)
cv2.waitKey()
thresh = cv2.adaptiveThreshold(blurred, 255,
cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,
block_size_big, mean_sub_big)
cv2.imshow('thresh', thresh)
cv2.waitKey()
thresh_not = cv2.bitwise_not(thresh)
cv2.imshow('threshnot', thresh_not)
cv2.waitKey()
kernel_close = np.ones((5, 5), np.uint8)
closing = cv2.morphologyEx(thresh_not, cv2.MORPH_CLOSE, kernel_close)
cv2.imshow('clsoing', closing)
cv2.waitKey()
dilate = cv2.morphologyEx(closing, cv2.MORPH_DILATE, kernel_close)
cv2.imshow('dilate', dilate)
cv2.waitKey()
return dilate
def grid_detector(frame):
preprocessed_img = preprocess_img(frame)
# get 4 most extreme points by contours
extreme_points = get_corners(
preprocessed_img)
if extreme_points is None:
return None, None, None
# undistorted_grids will return the image in small with only useful portion
grids_final, pointGrid, transform_matrix = undistorted_grids(
frame, extreme_points)
return grids_final, pointGrid, transform_matrix
def main_img(im_path, model, save=False):
frame = cv2.imread(im_path)
if frame is None:
sys.exit(3)
imgGridsFinal, pointGrid, transform_matrix = grid_detector(
frame)
if imgGridsFinal is None:
sys.exit(3)
grids_matrix = extract_digits(imgGridsFinal, model)
if all(elem is None for elem in grids_matrix):
sys.exit(3)
print("grids_matrix", grids_matrix)
grids_solved = solve_grids(grids_matrix)
if grids_solved is None:
cv2.imshow('grid_extract', imgGridsFinal[0])
cv2.imwrite(save_folder + os.path.splitext(os.path.basename(im_path))
[0] + "_failed.jpg", imgGridsFinal[0])
cv2.waitKey()
sys.exit(3)
print("grids_solved", grids_solved)
ims_filled_grid = write_solved_grids(
imgGridsFinal, grids_matrix, grids_solved)
print("ims_filled_grid", ims_filled_grid)
im_final = recreate_img_filled(
frame, ims_filled_grid, pointGrid, transform_matrix)
if save:
if not os.path.isdir(save_folder):
os.makedirs(save_folder)
cv2.imwrite(save_folder + os.path.splitext(os.path.basename(im_path))
[0] + "_solved.jpg", im_final)
if len(ims_filled_grid) == 1:
cv2.imshow('imgabc', frame)
cv2.imshow('grid_extract123', imgGridsFinal[0])
cv2.imshow('grid_filled123', ims_filled_grid[0])
cv2.imshow('im_final123', im_final)
cv2.waitKey()
def setting_args():
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--i_path",
help="Path of the input image",
)
parser.add_argument("-mp", "--model_path", type=str,
default='model/my_model.h5')
parser.add_argument("-s", "--save", type=int, choices=[1], default=1)
args = parser.parse_args()
if args.i_path is None:
sys.exit(3)
try:
model = load_model(args.model_path)
except OSError:
sys.exit(3)
return args, model
def main_function():
args, model = setting_args()
if args.i_path.endswith(tuple(images_extension)):
main_img(args.i_path, model, args.save)
else:
sys.exit(3)
if __name__ == '__main__':
main_function()