-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgrid_detector.py
143 lines (125 loc) · 4.6 KB
/
grid_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import time
import cv2
import numpy as np
from settings import *
def preprocess_img(frame):
print("preprocess_img called")
# dilates the image to increase white color
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
cv2.imshow('hello', blurred)
cv2.waitKey()
thresh = cv2.adaptiveThreshold(blurred, 255,
cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,
block_size_big, mean_sub_big)
cv2.imshow('thresh', thresh)
cv2.waitKey()
thresh_not = cv2.bitwise_not(thresh)
cv2.imshow('threshnot', thresh_not)
cv2.waitKey()
kernel_close = np.ones((5, 5), np.uint8)
# closing is dilate and then erosion
closing = cv2.morphologyEx(thresh_not, cv2.MORPH_CLOSE, kernel_close)
cv2.imshow('clsoing', closing)
cv2.waitKey()
# Delete space between line
dilate = cv2.morphologyEx(closing, cv2.MORPH_DILATE, kernel_close)
cv2.imshow('dilate', dilate)
cv2.waitKey()
return dilate
def find_corners(contour):
top_left = [10000, 10000]
top_right = [0, 10000]
bottom_right = [0, 0]
bottom_left = [10000, 0]
mean_x = np.mean(contour[:, :, 0])
mean_y = np.mean(contour[:, :, 1])
for j in range(len(contour)):
x, y = contour[j][0]
if x > mean_x: # On right
if y > mean_y: # On bottom
bottom_right = [x, y]
else:
top_right = [x, y]
else:
if y > mean_y: # On bottom
bottom_left = [x, y]
else:
top_left = [x, y]
return [top_left, top_right, bottom_right, bottom_left]
def get_corners(preprocessed_img):
# here we find the biggest contours and then we draw contors and find 4 corners and circle the 4 corners
img_contours = preprocessed_img.copy()
contours, _ = cv2.findContours(
preprocessed_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
best_contours = []
contours = sorted(contours, key=cv2.contourArea, reverse=True)
biggest_area = cv2.contourArea(contours[0])
for cnt in contours:
area = cv2.contourArea(cnt)
if area < smallest_area_allow:
break
if area > biggest_area / ratio_lim:
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, approx_poly_coef * peri, True)
if len(approx) == 4:
best_contours.append(approx)
print("best contours")
print(best_contours)
if not best_contours:
return None
corners = []
for best_contour in best_contours:
corners.append(find_corners(best_contour))
print("corners")
print(corners)
for best_contour in best_contours:
print("best cont1")
cv2.drawContours(img_contours, [best_contour], 0, (0, 255, 255), 3)
for corner in corners:
print("best cont2")
for point in corner:
print("best cont3")
x, y = point
cv2.circle(img_contours, (x, y), 10, (255, 0, 0), 3)
cv2.imshow('bestcntro', img_contours)
cv2.waitKey()
return corners
def undistorted_grids(frame, extreme_points):
print("undistorted_grids")
undistorted = []
true_pointGrid = []
transform_matrix = []
for points_grid in extreme_points:
points_grid = np.array(points_grid, dtype=np.float32)
final_pts = np.array(
[[0, 0], [target_w_grid - 1, 0],
[target_w_grid - 1, target_h_grid - 1], [0, target_h_grid - 1]],
dtype=np.float32)
M = cv2.getPerspectiveTransform(points_grid, final_pts)
undistorted.append(cv2.warpPerspective(
frame, M, (target_w_grid, target_h_grid)))
cv2.imshow("test", undistorted[-1])
cv2.waitKey()
true_pointGrid.append(points_grid)
transform_matrix.append(np.linalg.inv(M))
print("undistorted")
print(len(undistorted))
print("true_pointGrid")
print(len(true_pointGrid))
print("transform_matrix")
print(len(transform_matrix))
return undistorted, true_pointGrid, transform_matrix
def grid_detector(frame):
preprocessed_img = preprocess_img(frame)
# here we have black and white preprocessed image
print("getting lines and corners")
extreme_points = get_corners(
preprocessed_img)
print(extreme_points)
if extreme_points is None:
print("contours cannot be detected")
return None, None, None
grids_final, pointGrid, transform_matrix = undistorted_grids(
frame, extreme_points)
return grids_final, pointGrid, transform_matrix