-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapriori 1.R
175 lines (144 loc) · 5.59 KB
/
apriori 1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# https://www.datacamp.com/community/tutorials/market-basket-analysis-r
# https://towardsdatascience.com/association-rule-mining-in-r-ddf2d044ae50
# https://stackoverflow.com/questions/41620651/long-dataframe-to-transactions-for-arules-in-r
# Formulas: http://r-statistics.co/Association-Mining-With-R.html
library(plyr)
library(dplyr)
library(tidyr)
library(tidyverse)
library(arules)
library(arulesViz)
library(plotly)
library(skimr)
library(iplots)
## Functions ----
# Predict
# https://stackoverflow.com/questions/38394113/deploying-apriori-rulsets-to-the-dataset-in-r
# https://stackoverflow.com/questions/40833925/applying-rules-generated-from-arules-in-r-to-new-transactions
predict_transaction <- function(rules, transaction, sorting = 'confidence') {
# Find all rules whose lhs matches the training example
rulesMatch <- is.subset(rules@lhs, transaction, sparse = FALSE)
if(any(rulesMatch)) {
# Subset all applicable rules
applicable <- rules[rulesMatch==TRUE]
# the first rule has the highest confidence since they are sorted
rules<-sort(applicable, decreasing=TRUE, by=sorting)
prediction <- rules[1]
# dump, to remove unwanted outputs
capture.output({
rhs_ <- inspect(prediction@rhs)
inspect_ <- inspect(prediction)
})
prediction_ <- prediction
prediction_ <- prediction
quality_ <- quality(prediction)
data_ <- bind_cols(rhs_, quality_)
} else {
rhs_ <- inspect_ <- quality_ <- prediction_ <- data_ <- NA
quality_ <- data.frame(support=NA, confidence=NA, coverage=NA, lift=NA, count=NA)
data_ <- data.frame(items = NA, quality_)
}
# Output
return(list(
rhs = rhs_,
inspect = inspect_,
prediction = prediction_,
quality = quality_,
data = data_
))
}
# Additional metrics
rules_metrics <- function(rules, by_split= 'support') {
capture.output(
out <- bind_cols(
inspectDT(rules)$x$data,
interestMeasure(rules, c("oddsRatio", "leverage", "chiSquared"), significance=TRUE),
tibble(lhs_length = size(rules@lhs))
)
)
# 4 decimals
out <- mutate_if(out, is.double, function(x) round(x, 4))
# Quantiles
out$cuts <- cut(out[[by_split]], breaks=4, labels = LETTERS[4:1], include.lowest=TRUE)
return(out)
}
## Load data ----
data <- read.delim("data/grocery_transactional.txt", sep = ',', stringsAsFactors = FALSE)
# Prepare data
df1 <- data %>%
select(CUSTOMER, PRODUCT) %>%
mutate(
PRODUCT = trimws(PRODUCT),
value = 1) %>%
spread(PRODUCT, value, fill = 0)
tr1 <- as(as.matrix(df1[, -1]), 'transactions')
(summary_ <- summary(tr1))
## EDA ----
# Items per ticket histogram
tibble(`Items per ticket` = factor(names(summary_@lengths), levels = names(summary_@lengths)), Frequency = as.numeric(summary_@lengths)) %>%
ggplot() +
geom_bar(aes(x = `Items per ticket`, y = Frequency), stat="identity")
itemFrequencyPlot(tr1, topN=20, type="absolute", main="Absolute Item Frequency Plot")
itemFrequencyPlot(tr1, topN=20, type="relative", main="Relative Item Frequency Plot")
# Checking particular column names
colnames(df1)[grepl('misc|other|milk', colnames(df1), ignore.case = TRUE)]
# Get 50% of the transactions
set.seed(42)
df2 <- df1 %>%
sample_frac(0.5)
tr2 <- as(as.matrix(df2[, -1]), 'transactions')
summary(tr2)
## Apriori ----
association_rules <- apriori(tr2, parameter = list(support=0.005, confidence=0.25, minlen=3, maxtime = 0))
# Clean up
association_rules <- arules::sort(association_rules, by = "support")
association_rules <- association_rules[!is.redundant(association_rules, measure = 'support')]
association_rules <- association_rules[is.significant(association_rules)]
# Get subset rules in vector
association_rules_top <- head(association_rules, n = 10, by = "support")
# Whole milk case
association_rules_whole_milk <- apriori(tr1, parameter = list(support=0.05, confidence=0.1, minlen=2, maxtime = 0), appearance = list(lhs="whole milk", default="rhs"))
# Clean up
association_rules_whole_milk <- arules::sort(association_rules_whole_milk, by = "support")
association_rules_whole_milk <- association_rules_whole_milk[!is.redundant(association_rules_whole_milk, measure = 'support')]
association_rules_whole_milk <- association_rules_whole_milk[is.significant(association_rules_whole_milk)]
## Predictions applied ----
system.time({
predict_rhs <- bind_cols(
df2,
map_dfr(1:nrow(df2), .f = function(x) predict_transaction(association_rules, tr2[x])$data)
)
skim(predict_rhs)
})[3]
# Example of prediction
predict_transaction(association_rules, tr2[10])$data
## Explore results ----
# Additional columns for measurements
rules_metrics(association_rules)
rules_metrics(association_rules_top) %>%
write.csv('temp.csv')
rules_metrics(association_rules_whole_milk)
# Plot SubRules
# https://cran.r-project.org/web/packages/arulesViz/vignettes/arulesViz.pdf
# All the rules following the previous criteria
plot(association_rules, method = "scatterplot")
plot(association_rules, method = "two-key plot")
plot(association_rules, method = "grouped")
#grouped matrix for top 10 rules
plot(association_rules_top, method = "grouped")
# plot(association_rules, method = "iplots")
plot(association_rules, engine = "plotly")
# plot(rules_subset, method = "matrix3D")
# Top 10 rules
plot(association_rules_top, method = "matrix", measure = "lift")
plot(association_rules_top, method = "graph")
plot(association_rules_top, method = "graph", engine = "htmlwidget")
plot(association_rules_top, method = "paracoord")
## Citation ----
citation('plyr')
citation('dplyr')
citation('tidyr')
citation('tidyverse')
citation('arules')
citation('arulesViz')
citation('plotly')