-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest3.py
59 lines (45 loc) · 2.62 KB
/
test3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
# Original data points (now multiple values in one dimension)
original_data = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
# Example of conditioning data (simplified)
conditioning_data = np.array([0.1, 0.2, 0.3, 0.4, 0.5]) # This could represent any domain-specific features
# Function to add Gaussian noise
def add_noise(data, noise_level):
return data + np.random.normal(0, noise_level, data.shape)
# Placeholder model for noise prediction with conditioning
class NoisePredictor:
def __init__(self):
self.noise_factor = 0.25 # Initial guess
self.conditioning_effect = 0.1 # Initial guess for how much conditioning data influences noise estimation
def train(self, noisy_data, original_data, conditioning_data):
# Learn to estimate the noise added, incorporating the effect of conditioning data
estimated_noise = noisy_data - original_data
# Adjust the noise factor estimation based on conditioning
adjustment = conditioning_data * self.conditioning_effect
self.noise_factor = np.mean(np.abs((estimated_noise + adjustment) / noisy_data))
def predict_noise(self, data, conditioning_data):
# Apply noise factor adjusted by conditioning data
return (self.noise_factor + self.conditioning_effect * conditioning_data) * data
# Training Phase: Simulate the noise addition process and train to predict noise
def train_diffusion(data, conditioning_data, steps=10):
noise_levels = np.linspace(1, 0.1, steps) # Decreasing noise level
noisy_data = add_noise(data, noise_levels[0]) # Add initial large noise
predictor = NoisePredictor() # Initialize a simple noise predictor model
for t in range(1, steps):
current_noisy_data = add_noise(data, noise_levels[t])
predictor.train(current_noisy_data, data, conditioning_data)
return noisy_data, predictor
# Inference Phase: Simulate the denoising process
def inference_diffusion(noisy_data, conditioning_data, predictor, steps=10):
for t in range(steps):
predicted_noise = predictor.predict_noise(noisy_data, conditioning_data)
noisy_data -= predicted_noise # Remove predicted noise
print(f"After step {t+1}, data: {noisy_data}")
return noisy_data
# Run the training phase to simulate noise addition and train the predictor
noisy_data, predictor = train_diffusion(original_data, conditioning_data)
print("Starting noisy data:", noisy_data)
# Start inference from the noisy state using the trained predictor
recovered_data = inference_diffusion(noisy_data, conditioning_data, predictor)
print("Recovered data:", recovered_data)
print("Original data:", original_data)