forked from Justherozen/ProMix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
216 lines (179 loc) · 7.61 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
This code is based on the Torchvision repository, which was licensed under the BSD 3-Clause.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
class DualNet(nn.Module):
def __init__(self, num_class):
super().__init__()
self.net1 = ResNet18(num_classes=num_class)
self.net2 = ResNet18(num_classes=num_class)
def forward(self,x):
outputs_1 = self.net1(x)
outputs_2 = self.net2(x)
outputs_mean = (outputs_1 + outputs_2)/2
return outputs_mean
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, is_last=False):
super(BasicBlock, self).__init__()
self.is_last = is_last
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
preact = out
out = F.relu(out)
if self.is_last:
return out, preact
else:
return out
class PreActBlock(nn.Module):
'''Pre-activation version of the BasicBlock.'''
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(PreActBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = conv3x3(in_planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
)
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out)
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out += shortcut
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, is_last=False):
super(Bottleneck, self).__init__()
self.is_last = is_last
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
preact = out
out = F.relu(out)
if self.is_last:
return out, preact
else:
return out
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=100, in_channel=3, zero_init_residual=False):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=3, stride=1, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
dim_in = 512 * block.expansion
self.linear = nn.Linear(dim_in, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves
# like an identity. This improves the model by 0.2~0.3% according to:
# https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
feat_dim = 128
self.head = nn.Sequential(
nn.Linear(dim_in, dim_in),
nn.ReLU(inplace=True),
nn.Linear(dim_in, feat_dim)
)
self.pseudo_linear = nn.Linear(dim_in, num_classes)
def reset_classifier_and_stop_grad(self):
self.linear.apply(init_weights)
for name, param in self.named_parameters():
if 'linear' not in name:
param.requires_grad = False
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for i in range(num_blocks):
stride = strides[i]
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x, train=False,use_ph=False):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = torch.flatten(out, 1)
out_linear = self.linear(out)
if train:
feat_c = self.head(out)
if use_ph:
out_linear_debias = self.pseudo_linear(out)
return out_linear, out_linear_debias, F.normalize(feat_c, dim=1)
else:
return out_linear, F.normalize(feat_c, dim=1)
else:
if use_ph:
out_linear_debias = self.pseudo_linear(out)
return out_linear, out_linear_debias
else:
return out_linear
def ResNet18(**kwargs):
return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
def PreResNet18(**kwargs):
return ResNet(PreActBlock, [2, 2, 2, 2], **kwargs)
def ResNet34(**kwargs):
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
def ResNet50(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
def ResNet101(**kwargs):
return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)