-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch-ignore-train-sigmoid.py
243 lines (182 loc) · 9.2 KB
/
search-ignore-train-sigmoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
""" Search cell """
import os
import torch
import torch.nn as nn
import numpy as np
from tensorboardX import SummaryWriter
from config import SearchConfig
import utils
from models.search_cnn import SearchCNNController
from architect_ignore_sigmoid import Architect
from visualize import plot
config = SearchConfig()
device = torch.device("cuda")
# tensorboard
writer = SummaryWriter(log_dir=os.path.join(config.path, "tb"))
writer.add_text('config', config.as_markdown(), 0)
logger = utils.get_logger(os.path.join(config.path, "{}.log".format(config.name)))
config.print_params(logger.info)
def main():
logger.info("Logger is set - training start")
# set default gpu device id
torch.cuda.set_device(config.gpus[0])
# set seed
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.benchmark = True
# get data with meta info
input_size, input_channels, n_classes, train_data = utils.get_data(
config.dataset, config.data_path, cutout_length=0, validation=False)
# split data to train/validation
n_train = len(train_data)
split = n_train // 2
indices = list(range(n_train))
#initialize the likehood with equal weights on each data
likelihood=torch.nn.Parameter(torch.ones(len(indices[:split])).cuda(),requires_grad=True)
net_crit = nn.CrossEntropyLoss().to(device)
model = SearchCNNController(input_channels, config.init_channels, n_classes, config.layers,
net_crit, indices, split, device_ids=config.gpus)
model = model.to(device)
# weights optimizer
w_optim = torch.optim.SGD(model.weights(), config.w_lr, momentum=config.w_momentum,
weight_decay=config.w_weight_decay)
# alphas optimizer
alpha_optim = torch.optim.Adam(model.alphas(), config.alpha_lr, betas=(0.5, 0.999),
weight_decay=config.alpha_weight_decay)
# likelihood optimizer
# Likelihood_optim = torch.optim.Adam({likelihood}, config.alpha_lr, betas=(0.5, 0.999),
# # weight_decay=config.alpha_weight_decay
# )
Likelihood_optim = torch.optim.SGD({likelihood}, config.alpha_lr)
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[:split])
valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[split:])
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=config.batch_size,
# batch_size=8,
sampler=train_sampler,
num_workers=config.workers,
pin_memory=False)
valid_loader = torch.utils.data.DataLoader(train_data,
batch_size=config.batch_size,
sampler=valid_sampler,
num_workers=config.workers,
pin_memory=False)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
w_optim, config.epochs, eta_min=config.w_lr_min)
architect = Architect(model, config.w_momentum, config.w_weight_decay)
# training loop
best_top1 = 0.
for epoch in range(config.epochs):
lr_scheduler.step()
lr = lr_scheduler.get_lr()[0]
model.print_alphas(logger)
# training
train(train_loader, valid_loader, model, architect, w_optim, alpha_optim, lr, epoch, likelihood, Likelihood_optim, config.batch_size)
# validation
cur_step = (epoch+1) * len(train_loader)
top1 = validate(valid_loader, model, epoch, cur_step)
# log
# genotype
genotype = model.genotype()
logger.info("genotype = {}".format(genotype))
# genotype as a image
plot_path = os.path.join(config.plot_path, "EP{:02d}".format(epoch+1))
caption = "Epoch {}".format(epoch+1)
plot(genotype.normal, plot_path + "-normal", caption)
plot(genotype.reduce, plot_path + "-reduce", caption)
# save
if best_top1 < top1:
best_top1 = top1
best_genotype = genotype
is_best = True
else:
is_best = False
utils.save_checkpoint(model, config.path, is_best)
print("")
logger.info("Final best Prec@1 = {:.4%}".format(best_top1))
logger.info("Best Genotype = {}".format(best_genotype))
def train(train_loader, valid_loader, model, architect, w_optim, alpha_optim, lr, epoch, Likelihood, Likelihood_optim, batch_size):
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
cur_step = epoch*len(train_loader)
writer.add_scalar('train/lr', lr, cur_step)
model.train()
for step, ((trn_X, trn_y), (val_X, val_y)) in enumerate(zip(train_loader, valid_loader)):
trn_X, trn_y = trn_X.to(device, non_blocking=True), trn_y.to(device, non_blocking=True)
val_X, val_y = val_X.to(device, non_blocking=True), val_y.to(device, non_blocking=True)
N = trn_X.size(0)
# phase 2. architect step (alpha)
alpha_optim.zero_grad()
Likelihood, Likelihood_optim= architect.unrolled_backward(trn_X, trn_y, val_X, val_y, lr, w_optim, model, Likelihood, Likelihood_optim, batch_size, step)
alpha_optim.step()
# phase 1. child network step (w)
w_optim.zero_grad()
logits = model(trn_X)
sloss = model.criterion(logits, trn_y)
logger.info("standard loss = {}".format(sloss))
# Learning to ignore
'''
loss = 0
for d in range(len(trn_y)):
dataIndex = d + step*batch_size
loss = loss + Likelihood[dataIndex]*model.criterion(logits[d,:].unsqueeze(dim=0), trn_y[d].unsqueeze(dim=0))
loss = loss/(Likelihood.sum())
'''
ignore_crit = nn.CrossEntropyLoss(reduction='none').to(device)
dataIndex = len(trn_y)+step*batch_size
loss = torch.dot(torch.sigmoid(Likelihood[step*batch_size:dataIndex]), ignore_crit(logits, trn_y))
loss = loss/(torch.sigmoid(Likelihood[step*batch_size:dataIndex]).sum())
'''
loss = torch.dot(Likelihood[step*batch_size:dataIndex], ignore_crit(logits, trn_y))/(Likelihood[step*batch_size:dataIndex].sum())
'''
logger.info("weighted loss = {}".format(loss))
logger.info("Likelihood = {}, Likelihood sum= {}, sigmoid_Likelihood = {}, sigmoid_Likelihood sum={}, dataIndex = {}, step = {}".format(Likelihood, Likelihood.sum(), torch.sigmoid(Likelihood), torch.sigmoid(Likelihood).sum(), dataIndex, step))
loss.backward()
# gradient clipping
nn.utils.clip_grad_norm_(model.weights(), config.w_grad_clip)
w_optim.step()
prec1, prec5 = utils.accuracy(logits, trn_y, topk=(1, 5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(train_loader)-1:
logger.info(
"Train: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, config.epochs, step, len(train_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('train/loss', loss.item(), cur_step)
writer.add_scalar('train/top1', prec1.item(), cur_step)
writer.add_scalar('train/top5', prec5.item(), cur_step)
cur_step += 1
logger.info("Train: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg))
def validate(valid_loader, model, epoch, cur_step):
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
model.eval()
with torch.no_grad():
for step, (X, y) in enumerate(valid_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
logits = model(X)
loss = model.criterion(logits, y)
prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(valid_loader)-1:
logger.info(
"Valid: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, config.epochs, step, len(valid_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('val/loss', losses.avg, cur_step)
writer.add_scalar('val/top1', top1.avg, cur_step)
writer.add_scalar('val/top5', top5.avg, cur_step)
logger.info("Valid: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg))
return top1.avg
if __name__ == "__main__":
main()