-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
109 lines (95 loc) · 4.55 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import streamlit as st
import numpy as np
import pandas as pd
import plotly.express as px
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
rad=st.sidebar.radio("Navigation Menu",["Home","Covid-19","Diabetes","Heart Disease","Plots"])
#Home Page
if rad=="Home":
st.title("Medical Predictions App")
st.image("Medical Prediction Home Page.jpg")
st.text("The Following Disease Predictions Are Available ->")
st.text("1. Covid-19 Infection Predictions")
st.text("2. Diabetes Predictions")
st.text("3. Heart Disease Predictions")
#Covid-19 Prediction
df1=pd.read_csv("Covid-19 Predictions.csv")
x1=df1.drop("Infected with Covid19",axis=1)
x1=np.array(x1)
y1=pd.DataFrame(df1["Infected with Covid19"])
y1=np.array(y1)
x1_train,x1_test,y1_train,y1_test=train_test_split(x1,y1,test_size=0.2,random_state=0)
model1=RandomForestClassifier()
model1.fit(x1_train,y1_train)
#Covid-19 Page
if rad=="Covid-19":
st.header("Know If You Are Affected By Covid-19")
st.write("All The Values Should Be In Range Mentioned")
drycough=st.number_input("Rate Of Dry Cough (0-20)",min_value=0,max_value=20,step=1)
fever=st.number_input("Rate Of Fever (0-20)",min_value=0,max_value=20,step=1)
sorethroat=st.number_input("Rate Of Sore Throat (0-20)",min_value=0,max_value=20,step=1)
breathingprob=st.number_input("Rate Of Breathing Problem (0-20)",min_value=0,max_value=20,step=1)
prediction1=model1.predict([[drycough,fever,sorethroat,breathingprob]])[0]
if st.button("Predict"):
if prediction1=="Yes":
st.warning("You Might Be Affected By Covid-19")
elif prediction1=="No":
st.success("You Are Safe")
#Diabetes Prediction
df2=pd.read_csv("Diabetes Predictions.csv")
x2=df2.iloc[:,[1,4,5,7]].values
x2=np.array(x2)
y2=y2=df2.iloc[:,[-1]].values
y2=np.array(y2)
x2_train,x2_test,y2_train,y2_test=train_test_split(x2,y2,test_size=0.2,random_state=0)
model2=RandomForestClassifier()
model2.fit(x2_train,y2_train)
#Diabetes Page
if rad=="Diabetes":
st.header("Know If You Are Affected By Diabetes")
st.write("All The Values Should Be In Range Mentioned")
glucose=st.number_input("Enter Your Glucose Level (0-200)",min_value=0,max_value=200,step=1)
insulin=st.number_input("Enter Your Insulin Level In Body (0-850)",min_value=0,max_value=850,step=1)
bmi=st.number_input("Enter Your Body Mass Index/BMI Value (0-70)",min_value=0,max_value=70,step=1)
age=st.number_input("Enter Your Age (20-80)",min_value=20,max_value=80,step=1)
prediction2=model2.predict([[glucose,insulin,bmi,age]])[0]
if st.button("Predict"):
if prediction2==1:
st.warning("You Might Be Affected By Diabetes")
elif prediction2==0:
st.success("You Are Safe")
#Heart Disease Prediction
df3=pd.read_csv("Heart Disease Predictions.csv")
x3=df3.iloc[:,[2,3,4,7]].values
x3=np.array(x3)
y3=y3=df3.iloc[:,[-1]].values
y3=np.array(y3)
x3_train,x3_test,y3_train,y3_test=train_test_split(x3,y3,test_size=0.2,random_state=0)
model3=RandomForestClassifier()
model3.fit(x3_train,y3_train)
#Heart Disease Page
if rad=="Heart Disease":
st.header("Know If You Are Affected By Heart Disease")
st.write("All The Values Should Be In Range Mentioned")
chestpain=st.number_input("Rate Your Chest Pain (1-4)",min_value=1,max_value=4,step=1)
bp=st.number_input("Enter Your Blood Pressure Rate (95-200)",min_value=95,max_value=200,step=1)
cholestrol=st.number_input("Enter Your Cholestrol Level Value (125-565)",min_value=125,max_value=565,step=1)
maxhr=st.number_input("Enter You Maximum Heart Rate (70-200)",min_value=70,max_value=200,step=1)
prediction3=model3.predict([[chestpain,bp,cholestrol,maxhr]])[0]
if st.button("Predict"):
if str(prediction3)=="Presence":
st.warning("You Might Be Affected By Diabetes")
elif str(prediction3)=="Absence":
st.success("You Are Safe")
if rad=="Plots":
type=st.selectbox("Which Plot Do You Want To See?",["Covid-19","Diabetes","Heart Disease"])
if type=="Covid-19":
fig=px.scatter(df1,x="Difficulty in breathing",y="Infected with Covid19")
st.plotly_chart(fig)
elif type=="Diabetes":
fig=px.scatter(df2,x="Glucose",y="Outcome")
st.plotly_chart(fig)
elif type=="Heart Disease":
fig=px.scatter(df3,x="BP",y="Heart Disease")
st.plotly_chart(fig)