-
Notifications
You must be signed in to change notification settings - Fork 143
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
关于时序数据是否具有周期的检测方法 #8
Comments
因为我们业务数据是以天为一周期,一小时一个点,所以设置的是24 |
明白了,但是本文使用了statsmodels工具经进行趋势提取,为什么不采用stl相关的呢。这几种方式对比下来,是不是statsmodels提供的方法更加准确? |
您所指的stl相关是什么? |
|
@jixinpu hi: |
我在进行周期性提取之前,首先判断它是否具有周期性,使用的是分段dtw方法,具体可以看代码aiopstools/examples/ts_period_predict.py。 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@jixinpu hi:
在周期性检测方法中,发现代码:
split_data = np.array(smooth_data).reshape(-1, 24)
该代码目的是对时间序列数据进行分段,但是参数为什么假定是24呢
The text was updated successfully, but these errors were encountered: