-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEGU2019Poster (another copy).tex
645 lines (498 loc) · 24.3 KB
/
EGU2019Poster (another copy).tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
\documentclass[landscape,24pt, a0paper,colspace=8mm,blockverticalspace=8mm]{tikzposter}
% Bibliography
%\usepackage[backend=bibtex,firstinits=true,sorting=none, doi=false,isbn=false,url=false]{biblatex}
%\bibliography{Mendeley.bib}
%\renewbibmacro{in:}{}
%\DeclareFieldFormat*{title}{#1}
% Bibliography v2
%\usepackage[style=nature,maxnames=1,uniquelist=false]{biblatex}
\usepackage[backend=bibtex,giveninits=true,sorting=none, doi=false,isbn=false,url=false,maxnames=1,uniquelist=false]{biblatex}
\renewbibmacro{in:}{}
\DeclareFieldFormat*{title}{#1}
% For shifting parts of the text left or right
\usepackage{changepage}
% For preventing hyphenation
\usepackage{hyphenat}
% e.g. \nohyphens{longlineoftexthere}
% Some field suppression via options
\ExecuteBibliographyOptions{isbn=false,url=false,doi=false,eprint=false}
% One-paragraph bibliography environment
\defbibenvironment{bibliography}
{\list
{\printtext[labelnumberwidth]{%
\printfield{labelprefix}%
\printfield{labelnumber}}%
\ifentrytype{article}{% Suppress remaining fields/names/lists here
\clearfield{title}}{}}
{\setlength{\leftmargin}{0pt}%
\setlength{\topsep}{0pt}}%
\renewcommand*{\makelabel}[1]{##1}}
{\endlist}
{\mkbibitem}
% \mkbibitem just prints item label and non-breakable space
\makeatletter
\newcommand{\mkbibitem}{\@itemlabel\addnbspace}
\makeatother
% Add breakable space between bibliography items
\renewcommand*{\finentrypunct}{\addperiod\space}
% et al. string upright (nature style applies \mkbibemph)
\renewbibmacro*{name:andothers}{%
\ifboolexpr{
test {\ifnumequal{\value{listcount}}{\value{liststop}}}
and
test \ifmorenames
}
{\ifnumgreater{\value{liststop}}{1}{\finalandcomma}{}%
\andothersdelim
\bibstring{andothers}}
{}}
\addbibresource{Mendeley.bib}
%Remove 'references' title from bibliography
\usepackage{etoolbox}
\patchcmd{\thebibliography}{\section*{\refname}}{}{}{}
\usepackage{calculator}%For doing arithmetic?
\usepackage{verbatim}
\include{headerMaths}
% For displaying equations in tables
\usepackage{array}
%\def\tabularxcolumn#1{m{#1}} %ensure vertical centering
\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\usepackage{authblk} %Formatting of author lists
\usepackage{enumitem} % For different itemize icons
\usepackage{graphicx,subcaption} % For subfigures
\usepackage{xcolor} %For colors in equations
%\definecolor{oxfordblue}{rgb}{0.0, 0.13, 0.28}
\definecolor{darkolivegreen}{rgb}{0.33, 0.42, 0.18}
\definecolor{darkmidnightblue}{rgb}{0.0, 0.2, 0.4}
\definecolor{darkpowderblue}{rgb}{0.0, 0.2, 0.6}
\definecolor{dodgerblue}{rgb}{0.12, 0.56, 1.0}
\definecolor{egyptianblue}{rgb}{0.06, 0.2, 0.65}
\definecolor{dukeblue}{rgb}{0.0, 0.0, 0.61}
\definecolor{falured}{rgb}{0.5, 0.09, 0.09}
\definecolor{royalfuchsia}{rgb}{0.79, 0.17, 0.57}
\definecolor{captiongray}{rgb}{0.15,0.15,0.15}
\definecolor{captionTitle}{rgb}{0, 0, 0}
\definecolor{dividingLines}{rgb}{0.7, 0.7, 0.7}
\definecolor{eqnLabelGray}{rgb}{0.3, 0.3, 0.3}
\definecolor{dividingLines}{rgb}{0.2, 0.2, 0.2}
\definecolor{keyPoint}{rgb}{0.0, 0.13, 0.28} % oxford blue
\newcommand{\keyPoint}[1]{\textcolor{darkpowderblue}{#1}}
\newcommand{\figureTitle}[1]{\color{captionTitle}{\textbf{#1}} }
\newcommand{\figureCaption}[1]{\color{captiongray}{#1} }
\newcommand{\highlightText}[1]{\textcolor{dukeblue}{\textbf{#1}} }
\newcommand{\varColor}[1]{\textcolor{dukeblue}{#1}}
\newcommand{\eqnColor}[1]{\textcolor{royalfuchsia}{#1}}
\newcommand{\paramColor}[1]{\textcolor{falured}{#1}}
\newcommand{\varLabel}[1]{\textcolor{eqnLabelGray}{\text{#1}}}
\newcommand{\eqnLabel}[1]{\textcolor{eqnLabelGray}{#1}}
\usepackage{pgfplots}
\usepgfplotslibrary{fillbetween}
\pgfplotsset{compat=1.13}
\usepackage{tikz}
\usetikzlibrary{calc,positioning,decorations.markings, backgrounds}
\makeatletter
%24 pt for figure captions for AGU
\renewenvironment{tikzfigure}[1][]{
\def \rememberparameter{#1}
\vspace{10pt}
\refstepcounter{figurecounter}
\begin{center}
}{
\ifx\rememberparameter\@empty
\else %nothing
\\[24pt]
{Fig.~\thefigurecounter: \rememberparameter}
\fi
\end{center}
}
% Title formatting
\def\TP@titlegraphictotitledistance{-5.0cm} % Without this, authors are below icons
\renewcommand\AB@affilsepx{, \protect\Affilfont}
\settitle{ \centering \vbox{
\centering
\vspace{-2.0cm}
\color{titlefgcolor} {\bfseries \Huge \sc \@title \par}
\vspace*{0.5cm} % Distance from bottom of title to top of graphics
% For title graphics. Uncomment next line to remove
\@titlegraphic \\ [\TP@titlegraphictotitledistance]
{\LARGE \@author \par} \vspace*{0.8em} {\Large \@institute}
\vspace*{-5em}
}
}
\def\maketitle{\AB@maketitle} % prevent shifing content block to middle of page
\makeatother
%Define my block style
\defineblockstyle{MyBlock}{% define a custom style for a block
titlewidthscale=1.0, bodywidthscale=1, titleleft,
titleoffsetx=0pt, titleoffsety=0pt, bodyoffsetx=0pt, bodyoffsety=26mm,
bodyverticalshift=16mm, roundedcorners=22, linewidth=5pt,
titleinnersep=7mm, bodyinnersep=8mm
}{
\draw[rounded corners=\blockroundedcorners, inner sep=\blockbodyinnersep,
line width=\blocklinewidth, color=blocktitlefgcolor,
top color=titlebgcolor, bottom color=titlebgcolor,
fill=blockbodybgcolor
]
(blockbody.south west) rectangle (blockbody.north east); %
%\ifBlockHasTitle%
% \draw[rounded corners=\blockroundedcorners, inner sep=\blocktitleinnersep,
% top color=titlebgcolor!90, bottom color=titlebgcolor!20!white,
% line width=\blocklinewidth, color=black, %fill=blocktitlebgcolor
% ]
% (blocktitle.south west) rectangle (blocktitle.north east); %
%\fi
}
\newcommand\myblock[3][MyBlock]{\useblockstyle{#1}\block{#2}{#3}\useblockstyle{Basic}}
% Theme details
\usetheme{Default} % See Section 5
\usebackgroundstyle{Empty}
\usetitlestyle[width=0.98\textwidth]{Default}
\useblockstyle{MyBlock}
\definecolor{oxfordblue}{rgb}{0.0, 0.13, 0.28}
\definecolorstyle{sampleColorStyle}
{
\definecolor{colorOne}{named}{blue}
\definecolor{colorTwo}{named}{yellow}
\definecolor{colorThree}{named}{orange}
}{
% Background Colors
\colorlet{backgroundcolor}{white}
\colorlet{framecolor}{white}
% Title Colors
\colorlet{titlefgcolor}{oxfordblue}
\colorlet{titlebgcolor}{white} % white
% Block Colors
\colorlet{blocktitlebgcolor}{white} %oxfordblue
\colorlet{blocktitlefgcolor}{oxfordblue}
\colorlet{blockbodybgcolor}{oxfordblue} % white
\colorlet{blockbodyfgcolor}{black}
% Innerblock Colors
\colorlet{innerblocktitlebgcolor}{white}
\colorlet{innerblocktitlefgcolor}{black}
\colorlet{innerblockbodybgcolor}{colorThree!30!white}
\colorlet{innerblockbodyfgcolor}{black}
% Note colors
\colorlet{notefgcolor}{black}
\colorlet{notebgcolor}{colorTwo!50!white}
\colorlet{noteframecolor}{colorTwo}
}
\usecolorstyle[]{sampleColorStyle}
%\definecolor{MyYellow}{RGB}{175 141 38}
\usepackage{mdframed}
\newmdenv[topline=false,
leftline=false,
bottomline=false,
linewidth=1.5mm,
linecolor=oxfordblue,
skipabove=-20em,
innertopmargin=0em]{leftbot}
\usepackage{tcolorbox}
\tcbset{arc=20pt,
leftright skip=-0.92em,
after skip=-0.92em,
boxrule=1.6mm}
%Title text and graphics
\title{\parbox{\linewidth}{\centering Convection, phase change, and solute transport in mushy sea ice}} %with Adaptive Mesh Refinement
\titlegraphic{ \includegraphics[height=4cm]{figures/EGU2019Website.eps} %TODO: update QR code
\includegraphics[height=4cm]{figures/Oxford.eps}
\includegraphics[height=4cm]{figures/Berkeley_Lab_Logo_Small.eps}
\hfill
\includegraphics[height=4cm]{figures/nerc-logo.eps}
\includegraphics[height=4cm]{figures/roysoclogo.jpg}
}
%For now title graphic:
%\titlegraphic{}
% Authors
\author[1]{James Parkinson ([email protected])}
\author[1]{Andrew Wells}
\author[2]{Dan Martin}
\author[1]{Richard Katz}
\affil[1]{University of Oxford}
\affil[2]{Lawrence Berkeley National Laboratory}
\tikzposterlatexaffectionproofoff % get rid of watermark in bottom right corner
\tikzset{->-/.style={decoration={
markings,
mark=at position .5 with {\arrow[scale=2]{latex}}},postaction={decorate}}}
\begin{document}
\maketitle
\begin{columns}
\column{0.22}
\block{Motivation}{
\begin{itemize}[leftmargin=0.4cm]
\item Sea ice is a mushy layer of ice crystals and brine.
\item Dense brine drains during ice formation, whilst some brine is trapped within sea ice
\item Observations (Fig. 1) and 1-D simulations suggest that warming sea ice may release some of this brine
\item \textbf{Our goal: investigate this mechanism} using \mbox{2-D} numerical simulations
\end{itemize}
\vspace{-1em}
\noindent
\begin{adjustwidth}{-1em}{0em}
\begin{tikzfigure}
\label{fig:widellObs}
\begin{tikzpicture}
\node[anchor=north west] (fig2) at (0,0) {\includegraphics[width=0.98\linewidth, trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/widdellFig1TaToFsTimeCropped.png} };
\end{tikzpicture}
\end{tikzfigure}
\end{adjustwidth}
\figureTitle{Fig. 1:} \figureCaption{\cite{Widell2006} observed intense salt fluxes $F_s$ below sea ice coincident with changes to the temperature in the atmosphere ($T_a$) and ocean ($T$).}
}
\block{What is a mushy layer?}
{
\vspace{-0cm}
\begin{tikzfigure}
\label{fig:phaseDiagram}
\begin{tikzpicture}
\node[anchor=north west] (fig2) at (0,0) {\includegraphics[width=0.4\linewidth, trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/Eicken2000Edited.jpg} };
\node[anchor=north west] (phaseDiagram) at ([xshift=1.0cm]fig2.north east) {\includegraphics[width=0.47\linewidth, trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/phaseDiagramVFinal.eps} };
\node[anchor=north west] (fig2label) at (fig2.north west) {(a)};
\node[anchor=north west] (fig1label) at ([yshift=0.0cm]phaseDiagram.north west) {(b)};
\end{tikzpicture}
\end{tikzfigure}
\figureTitle{Fig. 2:} \figureCaption{(a) Sea ice is a porous mixture of solid ice crystals (white) and liquid brine (dark) \cite{Eicken2000}. \\
(b) Trajectory ($\textcolor{red}{\rightarrow}$) of a solidifying salt water parcel through the phase diagram. As the temperature $T$ decreases, more ice forms and the residual brine salinity $S_l$ increases making the fluid denser, which can drive convection. Using a linear approximation for the liquidus curve, the freezing point is $T_f(S_l) = -0.1 S_l$. }
%Below the eutectic ($T_e, S_e$) = (-21.1$^\circ$, 233) the system is entirely solid.} %making the fluid denser which can lead to convection
%the resulting dense fluid can drive convection
%Eicken et. al. (2000).
}
\block{Numerical Method}
{
\vspace{0.5em}
Solve (1)-(4) using Chombo finite volume toolkit:
\begin{itemize}
\item Momentum and mass: projection method \cite{Martin2008}.
\item Energy and solute:
{
\raggedright % left align - prevent splitting words over multiple lines as we have space
\begin{itemize}
\item Advective terms: explicit, 2\textsuperscript{nd} order unsplit Godunov method. %\cite{Colella1990},
\item Nonlinear diffusive terms: semi implicit, geometric multigrid. %\cite{Martin1996}
\item Timestepping: Backward Euler. %\cite{Twizell1996}
\end{itemize}
}
% }
\end{itemize}
\vspace{-1ex}
}
\column{0.78}
\block[bodyoffsety=0em]{}{
\vspace{-2.6em}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Start experiment introduction
% sharp corners = uphill
%\begin{tcolorbox}[boxsep=5mm, % internal spacing
%width=0.5\linewidth+0.5em, nobeforeafter, sharp corners, rounded corners=northwest,
% colback=blue!5, box align=top,
% colframe=oxfordblue,
% before skip=0.0em,
% left skip=-0.9em,
% boxrule=1.5mm, extrude top by=0.7em, arc=6mm,
% height=8em]
\begin{tcolorbox}[boxsep=5mm, % internal spacing
width=0.5\linewidth+0.8em, nobeforeafter,
sharp corners,
%rounded corners=north,
rounded corners=northwest,
colback=blue!5, box align=top,
colframe=oxfordblue,
before skip=0.0em,
left skip=-0.9em,
boxrule=1.5mm, extrude top by=0.7em, arc=6mm,
height=9em]
\vspace{-1.0em}
%\begin{minipage}[t]{0.5\linewidth}
{\LARGE \textbf{The experiment:}} \\
We consider 2-D simulations in a Hele-Shaw cell of width $0.5$m, height $1$m, and plate separation $d$. Water of initial salinity $S_0=30\,\mathrm{g}/ \mathrm{kg}$ and temperature $T_f(S_o) + 0.2^\circ$C is initially frozen from above by applying a fixed atmospheric temperature $T_a = -10^\circ$C. We assume $K_0=10^{-9}\,\mathrm{m}^2$, and initially set $d=0.5$mm to restrict thermal convection in the underlying liquid during growth. After $\sim0.5$m of ice growth, we increase $d$ to $2$mm and spin up simulations for 2 days before considering different warming scenarios.
%\end{minipage} \hfill \textcolor{dividingLines}{\vline width 1pt} \hfill
%\begin{minipage}[t]{0.16\linewidth}
%\vspace{-2.0em}
%\begin{tikzfigure}
%\begin{tikzpicture}
%\node[anchor=north west] (2d) at (0,0) {\includegraphics[ trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/prePerturbationSmall.png}};
%\end{tikzpicture}
%\end{tikzfigure}
%\end{minipage} \hfill
%\begin{minipage}[t]{0.32\linewidth}
%\vspace{0.0em}
%\end{minipage}
\end{tcolorbox} % \hfill
%% Summary
\begin{tcolorbox}[boxsep=5mm, width=0.5\linewidth+0.8em, nobeforeafter, sharp corners, rounded corners=northeast,
colback=red!5, box align=top,
colframe=red!60!black, boxrule=1.5mm, extrude top by=0.7em, arc=6mm,
height=9em, left skip=0.5em]
\vspace{-1.0em}
\LARGE \textbf{Summary}
\large
\begin{itemize}
\item \textbf{We observe significant desalination events from warming sea ice in a 2-D model, with similar magnitude and timing to field observations.}
\item \textbf{Following basal melting, desalination can be caused by fresh melt water rising through brine channels.}
%\item \textbf{...}
\end{itemize}
\end{tcolorbox}
% End summary
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nudge content up a bit
\vspace{-0.1em}
\begin{minipage}[t]{0.32\linewidth}
\vspace{1.0em}
{\LARGE \textcolor{oxfordblue}{\hspace{0.0em}\textbf{Full depth desalination}} }
\vspace{1em} \\
\noindent \figureTitle{Fig. 7 ($\rightarrow$):} Porosity $\chi$ in the ice, salinity $S_l$ in the underlying liquid, and streamfunction (solid black logarithmically spaced contours: CW, dashed: ACW) during basal melting. Remnant brine channels are visible throughout the ice during initial growth. Subsequently the ocean temperature is increased to $T_o=T_f(S_o) + 1.5^{\circ}\mathrm{C}$ and a layer of buoyant water forms due to basal melting, whilst internal melting within the ice gradually increases the porosity. After 32 days a period of strong convection is initiated throughout the ice. Melt water rises through previously active brine channels and sinks through the rest of the ice.
%Our domain is horizontally periodic, with an open bottom boundary and an impermeable, isothermal, top boundary.
\end{minipage} \hfill
\begin{minipage}[t]{0.7\linewidth}
\begin{tikzfigure}
\begin{tikzpicture}
\node[anchor=north west] (diags) at (0,0) {\includegraphics[ trim={1.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/desalinationEvent-small.png} };
\end{tikzpicture}
\end{tikzfigure}
\end{minipage}
\vspace{-2pt}
\begin{minipage}{\linewidth + 1.5em}
\hspace{-0.75em}\textcolor{dividingLines}{\rule{\linewidth}{3pt}}
\end{minipage}
\vspace{-3.0em}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Case 1
\begin{tcolorbox}[width=0.5\linewidth+0.8em, nobeforeafter, box align=top,
bottomrule=0pt,
colframe=white, colback=white, boxrule=0mm,
left skip=-1.0em, left=0.0em, top=0.5em, right=0.5em,
bottom=0.4em,
standard jigsaw, opacityback=0]
{\LARGE \textcolor{oxfordblue}{\hspace{1em}\textbf{Case 1: Atmospheric warming}}}
\vspace{-1.5em}
\begin{tikzfigure}
\begin{tikzpicture}
\node[anchor=north west] (diags) at (0,0) {\includegraphics[trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/SurfaceWarmingDiagnosticsNew.pdf} };
\node[anchor=north west] (timeseries2) at ([xshift=-1em,yshift=0]diags.north east) {\includegraphics[ trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/SurfaceWarming-3TimeSeries-small.jpg}};
\node[anchor=north](b) at (timeseries2.north) {$T_a = -3^\circ$C};
\node[anchor=north](desalination) at ([xshift=-9.0em, yshift=5.0em]diags.south east) {\normalsize Desalination events};
\draw[->, line width=1mm](desalination.west) -- ([xshift=5.9em,yshift=3.7em]diags.south west);
\draw[->, line width=1mm](desalination.west) -- ([xshift=7.1em,yshift=5.6em]diags.south west);
\draw[->, line width=1mm](desalination.west) -- ([xshift=10.0em,yshift=5.4em]diags.south west);
\end{tikzpicture}
\end{tikzfigure}
\vspace{-2.0em}
\begin{minipage}[t]{1.0em} \end{minipage} \hfill % add some padding
\begin{minipage}[t]{0.39\linewidth}
\figureTitle{Fig. 3 ($\uparrow$):} Vertical fluxes of heat $F_h$ and salt $F_s$ at $z=0.3$m in response to increased atmospheric temperature (see legend). %Intense desalination events can be seen for $T_a=-3^\circ$C (at $t=$2 days) and $-2^\circ$C (at $t=4$ and $8$ days). After $\sim 15$ days the warming ice stops rejecting significant quantities of salt.
\keyPoint{Short intense desalination events occur after warming.} After $\sim 15$ days the warming ice stops rejecting significant quantities of salt.
\end{minipage} \hfill
\begin{minipage}[t]{0.48\linewidth}
\figureTitle{Fig. 4 ($\uparrow$):} Vertical profiles for $T_a = -3^\circ$C. Top panel: minimum vertical velocity, middle panel: change in horizontally-averaged porosity, bottom panel: change in horizontally-averaged bulk salinity. The sea ice interface is indicated by a white line (top panel) or black line (lower panels). \keyPoint{Atmospheric warming increases the ice porosity, which allows salt to drain through the entire depth of ice.}
\end{minipage}
%\hfill
%\begin{minipage}[t]{0.0em} \end{minipage}
\end{tcolorbox} \hfill \textcolor{dividingLines}{\vline width 3pt} \hfill
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Case 2
\begin{tcolorbox}[width=0.5\linewidth+0.5em, nobeforeafter, box align=top,
top=0.5em, left=-0.15em, right=0.5em,
boxrule=0mm, colback=white, colframe=white, standard jigsaw, opacityback=0]
{\LARGE \textcolor{oxfordblue}{\hspace{1em}\textbf{Case 2: Basal warming}} }
\vspace{-1.5em}
%\begin{minipage}[t]{0.48\linewidth}
\begin{tikzfigure}
\begin{tikzpicture}
\node[anchor=north west] (diags) at (0,0) {\includegraphics[ trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/BasalWarmingDiagnosticsNew.pdf} };
\node[anchor=north west] (timeseries2) at ([xshift=-1.5em,yshift=0]diags.north east) {\includegraphics[ trim={0.2cm, 0.0cm, 0.5cm, 0.0cm}, clip]{figures/BasalWarming-1p5TimeSeries-small.jpg}};
\node[anchor=north](b) at (timeseries2.north) {$T_o = T_f(S_o) + 1.5^\circ$C};
\node[anchor=north](desalination) at ([xshift=10.0em, yshift=5.0em]diags.south west) {\normalsize Desalination events};
\draw[->, line width=1mm]([xshift=-2.0em]desalination.north) -- ([xshift=7.3em,yshift=6.6em]diags.south west);
\draw[->, line width=1mm](desalination.east) -- ([xshift=16.5em,yshift=5.5em]diags.south west);
\draw[->, line width=1mm](desalination.east) -- ([xshift=19.0em,yshift=3.7em]diags.south west);
\node[anchor=north](desalination2) at ([xshift=8.0em, yshift=5.0em]timeseries2.south west) {\normalsize \textcolor{red}{Desalination event}};
% \draw ([xshift=-8.5em,yshift=1em]timeseries2.east) ellipse (1cm and 8cm);
\draw [rounded corners=0.5cm, red, line width=1mm] ([xshift=2.5em,yshift=4em]timeseries2.south) rectangle ++(1.8,15.5);
\draw[->, line width=1mm, red](desalination2.east) -- ([xshift=2em,yshift=4.5em]timeseries2.south);
\end{tikzpicture}
\end{tikzfigure}
\vspace{-2.0em}
\begin{minipage}[t]{1.0em} \end{minipage} \hfill % add some padding
\begin{minipage}[t]{0.39\linewidth}
\figureTitle{Fig. 5 ($\uparrow$):} Vertical heat $F_h$ and salt $F_s$ fluxes as in Fig. 4 but for simulations with an increased oceanic temperature $T_o$. Salt fluxes are typically positive due to the downward transport of fresh melt water. However, for $T_o>T_f(S_o) + 0.5^\circ$C we observe short intense bursts of negative salt fluxes.
\end{minipage}\hfill
\begin{minipage}[t]{0.47\linewidth}
\figureTitle{Fig. 6 ($\uparrow$):} Vertical profiles as in Fig. 5, but for oceanic warming with $T_o=T_f(S_o) + 1.5^\circ$C. An increase in porosity permits stronger convection through a deeper layer at the base of the ice. However \keyPoint{a convectively stable layer of buoyant melt water forms below the ice, preventing rejected salt from mixing with the underlying ocean except in the case of intense desalination events.}
\end{minipage}
\end{tcolorbox}
%\vspace{-2em}
%%%%%%%%%%%%%%%%
% Summary
%\begin{tcolorbox}[boxsep=5mm, width=\linewidth+1.85em, nobeforeafter,
%sharp corners, rounded corners=south,
% colback=red!5, box align=top,
% colframe=red!60!black, boxrule=1.6mm, extrude bottom by=0.1em, arc=6mm,
% before skip=-1em,
% height=3em]
%\vspace{0.1em}
%\LARGE \textbf{Summary:} {\Large We observe significant desalination events from warming sea ice in a 2-D model, with similar magnitude and timing to field observations.}
%\end{tcolorbox}
\vspace{-0.9em} }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% end big main block
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{subcolumns}
\subcolumn{0.75}
\block{Governing Equations for Flow in Porous Mushy Sea Ice}
{
\begin{minipage}[t]{0.49\linewidth}
Continuous equations for conservation of momentum (1), mass (2), salt~\eqref{eq:salt-cons} and energy~\eqref{eq:energy-cons} are found by averaging over lengths greater than the pore scale of sea ice \cite{Worster1991,LeBars2006}. In a narrow Hele-Shaw cell, the momentum equation is well approximated by Darcy's law everywhere.
\vspace{0.2em}
\begin{align}
%\rho_0 \frac{\partial \mathbf{U}}{\partial \tau} + \rho_0 \mathbf{U} \cdot \nabla \left( \frac{\mathbf{U}}{\chi} \right) &= - \chi \nabla p + \eta \nabla^2 \mathbf{U} + \chi \rho_l \mathbf{g} - \frac{\eta \chi}{K(\chi)} \mathbf{U},
\mathbf{U} = -\frac{K(\chi)}{\eta} \left(\nabla p - \rho_l \mathbf{g} \right), & \quad \quad \nabla \cdot \mathbf{U} = 0, \tag{1, 2} \\
\frac{\partial S}{\partial t} + \mathbf{U} \cdot \nabla S_l &= \nabla \cdot \chi D_l \nabla S_l, \label{eq:salt-cons} \tag{3} \\
\frac{\partial H}{\partial t} + \rho_0 \, c_{p,l} \, \mathbf{U} \cdot \nabla T &= \nabla \cdot \left[ k_l \chi + (1-\chi) k_s \right] \nabla T . \label{eq:energy-cons} \tag{4}
\end{align}
\end{minipage}
\hfill
\begin{minipage}[t][][b]{0.48\linewidth}
\vspace{-1.0\baselineskip}
\begin{align*}
&\varColor{\mathbf{U}}\; \text{(Darcy velocity)}, \quad \varColor{\chi} \; \text{(porosity)}, \quad \varColor{p} \; \text{(pressure)}, \quad \varColor{T} \; \text{(temperature)},\\
&\varColor{S_l} \; \text{(liquid salinity)}, \quad \varColor{S = \chi S_l} \; \text{(bulk salinity)}, \\
&\eqnColor{H = \rho_0 \left\{ L \chi + \left[\chi c_{p,l} + (1-\chi) c_{p,s}\right] T \right\}} \; \text{(enthalpy)}, \\
&\eqnColor{\rho_l = \rho_0 \left[1 - \alpha T + \beta S_l \right]} \; \text{(liquid density)}, \\
&\eqnColor{K(\chi)^{-1} = \left(d^2/12\right)^{-1} + \left[K_0 \chi^3 / (1-\chi)^2 \right]^{-1}} \; \text{(permeability)}, \\
&\paramColor{\eta} \; \text{(viscosity)}; \paramColor{D_l} \; \text{(salt diffusivity)}; \paramColor{\alpha}, \paramColor{\beta} \; \text{(thermal/haline expansion)}; \\
&\paramColor{c_{p,l}}, \paramColor{c_{p,s}} \; \text{(liquid/solid specific heat)}; \paramColor{k_l}, \paramColor{k_s} \; \text{(liquid/solid heat conductivity)}; \\
&\paramColor{d} \; \text{(Hele-Shaw cell thickness)}; \paramColor{K_0} \; \text{(Reference permeability)}.
\end{align*}
\end{minipage}
}
\subcolumn{0.25}
\block{Future Work}
{
\begin{itemize}
\item Consider forcing from reanalysis data, rather than idealised scenarios.
\item Investigate sensitivity of results to the Hele-Shaw cell gap width.
\end{itemize}
\vspace{5pt}
\rule{\linewidth}{.4pt}
\vspace{5pt} \\
This work was funded by NERC and a travel grant from the Royal Society.
{
\fontsize{16}{15}\selectfont
\renewcommand\refname{\vskip -2.5cm}
\renewcommand*{\bibfont}{\scriptsize}
\printbibliography
}
}
%\block[bodyoffsety=0mm, bodyverticalshift=0mm]{}{ %Need to specify some options to get rid of the title space
%This work was funded by NERC and a travel grant from the Royal Society.
%{
%\fontsize{16}{15}\selectfont
%\renewcommand\refname{\vskip -2.5cm}
%
%\renewcommand*{\bibfont}{\scriptsize}
%\printbibliography
%}
%\vspace{-0.75cm}
%}
\end{subcolumns}
\end{columns}
\end{document}