Skip to content

Commit 0581d5f

Browse files
committed
Added Basball Score initial
1 parent 9b7dd68 commit 0581d5f

File tree

1 file changed

+177
-0
lines changed

1 file changed

+177
-0
lines changed

Analyzing Baseball Scores - v2.ipynb

+177
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,177 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 1,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"import statsmodels.formula.api as sm\n",
10+
"import pandas as pd\n",
11+
"import numpy as np\n"
12+
]
13+
},
14+
{
15+
"cell_type": "code",
16+
"execution_count": 7,
17+
"metadata": {},
18+
"outputs": [],
19+
"source": [
20+
"# This data is from pandas/doc/data\n",
21+
"bb = pd.read_csv('data/baseball.csv', index_col='id')\n"
22+
]
23+
},
24+
{
25+
"cell_type": "code",
26+
"execution_count": 5,
27+
"metadata": {},
28+
"outputs": [
29+
{
30+
"data": {
31+
"text/html": [
32+
"<table class=\"simpletable\">\n",
33+
"<caption>OLS Regression Results</caption>\n",
34+
"<tr>\n",
35+
" <th>Dep. Variable:</th> <td>hr</td> <th> R-squared: </th> <td> 0.685</td>\n",
36+
"</tr>\n",
37+
"<tr>\n",
38+
" <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.665</td>\n",
39+
"</tr>\n",
40+
"<tr>\n",
41+
" <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 34.28</td>\n",
42+
"</tr>\n",
43+
"<tr>\n",
44+
" <th>Date:</th> <td>Mon, 27 Apr 2020</td> <th> Prob (F-statistic):</th> <td>3.48e-15</td>\n",
45+
"</tr>\n",
46+
"<tr>\n",
47+
" <th>Time:</th> <td>09:31:30</td> <th> Log-Likelihood: </th> <td> -205.92</td>\n",
48+
"</tr>\n",
49+
"<tr>\n",
50+
" <th>No. Observations:</th> <td> 68</td> <th> AIC: </th> <td> 421.8</td>\n",
51+
"</tr>\n",
52+
"<tr>\n",
53+
" <th>Df Residuals:</th> <td> 63</td> <th> BIC: </th> <td> 432.9</td>\n",
54+
"</tr>\n",
55+
"<tr>\n",
56+
" <th>Df Model:</th> <td> 4</td> <th> </th> <td> </td> \n",
57+
"</tr>\n",
58+
"<tr>\n",
59+
" <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> \n",
60+
"</tr>\n",
61+
"</table>\n",
62+
"<table class=\"simpletable\">\n",
63+
"<tr>\n",
64+
" <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> \n",
65+
"</tr>\n",
66+
"<tr>\n",
67+
" <th>Intercept</th> <td>-8484.7720</td> <td> 4664.146</td> <td> -1.819</td> <td> 0.074</td> <td>-1.78e+04</td> <td> 835.780</td>\n",
68+
"</tr>\n",
69+
"<tr>\n",
70+
" <th>C(lg)[T.NL]</th> <td> -2.2736</td> <td> 1.325</td> <td> -1.716</td> <td> 0.091</td> <td> -4.922</td> <td> 0.375</td>\n",
71+
"</tr>\n",
72+
"<tr>\n",
73+
" <th>ln_h</th> <td> -1.3542</td> <td> 0.875</td> <td> -1.547</td> <td> 0.127</td> <td> -3.103</td> <td> 0.395</td>\n",
74+
"</tr>\n",
75+
"<tr>\n",
76+
" <th>year</th> <td> 4.2277</td> <td> 2.324</td> <td> 1.819</td> <td> 0.074</td> <td> -0.417</td> <td> 8.872</td>\n",
77+
"</tr>\n",
78+
"<tr>\n",
79+
" <th>g</th> <td> 0.1841</td> <td> 0.029</td> <td> 6.258</td> <td> 0.000</td> <td> 0.125</td> <td> 0.243</td>\n",
80+
"</tr>\n",
81+
"</table>\n",
82+
"<table class=\"simpletable\">\n",
83+
"<tr>\n",
84+
" <th>Omnibus:</th> <td>10.875</td> <th> Durbin-Watson: </th> <td> 1.999</td>\n",
85+
"</tr>\n",
86+
"<tr>\n",
87+
" <th>Prob(Omnibus):</th> <td> 0.004</td> <th> Jarque-Bera (JB): </th> <td> 17.298</td>\n",
88+
"</tr>\n",
89+
"<tr>\n",
90+
" <th>Skew:</th> <td> 0.537</td> <th> Prob(JB): </th> <td>0.000175</td>\n",
91+
"</tr>\n",
92+
"<tr>\n",
93+
" <th>Kurtosis:</th> <td> 5.225</td> <th> Cond. No. </th> <td>1.49e+07</td>\n",
94+
"</tr>\n",
95+
"</table><br/><br/>Warnings:<br/>[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.<br/>[2] The condition number is large, 1.49e+07. This might indicate that there are<br/>strong multicollinearity or other numerical problems."
96+
],
97+
"text/plain": [
98+
"<class 'statsmodels.iolib.summary.Summary'>\n",
99+
"\"\"\"\n",
100+
" OLS Regression Results \n",
101+
"==============================================================================\n",
102+
"Dep. Variable: hr R-squared: 0.685\n",
103+
"Model: OLS Adj. R-squared: 0.665\n",
104+
"Method: Least Squares F-statistic: 34.28\n",
105+
"Date: Mon, 27 Apr 2020 Prob (F-statistic): 3.48e-15\n",
106+
"Time: 09:31:30 Log-Likelihood: -205.92\n",
107+
"No. Observations: 68 AIC: 421.8\n",
108+
"Df Residuals: 63 BIC: 432.9\n",
109+
"Df Model: 4 \n",
110+
"Covariance Type: nonrobust \n",
111+
"===============================================================================\n",
112+
" coef std err t P>|t| [0.025 0.975]\n",
113+
"-------------------------------------------------------------------------------\n",
114+
"Intercept -8484.7720 4664.146 -1.819 0.074 -1.78e+04 835.780\n",
115+
"C(lg)[T.NL] -2.2736 1.325 -1.716 0.091 -4.922 0.375\n",
116+
"ln_h -1.3542 0.875 -1.547 0.127 -3.103 0.395\n",
117+
"year 4.2277 2.324 1.819 0.074 -0.417 8.872\n",
118+
"g 0.1841 0.029 6.258 0.000 0.125 0.243\n",
119+
"==============================================================================\n",
120+
"Omnibus: 10.875 Durbin-Watson: 1.999\n",
121+
"Prob(Omnibus): 0.004 Jarque-Bera (JB): 17.298\n",
122+
"Skew: 0.537 Prob(JB): 0.000175\n",
123+
"Kurtosis: 5.225 Cond. No. 1.49e+07\n",
124+
"==============================================================================\n",
125+
"\n",
126+
"Warnings:\n",
127+
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
128+
"[2] The condition number is large, 1.49e+07. This might indicate that there are\n",
129+
"strong multicollinearity or other numerical problems.\n",
130+
"\"\"\""
131+
]
132+
},
133+
"execution_count": 5,
134+
"metadata": {},
135+
"output_type": "execute_result"
136+
}
137+
],
138+
"source": [
139+
"bb\n",
140+
"(bb.query('h > 0')\n",
141+
".assign(ln_h=lambda df: np.log(df.h))\n",
142+
".pipe((sm.ols, 'data'), 'hr ~ ln_h + year + g + C(lg)')\n",
143+
".fit()\n",
144+
".summary()\n",
145+
")"
146+
]
147+
},
148+
{
149+
"cell_type": "code",
150+
"execution_count": null,
151+
"metadata": {},
152+
"outputs": [],
153+
"source": []
154+
}
155+
],
156+
"metadata": {
157+
"kernelspec": {
158+
"display_name": "Python 3",
159+
"language": "python",
160+
"name": "python3"
161+
},
162+
"language_info": {
163+
"codemirror_mode": {
164+
"name": "ipython",
165+
"version": 3
166+
},
167+
"file_extension": ".py",
168+
"mimetype": "text/x-python",
169+
"name": "python",
170+
"nbconvert_exporter": "python",
171+
"pygments_lexer": "ipython3",
172+
"version": "3.7.7"
173+
}
174+
},
175+
"nbformat": 4,
176+
"nbformat_minor": 4
177+
}

0 commit comments

Comments
 (0)