-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathascii_img.py
629 lines (471 loc) · 20.4 KB
/
ascii_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
"""
TODO
this creates
a python file or raw string
holding the layers of the main color clustrers
which will be css/html to replace images
https://stackoverflow.com/questions/30097953/ascii-art-sorting-an-array-of-ascii-characters-by-brightness-levels-c-c
$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,"^`'.
could do RLE
https://stackoverflow.com/questions/18948382/run-length-encoding-in-python
from re import sub
def encode(text):
'''
Doctest:
>>> encode('WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW')
'12W1B12W3B24W1B14W'
'''
return sub(r'(.)\1*', lambda m: str(len(m.group(0))) + m.group(1),
text)
def decode(text):
'''
Doctest:
>>> decode('12W1B12W3B24W1B14W')
'WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW'
'''
return sub(r'(\d+)(\D)', lambda m: m.group(2) * int(m.group(1)),
text)
textin = "WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW"
assert decode(encode(textin)) == textin
"""
# great turning ascii earth
# https://speckyboy.com/css-javascript-ascii-artwork-snippets/
# https://www.jonathan-petitcolas.com/ascii-art-converter/
# better overlay several colored pre tags
# https://www.geeksforgeeks.org/converting-image-ascii-image-python/
# Python code to convert an image to ASCII image.
import sys
import random
import argparse
import numpy as np
import math
import PIL
from PIL import Image, ImageOps
"""
https://stackoverflow.com/questions/3241929/python-find-dominant-most-common-color-in-an-image
Here's code making use of Pillow and Scipy's cluster package.
For simplicity I've hardcoded the filename as "image.jpg".
Resizing the image is for speed: if you don't mind the wait,
comment out the resize call.
When run on this sample image of blue peppers it usually says the dominant colour is #d8c865,
which corresponds roughly to the bright yellowish area to the lower left of the two peppers.
I say "usually" because the clustering algorithm used has a degree of randomness to it.
There are various ways you could change this, but for your purposes it may suit well.
(Check out the options on the kmeans2() variant if you need deterministic results.)
"""
import binascii
import scipy
import scipy.misc
import scipy.cluster
import cssbeautifier
import helpers_web as hw
from re import sub
def rle_encode(text):
return sub(r'(.)\1*', lambda m: str(len(m.group(0))) + m.group(1),
text)
def rle_decode(text):
return sub(r'(\d+)(\D)', lambda m: m.group(2) * int(m.group(1)),
text)
pfx = "ascii-"
body_start = lambda : f"""
<html>
<head>
<title>test</title>
</head>
<body>
"""
body_end = lambda : """</body></html>"""
div_start = lambda id : f"<div id='{id}' class='{pfx}parent'>"
div_end = lambda : "</div>"
cdata_start = lambda : "<![CDATA["
cdata_end = lambda : "]]>"
pre_start = lambda n : f"<pre class='{pfx}child {pfx}child-{n} {pfx}art' id='{pfx}layer-{n}'>"
pre_end = lambda : "</pre>"
def sanitize_cdata(s):
s = s.replace(cdata_end(), "??i") # "]]>"
for c in ('&', '<', '>', ']'):
s = s.replace(c, "?")
return s
# https://stackoverflow.com/questions/2784183/what-does-cdata-in-xml-mean
# however, I can't use the CEND sequence.
# If I need to use CEND I must escape one of the brackets or the greater-than sign using concatenated CDATA sections
def style(colors, bg_color=[0,255,0], font_size="2vw", line_height="1.2em"):
def child(num, top, left, color):
return f"""
.{pfx}child-{num} {{
color: {rgb_to_hex(color)};
}}
"""
return f"""
.{pfx}child-{num} {{
left: {left};
top: {top};
color: {rgb_to_hex(color)};
}}
"""
colors = list(colors)
html = f"""
<style>
body {{
background-color: black;
margin:0; padding:0;
color:white;
font-family: sans-serif;
}}
.{pfx}parent {{
position: relative;
margin: 0;
padding: 0;
width: 100%;
height: 700;
background-color: {rgb_to_hex(bg_color)};
z-index: -2000;
}}
.{pfx}art {{
font-family: monospace;
white-space: pre;
font-size: {font_size};
font-weight: 700;
line-height: {line_height};
z-index: -1000;
}}
.{pfx}child {{
margin:0; padding:0;
position: absolute;
left: 0;
top: 0;
}}
"""
for i, color in enumerate(colors):
html += child(i, 0, 0, color) # i*2, i*2
html += """
</style>
"""
return cssbeautifier.beautify(html)
def script(num_layers, start_layer=0, fps=12):
assert start_layer < num_layers
html = f"""
<script>
var fps = {fps} // change on mobile
var startTime = new Date();
var myVar = setInterval(div_set_pos, (1.0/fps) * 1000);
function div_set_pos() {{
elapsed = (new Date() - startTime) / 1000.0; // secs
fade = Math.min(1, elapsed / 3.0)
for (let i = {start_layer}; i < {num_layers}; i++) {{
irev = {start_layer} -1 - i;
let scale = 1;
let speed = 2; // 0.44
//let radius = Math.sin(i/3.0) * scale; //1 + i*0.333
let radius = i * scale; // 1 + i*0.333
layer_id = "{pfx}layer-" + parseInt(i)
let layer = document.getElementById(layer_id);
x = elapsed * speed / (irev * 1)
posx = Math.cos(x) * radius
posy = Math.sin(x) * radius;
layer.style.position = "absolute";
layer.style.left = (fade * posx)+'px';
layer.style.top = (fade * posy)+'px';
console.log(elapsed, fade, layer_id, x, layer.style.left, layer.style.top);
}}
}}
</script>
"""
#print(html)
return html
# gray scale level values from:
# http://paulbourke.net/dataformats/asciiart/
# 70 levels of gray
gNoCDATA = "$@B%8WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}?-_+~i!lI;:,\"^`'. " # no []
g70 = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^`'. " # 70 levels
g10 = '@%#*+=-:. ' # 10 levels of gray
g95 = "@MBHENR#KWXDFPQASUZbdehx*8Gm&04LOVYkpq5Tagns69owz$CIu23Jcfry%1v7l+it[] {}?j|()=~!-/<>\"^_';,:`. " # 96 levels
g2 = '@*+-. '
gXX = "@MBHENR#KWXDFPQASUZbdehx*8Gm&04LOVYkpq5Tagns69owz$CIu23Jcfry%1v7l+it{}?j|()=~!-/\"^_';,:`. " # 90 levels
gKapital = hw.string_reverse(""" .-°,:'^;_ι/r!"}?()jLτ+={Yv•citγ7T]F3ελυJfxyu%V[lnszîoο1çh9CI½ekUü5«»¼ùη2PöΠXûζπχωOSaαZw£ôA*H08KÜèé&ρEGbÖêdDRÄàá46pßqâämÉNQδgMB§W""")
gJap = hw.string_reverse(" ヽゝノぃっイトょとてウグちぁわガ木ゟ允中五乞共全丹史拉争仲体命串典例係孤商戚侵侮勲凝喚属彙審鍵鎌籠騰欄")
gJap = hw.string_reverse("二了人上六寸少勺仁夕乃木今牛示占女打丘乞代企全先作世伏幸封乱仲伎参佐侍享堂侃例剝員喪勅候便事侵側偶唱個像劇墨属健憾簡儀瞬圏髄籠謄糧欄")
gUtf = hw.string_reverse(""" ˙˺.˘,:ʳ;_ס?¿iFuo95O*EDÀÅgMǿ§WnjǢǾ∯ѨℕNJDŽѬ┣ℍℌ╫⅀Ⅷℜ◉▥▃▨▍◕▣◚▩●▀▌■∎▅▋◼▊◘▇▉▓█""")
gUtf = hw.string_reverse(""" ˙⁻ˈ˺¨`.˔◝˘-¯,¹҇:'²ʳ^‸;˭⁝_|ˠ×/r¡\!?(<¿+Yiº7F3Ju%lo1h9eU5$XOZA*0&EÒdD4pÀqmÅÃNg@ĒMĎÆǿ#ѧģƣWÑğnjƁὪǢDzƢǾDZᾪ∯₨ŴѨᾮ⋓ℕ⇯∰NJ₰džDŽ▬ⅅѬ‣ↇ┣Ѽ┫ℍℝℹℌ◑╫⁑⅀Ⅷℜ◉▤▥▃▧▨ↈ▍◕▣◚▦◛▩●▀▚▌■∎▅▋◼▆▒▊▙▛◘▇▉▓◙█""")
g = g70
g = g2
g = gXX
g = "01010101010101010101010101010101010101010101010101010101010101010101010101 "
g = "KARLSRUHEdigital."
g = gNoCDATA
g = g10
g = gKapital
def clamp(x):
return max(0, min(x, 255))
def rgb_to_hex(rgb): # [r,g,b] --> #rrggbb
r,g,b = rgb
return "#{:02x}{:02x}{:02x}".format( clamp(round(r)), clamp(round(g)), clamp(round(b)) )
def rgb_to_luminance(rgb):
#print("rgb", rgb)
r,g,b = rgb
return round(0.2126*r + 0.7152*g + 0.0722*b) # / 255.0
def map(value, leftMin, leftMax, rightMin, rightMax):
# Figure out how 'wide' each range is
leftSpan = leftMax - leftMin
rightSpan = rightMax - rightMin
# Convert the left range into a 0-1 range (float)
valueScaled = float(value - leftMin) / float(leftSpan)
# Convert the 0-1 range into a value in the right range.
return rightMin + (valueScaled * rightSpan)
def get_average_l(image):
"""
Given PIL Image, return average value of grayscale value
"""
# get image as numpy array
im = np.array(image)
# get shape
w, h = im.shape
# get average
return np.average(im.reshape(w*h))
# full_image may be None
def convert_image_to_ascii(layer, cols, scale, gscale=gNoCDATA, reverse_gscale=False, full_image=None):
"""
Given Image and dims (rows, cols) returns an m*n list of Images
"""
print("convert_image_to_ascii:", "cols :", cols)
print("convert_image_to_ascii:", "scale :", scale)
print("convert_image_to_ascii:", "gscale:", len(gscale), gscale)
if full_image:
####full_image = full_image.convert('L')
print("\t", "using full_image as avg ref!!!!")
# declare globals
len_gscale_1 = len(gscale) - 1
layer = layer.convert('L')
# store dimensions
W, H = layer.size ### [0], layer.size[1]
print("\t", "input layer dims: %d x %d" % (W, H))
# compute width of tile
assert cols > 0
w = W/cols
# compute tile height based on aspect ratio and scale
assert scale > 0
h = w/scale
# compute number of rows
assert h > 0
rows = int(H/h)
print("\t", "cols: %d, rows: %d" % (cols, rows))
print("\t", "tile dims: %d x %d" % (w, h))
# check if layer size is too small
if cols > W or rows > H:
print("ERROR: Image layer too small for specified cols!")
exit(0)
# ascii layer is a list of character strings
aimg = []
# generate list of dimensions
for j in range(rows):
y1 = int(j*h)
y2 = int((j+1)*h)
# correct last tile
if j == rows-1:
y2 = H
# append an empty string
aimg.append("")
for i in range(cols):
# crop layer to tile
x1 = int(i*w)
x2 = int((i+1)*w)
# correct last tile
if i == cols-1:
x2 = W
# crop layer to extract tile
# # if full_image:
# # img = full_image.crop((x1, y1, x2, y2))
# # else:
img = layer.crop((x1, y1, x2, y2))
# get average luminance
avg = int(get_average_l(img))
g = gscale
g_index = -1 # last
if reverse_gscale:
g = ''.join(reversed(gscale))
g_index = 0 # first
# look up
if full_image:
# look up instead in full_image
gsval = g[int((avg * len_gscale_1) / 255)]
if gsval != g[g_index]: # the last & empty element
gsval = full_image[j][i]
else:
# look up ascii char
gsval = g[int((avg * len_gscale_1) / 255)]
# append ascii char to string
aimg[j] += gsval
#print("\t\t", j, aimg[j]) # row, aimg[j] is growing
# return txt image
return aimg, cols, rows
def scipy_to_pil(np_image, shape, mode='RGB'): # None
# print("scipy_to_pil: shape:", shape)
# print("scipy_to_pil: mode :", mode)
image = Image.fromarray(
np.uint8(
np_image.reshape(*shape).astype(np.uint8) # c.reshape(*shape).astype(np.uint8))
)
)
return image.convert(mode) if mode else image
def pil_image_threshold(image, threshold):
return image.point( lambda p: 255 if p > threshold else 0 )
def pil_image_segmentation(image, num_clusters):
print("pil_image_segmentation: num_clusters:", num_clusters)
image = image.convert("RGB")
ar = np.asarray(image)
shape = ar.shape # store original
ar = ar.reshape(np.product(shape[:2]), shape[2]).astype(float)
# colors are float rgb colors
print("\t", "kmeans...")
colors, dist = scipy.cluster.vq.kmeans(ar, num_clusters)
colors = [[round(num) for num in color] for color in colors] # to ints
#print('colors: dist:', dist, *colors, sep="\n\t")
vecs, dist = scipy.cluster.vq.vq(ar, colors) # assign colors
#print("\t", "vecs", len(vecs), vecs)
#print("\t", "dist", len(dist), dist)
counts, bins = np.histogram(vecs, len(colors))
#print("\t", "counts", len(counts), counts)
#print("\t", "bins ", len(bins), bins)
index_max = np.argmax(counts) # find most frequent
peak = colors[index_max]
colour = binascii.hexlify(bytearray(int(c) for c in peak)).decode('ascii')
print("\t", 'most frequent is %s (#%s)' % (peak, colour))
# layers
layers = []
for i, color in enumerate(colors):
#print("\t\t", "color:", color)
c = ar.copy()
c.fill(0)
c[scipy.r_[np.where(vecs==i)],:] = color
PIL_image = scipy_to_pil(c, shape, 'RGB')
layers.append(PIL_image)
#PIL_image.save("__layer_" + str(i) + ".png")
# composite
c = ar.copy()
c.fill(0)
for i, color in enumerate(colors):
c[scipy.r_[np.where(vecs==i)],:] = color
composite = scipy_to_pil(c, shape, 'RGB')
assert (len(layers) == len(colors) == len(counts))
print("pil_image_segmentation: all done.")
return composite, layers, colors, counts
# https://www.geeksforgeeks.org/extract-dominant-colors-of-an-image-using-python/
# call main
if __name__ == '__main__':
def image_show(image, secs=0.25):
path = "__tmp.png"
image.save(path)
import subprocess
import time
# https://www.etcwiki.org/wiki/IrfanView_Command_Line_Options
p = subprocess.Popen(["C:/Program Files/IrfanView/i_view64.exe", path])
time.sleep(secs)
p.kill()
import os
os.remove(path)
image_path = "V:/00download/manteljulia_271367352_343627254254777_2341924037822352416_n.jpg"
image_path = "D:/__BUP_V_KOMPLETT/X/111_BUP/33projects/2022/2022-karlsruhe.digital/2022/beautiful-girl-flower-rainbow-background-22116179.jpg"
image_path = "Header-1.jpg"
image_path = "bunte_nacht_der_digitalisierung_hero_slider.jpg"
image_path = "bunte_nacht_der_digitalisierung_hero_slider_unpowered.webp"
image_path = "kai.jpg"
image_path = "__ascii/kai.jpg"
descStr = "This program converts an image into ASCII art."
parser = argparse.ArgumentParser(description=descStr)
# add expected arguments
parser.add_argument('--file', dest='imgFile', type=str, default=image_path, required=False)
parser.add_argument('--scale', dest='scale', type=float, default=0.5, required=False) # 0.43 aspect
parser.add_argument('--out', dest='outFile', default="__out.txt", required=False)
parser.add_argument('--cols', dest='cols', type=int, default=150, required=False) # 80
parser.add_argument('--num_clusters', type=int, default=16, required=False) # 80 len(g)
args = parser.parse_args()
if args.num_clusters > len(g):
args.num_clusters = min(args.num_clusters, len(g))
print("args.num_clusters: fced to:", args.num_clusters)
print(descStr)
root_image = Image.open(args.imgFile)
root_image.thumbnail((args.cols, args.cols), resample=Image.Resampling.LANCZOS) # save time, look better!
#root_image = ImageOps.equalize(root_image, mask = None)
root_image = ImageOps.autocontrast(root_image, mask = None)
root_aimg, cols, rows = convert_image_to_ascii(root_image, args.cols, args.scale, gscale=g)
root_aimg_string = "\n".join(root_aimg)
with open("__out_root.html", mode="w", encoding="utf-8") as fp:
fp.write("<pre>" + root_aimg_string + "</pre>")
#root_image.show()
image_show(root_image)
##print(root_aimg) # list of row strings
if False:
num_layers = 3
assert num_layers > 1
min_bright = 35
max_bright = 210
step = math.floor(max_bright/(num_layers))
cnt = 0
for i in range(num_layers):
cnt += 1
print(cnt, "-"*88)
#threshold = map(i, 0, num_layers-1, min_bright, max_bright)
threshold = map(i, 0, num_layers-1, max_bright, min_bright)
print("threshold:", threshold)
# ImageOps.posterize(simg, bits=i)
image = root_image.copy()
image = image.point( lambda p: 255 if p > threshold else 0 )
aimg = convert_image_to_ascii(image, args.cols, args.scale)
for row in aimg:
print(row)
print()
image.show()
composite, layers, colors, counts = pil_image_segmentation(root_image, num_clusters=args.num_clusters)
image_show(composite)
def color_darkest(colors, key=lambda x:rgb_to_luminance(x), reverse=False):
print(*colors, sep="\n\t")
colors = sorted(colors, key=key, reverse=reverse)
print(*colors, sep="\n\t")
return colors[0]
sort_by_count = lambda x : x[2]
sort_by_color = lambda x : x[1]
sort_by_lum = lambda x : rgb_to_luminance(x[1])
zipped = zip(layers, colors, counts)
# # zipped = list(zipped) # needed for sorting
# # zipped = sorted(zipped, key = sort_by_count, reverse=False)
# # print("before sort:", *zipped, sep="\n\t")
# # zipped = sorted(zipped, key = sort_by_lum, reverse=False)
# # print("after sort:", *zipped, sep="\n\t")
html = body_start()
html += style(colors, bg_color=color_darkest(colors), font_size="1.3vw", line_height="1.2em")
html += div_start(id="ascii-div") + "\n"
for i, (layer, color, count) in enumerate(zipped):
print("\n"*3)
print(round(i/(args.num_clusters-1),2), "-"*88)
print("\t", i, count, color)
html += pre_start(i)
print("rgb_to_luminance:", round(rgb_to_luminance(color), 3), rgb_to_hex(color), color, "count:", count)
##layer = pil_image_threshold(layer.convert("RGB"), 0)
threshold = 0
layer_neg = layer #.copy().point( lambda p: 0 if p > threshold else 255 )
aimg, cols, rows = convert_image_to_ascii(layer_neg, args.cols, args.scale, gscale=g, reverse_gscale=True, full_image=root_aimg) # root_image
#print(aimg)
aimg_string = "\n".join(aimg)
aimg_string = sanitize_cdata(aimg_string)
#print(aimg_string)
###html += cdata_start()+ "\n" + aimg_string + cdata_end() + "\n"
html += "\n" + aimg_string + "\n"
image_show(layer)
html += pre_end() + "\n"
### for />
html += div_end() + "\n"
html += script(args.num_clusters, start_layer=0, fps=25)
html += body_end()
if True:
from bs4 import BeautifulSoup as bs
soup = bs(html, 'html.parser')
html = soup.prettify()
#print(html)
import datetime
date_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
out_path = f"__ascii/__acsii_test_{date_time}.html"
with open(out_path, mode="w", encoding="utf-8") as fp:
fp.write(html)
with open(out_path + "_RLE.html", mode="w", encoding="utf-8") as fp:
fp.write(rle_encode(html))
print("\n"*3)