-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
36 lines (26 loc) · 1014 Bytes
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import _pickle as pkl
import gzip
import numpy as np
def label_to_bit_vector(labels, nbits):
"""Returns label in bit vector format"""
bv = np.zeros((labels.shape[0], nbits))
for i in range(labels.shape[0]):
bv[i, labels[i]] = 1.0
return bv
def create_minibatches(data, labels, batch_size, create_bit_vector=False):
N = data.shape[0]
print("Total number of examples: {}".format(N))
if N % batch_size != 0:
print("create_minibatches(): batch size {} does not" "evenly divide number of examples {}".format(batch_size, N))
chunked_data = []
chunked_labels = []
idx = 0
while idx+batch_size <= N:
chunked_data.append(data[idx:idx+batch_size, :])
if not create_bit_vector:
chunked_labels.append(labels[idx:idx+batch_size])
else:
bv = label_to_bit_vector(labels[idx:idx+batch_size], 10)
chunked_labels.append(bv)
idx += batch_size
return chunked_data,chunked_labels