-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEx1_Code.py
118 lines (91 loc) · 3 KB
/
Ex1_Code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import matplotlib.pyplot as plt
from scipy import integrate
from scipy import signal
pi = np.pi
dt = 0.01
def sin(x):
return np.sin(x)
def cos(x):
return np.cos(x)
def quadratic(x):
return x**2
def simpson_integration(lower_limit,upper_limit,function,n_steps):
if n_steps % 2 ==1:
string = "n-steps must be even. Try again"
print(string)
return
h = (upper_limit-lower_limit)/n_steps
f_0 = function(lower_limit)
print(f_0,'=f_0')
f_n = function(upper_limit)
print(f_n,'=f_n')
even_values = 0
print('even js =',np.arange(1,n_steps/2,1))
for j in np.arange(1,n_steps/2,1):
x_even = lower_limit + 2*j*h
print(x_even, 'x_even')
print(function(x_even), 'f(x_even), j=',j)
even_values += 2*function(x_even)
odd_values = 0
print('odd js =',np.arange(1,n_steps/2+1,1) )
for j in np.arange(1,n_steps/2+1,1):
x_odd = lower_limit +(2*j-1)*h
print(x_odd, 'x_odd')
print(function(x_odd), 'f(x_odd),j =',j)
odd_values += 4*function(x_odd)
print(even_values , '=even values')
print(odd_values , '=odd values')
integral = (h/3)*(f_0 + even_values + odd_values + f_n)
return integral
"""
Ex1.4 Fourier Series
"""
def coefficent_calculator(function,period,n_terms,integration_steps,plot_limit):
xs = np.arange(0,period,dt)
yf = function(xs)
a_0 = (1/period)*integrate.simpson(yf,xs)
series_expansion = a_0
print(a_0, '=a0')
omega = 2*np.pi/period
a_ks = [0]
b_ks = [0]
for k in np.arange(1,n_terms+1,1):
def sin_times_function(x):
return function(x)*np.sin(k*omega*x)
def cos_times_function(x):
return function(x)*np.cos(k*omega*x)
ya = cos_times_function(xs)
yb = sin_times_function(xs)
a_k = np.round_((2/period)*integrate.simpson(ya,xs),4)
b_k = np.round((2/period)*integrate.simpson(yb,xs),4)
a_ks.append(a_k)
b_ks.append(b_k)
def series_expansion(x):
cos_terms = 0
for n in np.arange(1,len(a_ks),1):
cos_terms += a_ks[n]*np.cos(n*omega*x)
sin_terms = 0
for n in np.arange(1,len(b_ks),1):
sin_terms += b_ks[n]*np.sin(n*omega*x)
return a_0 + sin_terms + cos_terms
print(a_ks,'=a_ks')
print('')
print(b_ks,'=b_ks')
print('')
ts = np.arange(0,plot_limit,dt)
fs = [series_expansion(t) for t in ts]
plt.plot(ts,fs)
plt.title("First 100 Terms of the Fourier Series of a Square Wave ")
plt.xlabel('t')
plt.ylabel('y(t)')
plt.savefig('Ex2.5_100term.png',dpi = 200)
return [a_0,a_ks,b_ks]
def test_function1(x):
return np.sin(x)
def test_function2(x):
return cos(x) +3*cos(2*x) -4*cos(3*x)
def test_function3(x):
return sin(x) +3*sin(3*x) +5*sin(5*x)
def test_function4(x):
return sin(x) +2*cos(3*x) +3*sin(5*x)