-//Created by sway on 2018/8/29. /* 测试8点法求取基础矩阵F * * [直接线性变换法] * 双目视觉中相机之间存在对极约束 * * p2'Fp1=0, * * 其中p1, p2 为来自两个视角的匹配对的归一化坐标,并表示成齐次坐标形式, * 即p1=[x1, y1, z1]', p2=[x2, y2, z2],将p1, p2的表达形式带入到 * 上式中,可以得到如下表达形式 * * [x2] [f11, f12, f13] [x2, y2, z2] * [y2] [f21, f22, f23] = 0 * [z2] [f31, f32, f33] * * 进一步可以得到 * x1*x2*f11 + x2*y1*f12 + x2*f13 + x1*y2*f21 + y1*y2*f22 + y2*f23 + x1*f31 + y1*f32 + f33=0 * * 写成向量形式 * [x1*x2, x2*y1,x2, x1*y2, y1*y2, y2, x1, y1, 1]*f = 0, * 其中f=[f11, f12, f13, f21, f22, f23, f31, f32, f33]' * * 由于F无法确定尺度(up to scale, 回想一下三维重建是无法确定场景真实尺度的),因此F秩为8, * 这意味着至少需要8对匹配对才能求的f的解。当刚好有8对点时,称为8点法。当匹配对大于8时需要用最小二乘法进行求解 * * [x11*x12, x12*y11,x12, x11*y12, y11*y12, y12, x11, y11, 1] * [x21*x22, x22*y21,x22, x21*y22, y21*y22, y22, x21, y21, 1] * [x31*x32, x32*y31,x32, x31*y32, y31*y32, y32, x31, y31, 1] * A=[x41*x42, x42*y41,x42, x41*y42, y41*y42, y42, x41, y41, 1] * [x51*x52, x52*y51,x52, x51*y52, y51*y52, y52, x51, y51, 1] * [x61*x62, x62*y61,x62, x61*y62, y61*y62, y62, x61, y61, 1] * [x71*x72, x72*y71,x72, x71*y72, y71*y72, y72, x71, y71, 1] * [x81*x82, x82*y81,x82, x81*y22, y81*y82, y82, x81, y81, 1] * *现在任务变成了求解线性方程 * Af = 0 *(该方程与min||Af||, subject to ||f||=1 等价) *通常的解法是对A进行SVD分解,取最小奇异值对应的奇异向量作为f分解 * *本项目中对矩阵A的svd分解并获取其最小奇异值对应的奇异向量的代码为 * math::Matrix<double, 9, 9> V; * math::matrix_svd<double, 8, 9>(A, nullptr, nullptr, &V); * math::Vector<double, 9> f = V.col(8); * * *[奇异性约束] * 基础矩阵F的一个重要的性质是F是奇异的,秩为2,因此有一个奇异值为0。通过上述直接线性法求得 * 矩阵不具有奇异性约束。常用的方法是将求得得矩阵投影到满足奇异约束得空间中。 * 具体地,对F进行奇异值分解 * F = USV' * 其中S是对角矩阵,S=diag[sigma1, sigma2, sigma3] * 将sigma3设置为0,并重构F * [sigma1, 0, ,0] * F = U [ 0 , sigma2 ,0] V' * [ 0 , 0 ,0] */#include <math/matrix_svd.h>#include "math/matrix.h"#include "math/vector.h"#include "sfm/fundamental.h"typedef math::Matrix<double, 3, 3> FundamentalMatrix;FundamentalMatrix fundamental_8_point (math::Matrix<double, 3, 8> const& points1 , math::Matrix<double, 3, 8> const& points2 ){ /* direct linear transform */ math::Matrix<double, 8, 9> A; for(int i=0; i<8; i++) { math::Vec3d p1 = points1.col(i); math::Vec3d p2 = points2.col(i); A(i, 0) = p1[0]*p2[0]; A(i, 1) = p1[1]*p2[0]; A(i, 2) = p2[0]; A(i, 3) = p1[0]*p2[1]; A(i, 4) = p1[1]*p2[1]; A(i, 5) = p2[1]; A(i, 6) = p1[0]; A(i, 7) = p1[1]; A(i, 8) = 1.0; } math::Matrix<double, 9, 9> vv; math::matrix_svd<double, 8, 9>(A, nullptr, nullptr, &vv); math::Vector<double, 9> f = vv.col(8); FundamentalMatrix F; F(0,0) = f[0]; F(0,1) = f[1]; F(0,2) = f[2]; F(1,0) = f[3]; F(1,1) = f[4]; F(1,2) = f[5]; F(2,0) = f[6]; F(2,1) = f[7]; F(2,2) = f[8]; /* singularity constraint */ math::Matrix<double, 3, 3> U, S, V; math::matrix_svd(F, &U, &S, &V); S(2,2)=0; F = U*S*V.transpose(); return F;}int main(int argc, char*argv[]){ // 第一幅图像中的对应点 math::Matrix<double, 3, 8> pset1; pset1(0, 0) = 0.180123 ; pset1(1, 0)= -0.156584; pset1(2, 0)=1.0; pset1(0, 1) = 0.291429 ; pset1(1, 1)= 0.137662 ; pset1(2, 1)=1.0; pset1(0, 2) = -0.170373; pset1(1, 2)= 0.0779329; pset1(2, 2)=1.0; pset1(0, 3) = 0.235952 ; pset1(1, 3)= -0.164956; pset1(2, 3)=1.0; pset1(0, 4) = 0.142122 ; pset1(1, 4)= -0.216048; pset1(2, 4)=1.0; pset1(0, 5) = -0.463158; pset1(1, 5)= -0.132632; pset1(2, 5)=1.0; pset1(0, 6) = 0.0801864; pset1(1, 6)= 0.0236417; pset1(2, 6)=1.0; pset1(0, 7) = -0.179068; pset1(1, 7)= 0.0837119; pset1(2, 7)=1.0; //第二幅图像中的对应 math::Matrix<double, 3, 8> pset2; pset2(0, 0) = 0.208264 ; pset2(1, 0)= -0.035405 ; pset2(2, 0) = 1.0; pset2(0, 1) = 0.314848 ; pset2(1, 1)= 0.267849 ; pset2(2, 1) = 1.0; pset2(0, 2) = -0.144499; pset2(1, 2)= 0.190208 ; pset2(2, 2) = 1.0; pset2(0, 3) = 0.264461 ; pset2(1, 3)= -0.0404422; pset2(2, 3) = 1.0; pset2(0, 4) = 0.171033 ; pset2(1, 4)= -0.0961747; pset2(2, 4) = 1.0; pset2(0, 5) = -0.427861; pset2(1, 5)= 0.00896567; pset2(2, 5) = 1.0; pset2(0, 6) = 0.105406 ; pset2(1, 6)= 0.140966 ; pset2(2, 6) = 1.0; pset2(0, 7) = -0.15257; pset2(1, 7)= 0.19645 ; pset2(2, 7) = 1.0; FundamentalMatrix F = fundamental_8_point(pset1, pset2); std::cout<<"Fundamental matrix after singularity constraint is:\n "<<F<<std::endl; std::cout<<"Result should be: \n"<<"-0.0315082 -0.63238 0.16121\n" <<"0.653176 -0.0405703 0.21148\n" <<"-0.248026 -0.194965 -0.0234573\n" <<std::endl; return 0;}
0 commit comments