From 1d890965315a367f6c950af442789cdf933c78cb Mon Sep 17 00:00:00 2001 From: Julien Malard Date: Mon, 20 Nov 2017 16:08:40 -0500 Subject: [PATCH] =?UTF-8?q?versi=C3=B3n=201.3.0=20publicada?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .gitignore | 14 ++- setup.py | 2 +- tinamit/BF.py | 81 +++++++++++-- tinamit/Conectado.py | 89 ++++++++++++++- .../en/Ejemplo_SAHYSMOD/Coupling script 2.py | 92 ++++++++++----- .../Ejemplos/en/Ejemplo_SAHYSMOD/SAHYSMOD.py | 2 +- tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD.inp | 26 ++--- ...wrapper_spatial.py => SAHYSMOD_Wrapper.py} | 31 +++-- tinamit/EnvolturaBF/es/{ => DSSAT}/Lector.py | 0 .../es/{envoltTikon.py => DSSAT/__init__.py} | 0 .../EnvolturaBF/es/{ => DSSAT}/envoltDSSAT.py | 14 ++- tinamit/EnvolturaBF/es/Tikon/__init__.py | 0 tinamit/EnvolturaBF/es/Tikon/envoltTikon.py | 30 +++++ tinamit/EnvolturaBF/es/__init__.py | 0 tinamit/Geog/Geog.py | 70 ++++++++++++ tinamit/Geog/__init__.py | 0 tinamit/MDS.py | 47 +++----- tinamit/Modelo.py | 106 +++++++++++++++--- 18 files changed, 485 insertions(+), 119 deletions(-) rename tinamit/EnvolturaBF/en/SAHYSMOD/{wrapper_spatial.py => SAHYSMOD_Wrapper.py} (97%) rename tinamit/EnvolturaBF/es/{ => DSSAT}/Lector.py (100%) rename tinamit/EnvolturaBF/es/{envoltTikon.py => DSSAT/__init__.py} (100%) rename tinamit/EnvolturaBF/es/{ => DSSAT}/envoltDSSAT.py (81%) create mode 100644 tinamit/EnvolturaBF/es/Tikon/__init__.py create mode 100644 tinamit/EnvolturaBF/es/Tikon/envoltTikon.py create mode 100644 tinamit/EnvolturaBF/es/__init__.py create mode 100644 tinamit/Geog/Geog.py create mode 100644 tinamit/Geog/__init__.py diff --git a/.gitignore b/.gitignore index 3e4ac48e..0488e709 100644 --- a/.gitignore +++ b/.gitignore @@ -6,7 +6,7 @@ *.tmp # Código compilado # -################### +#################### __pycache__/ # Archivos de Python # @@ -27,6 +27,8 @@ docs/.tx/* # Archivos de VENSIM # ###################### *.vdf +*.2mdl +*.3vm # Archivos de Tinamït # ####################### @@ -37,6 +39,12 @@ docs/.tx/* *.frq *.gwt *.out -*.inp *.lst - +*SAHYSMOD.inp +*/Ejemplos/**/*SAHYSMOD/NAME* +*/Ejemplos/**/*SAHYSMOD/*.txt +*/EnvolturaBF/**/*SAHYSMOD/*.txt + +# Archivos temporarios de Excel # +################################# +~$*.xlsx* diff --git a/setup.py b/setup.py index fbc1baf6..d5a73c45 100644 --- a/setup.py +++ b/setup.py @@ -238,7 +238,7 @@ def instalar_requísitos(): 'sistemas (MDS). Es muy útil para proyectos de modelización participativa, especialmente' 'en proyectos de manejo del ambiente. El interaz gráfico traducible facilita la adopción por' 'comunidades en cualquier parte del mundo.', - requires=['numpy', 'matplotlib', 'scipy', 'taqdir'], + requires=['numpy', 'matplotlib', 'scipy', 'taqdir', 'python-dateutil', 'pandas'], classifiers=[ 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', diff --git a/tinamit/BF.py b/tinamit/BF.py index bd9e2297..84f868fa 100644 --- a/tinamit/BF.py +++ b/tinamit/BF.py @@ -1,9 +1,12 @@ +import math as mat import os import sys from importlib import import_module as importar_mod +from warnings import warn as avisar -import math as mat import numpy as np +import datetime as ft +from dateutil.relativedelta import relativedelta as deltarelativo from tinamit.Modelo import Modelo from .Unidades.Unidades import convertir @@ -112,7 +115,7 @@ def iniciar_modelo(símismo, **kwargs): # Aplicar valores iniciales antes de la inicialización del modelo. Simplemente llamamos la función # símismo.cambiar_vals() con el diccionario de valores iniciales. - símismo.cambiar_vals(símismo.vals_exo['inic']) + símismo.cambiar_vals(símismo.vals_inic) # ...y inicializar el modelo. símismo.modelo.iniciar_modelo(**kwargs) @@ -237,7 +240,7 @@ def __init__(símismo): símismo.n_estaciones = 12 símismo.dur_estaciones = [1] * 12 - # + # Un diccionario de variables de ingreso, egreso, y variables estacionales de cada tipo. símismo.tipos_vars = { 'Ingresos': [], 'Egresos': [], 'IngrEstacionales': [], 'EgrEstacionales': [] } @@ -256,13 +259,14 @@ def __init__(símismo): símismo.estación = 0 símismo.mes = 0 - # Creamos un diccionario para guardar valores de variables para cada paso. Tiene el formato siguiente: - # {'var 1': [valorpaso1, valorpaso2, ...], - # 'var 2': [valorpaso1, valorpaso2, ...], + # Creamos un diccionario para guardar valores de variables para cada estación. Tiene el formato siguiente: + # {'var 1': [valorestación1, valorestación2, ...], + # 'var 2': [valorestación1, valorestación2, ...], # ... # } símismo.datos_internos = {var: None for var in símismo.variables if var in símismo.tipos_vars['Estacionales']} + # Leer los valores iniciales símismo.leer_vals_inic() def cambiar_vals_modelo_interno(símismo, valores): @@ -275,6 +279,10 @@ def cambiar_vals_modelo_interno(símismo, valores): :type valores: dict """ + pass + + """ + ESTO NO ES NECESARIO DADO LOS ENLACES DINÁMICOS, YO PIENSO (VERIFICAR). for var, val in valores.items(): # Para cada valor para cambiar... @@ -284,6 +292,58 @@ def cambiar_vals_modelo_interno(símismo, valores): # Cambiar el valor del diccionario interno para la estación actual. símismo.datos_internos[var][símismo.estación] = val + """ + + def act_vals_clima(símismo, n_paso, f): + """ + + + :param n_paso: + :type n_paso: int + :param f: + :type f: ft.datetime + + """ + + # Si avanzamos por más que un año, perderemos la precisión del clima + if n_paso > 12: + avisar('El paso es superior a 1 año (12 meses). Las predicciones climáticas perderán su precisión.') + + # Solamante hay que cambiar los datos si es el principio de un nuevo año. + if símismo.mes == 0 and símismo.estación == 0: + + # La lista de variables climáticos + vars_clima = list(símismo.vars_clima) + nombres_extrn = [d['nombre_extrn'] for d in símismo.vars_clima.values()] + + # La lista de maneras de combinar los valores diarios + combins = [d['combin'] for d in símismo.vars_clima.values()] + + # La fecha inicial + f_inic = f + + for e, dur in enumerate(símismo.dur_estaciones): + # Para cada estación... + + # La fecha final + f_final = f_inic + deltarelativo(months=+dur) + + # Calcular los datos + datos = símismo.datos_clima.comb_datos(vars_clima=nombres_extrn, combin=combins, + f_inic=f_inic, f_final=f_final) + + # Aplicar los valores de variables calculados + for i, var in enumerate(vars_clima): + # Para cada variable en la lista de clima... + + # El nombre oficial del variable de clima + var_clima = nombres_extrn[i] + + # Guardar el valor para esta estación + símismo.datos_internos[var][e, ...] = datos[var_clima] + + # Avanzar la fecha + f_inic = f_final def incrementar(símismo, paso): """ @@ -314,11 +374,8 @@ def incrementar(símismo, paso): # Para cada variable en el diccionario interno de variables (es decir, todos los variables que # cambian por estación)... - # Poner el valor del variable al valor de esta estación - try: - símismo.variables[var]['val'] = símismo.datos_internos[var][e] - except IndexError: - pass + # Poner el valor del variable al valor de esta estación. (Guarda el enlace dinámico.) + símismo.variables[var]['val'] = símismo.datos_internos[var][e] # Si es la primera estación del año, también hay que correr una simulación del modelo externo. if e == 0: @@ -410,6 +467,7 @@ def avanzar_modelo(símismo): def leer_vals_inic(símismo): """ Esta función lee los valores iniciales del modelo. + :return: :rtype: """ @@ -521,6 +579,7 @@ class ModeloFlexible(ModeloBF): """ """ + def __init__(símismo): """ Esta función correrá automáticamente con la inclusión de `super().__init__()` en la función `__init__()` de las diff --git a/tinamit/Conectado.py b/tinamit/Conectado.py index 155b4c9c..e28a0b31 100644 --- a/tinamit/Conectado.py +++ b/tinamit/Conectado.py @@ -1,13 +1,13 @@ import threading from warnings import warn as avisar +import datetime as ft from tinamit.BF import EnvolturaBF from tinamit.MDS import generar_mds from tinamit.Modelo import Modelo from tinamit.Unidades.Unidades import convertir - -# from PyMarkSim.مرکسم import مقام as pred_clima +from taqdir.مقامات import مقام class SuperConectado(Modelo): @@ -224,10 +224,60 @@ def cambiar_vals_modelo_interno(símismo, valores): # Ahora, pedimos a los submodelos de hacer los cambios en los modelos externos, si hay. símismo.modelos[nombre_mod].cambiar_vals(valores={var: val}) - def conectar_clima(símismo): - pass + def _conectar_clima(símismo, n_pasos, clima, fecha_inic, tcr): + """ + + :param n_pasos: + :type n_pasos: int + :param clima: + :type clima: مقام + :param fecha_inic: + :type fecha_inic: ft.date | ft.datetime | str | int + :param tcr: + :type tcr: str | float - def simular(símismo, tiempo_final, paso=1, nombre_corrida='Corrida Tinamït'): + """ + + # Formatear la fecha inicial + if isinstance(fecha_inic, ft.date): + pass + elif isinstance(fecha_inic, ft.datetime): + fecha_inic = fecha_inic.date() + elif isinstance(fecha_inic, int): + año = fecha_inic + día = mes = 1 + fecha_inic = ft.date(year=año, month=mes, day=día) + elif isinstance(fecha_inic, str): + try: + fecha_inic = ft.datetime.strptime(fecha_inic, '%d/%m/%Y') + except ValueError: + raise ValueError('La fecha inicial debe ser en formato "día/mes/año", por ejemplo "24/12/2017".') + + # Calcular la fecha final + n_días = convertir(de=símismo.unidad_tiempo, a='días', val=n_pasos) + fecha_final = fecha_inic + ft.timedelta(n_días) + + # Obtener los datos de clima + datos = clima.prep_datos(primer_año=fecha_inic.year, último_año=fecha_final.year, rcp=tcr, + n_rep=1, diario=True, mensual=True, postdict=None, predict=None, regenerar=True) + + símismo.datos_clima = NotImplemented + + def act_vals_clima(símismo, paso, f): + """ + + :param paso: + :type paso: + :param f: + :type f: + + """ + + for nombre, mod in símismo.modelos.items(): + mod.act_vals_clima(paso=símismo.conv_tiempo[nombre] * paso, f=f) + + def simular(símismo, tiempo_final, paso=1, nombre_corrida='Corrida Tinamït', fecha_inic=None, lugar=None, tcr=None, + clima=False): """ Simula el modelo :class:`~tinamit.Conectado.SuperConectado`. @@ -251,11 +301,38 @@ def simular(símismo, tiempo_final, paso=1, nombre_corrida='Corrida Tinamït'): raise ValueError('Hay que especificar la conversión de unidades de tiempo con ' '.estab_conv_tiempo() antes de correr la simulación.') + # Calcular el número de pasos necesario + n_pasos = int(tiempo_final / paso) + + # Conectar el clima, si necesario + if clima: + if lugar is None: + raise ValueError('Hay que especificar un lugar para incorporar el clima.') + else: + if fecha_inic is None: + raise ValueError('Hay que especificar la fecha inicial para simulaciones de clima') + if tcr is None: + tcr = 8.5 + símismo._conectar_clima(n_pasos=n_pasos, clima=lugar, fecha_inic=fecha_inic, tcr=tcr) + # Iniciamos el modelo. símismo.iniciar_modelo(tiempo_final=tiempo_final, nombre_corrida=nombre_corrida) + # Si hay fecha inicial, tenemos que guardar cuenta de donde estamos en el calendario + if fecha_inic is not None: + fecha_act = fecha_inic + else: + fecha_act = None + # Hasta llegar al tiempo final, incrementamos el modelo. - for i in range(int(tiempo_final / paso)): + for i in range(n_pasos): + + # Actualizar variables de clima, si necesario + if clima: + símismo.act_vals_clima(paso=paso, f=fecha_act) + fecha_act += ft.timedelta(paso) # Avanzar la fecha + + # Incrementar el modelo símismo.incrementar(paso) # Después de la simulación, cerramos el modelo. diff --git a/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/Coupling script 2.py b/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/Coupling script 2.py index 5246aea4..24a28260 100644 --- a/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/Coupling script 2.py +++ b/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/Coupling script 2.py @@ -1,17 +1,34 @@ import os from tinamit.Conectado import Conectado - +from tinamit.Geog.Geog import Lugar + +use_simple = True + +# 1. Simple runs +runs_simple = {'CWU': {'Capacity per tubewell': 100.8, 'Fw': 0.8, 'Policy Canal lining': 0, + 'Policy RH': 0, 'Policy Irrigation improvement': 0}, + 'VD': {'Capacity per tubewell': 153.0, 'Fw': 0.8, 'Policy Canal lining': 0, + 'Policy RH': 0, 'Policy Irrigation improvement': 0}, + 'CL': {'Capacity per tubewell': 0, 'Fw': 0, 'Policy Canal lining': 1, + 'Policy RH': 0, 'Policy Irrigation improvement': 0}, + 'RWH': {'Capacity per tubewell': 0, 'Fw': 0, 'Policy Canal lining': 0, + 'Policy RH': 1, 'Policy Irrigation improvement': 0}, + 'PIM': {'Capacity per tubewell': 0, 'Fw': 0, 'Policy Canal lining': 0, + 'Policy RH': 0, 'Policy Irrigation improvement': 1} + } + +# 2. Complex runs # Switch values for runs ops = { 'Capacity per tubewell': [153.0, 100.8], 'Fw': [0.8, 0], - 'Policy Canal lining': [1], - 'Policy RH': [1], - 'Policy Irrigation improvement': [1] + 'Policy Canal lining': [0, 1], + 'Policy RH': [0, 1], + 'Policy Irrigation improvement': [0, 1] } -runs = {} +runs_complex = {} for cp in ops['Capacity per tubewell']: for fw in ops['Fw']: @@ -23,7 +40,7 @@ cp, fw, cl, rw, ir ) - runs[run_name] = { + runs_complex[run_name] = { 'Capacity per tubewell': cp, 'Fw': fw, 'Policy Canal lining': cl, @@ -32,38 +49,51 @@ } -def run_model(name, switches): - # Create a coupled model instance - modelo = Conectado() +# 3. Now create the model +# Create a coupled model instance +modelo = Conectado() + +# Establish SDM and Biofisical model paths. The Biofisical model path must point to the Python wrapper for the model +modelo.estab_mds(os.path.join(os.path.split(__file__)[0], 'Tinamit_sub_v4.vpm')) +modelo.estab_bf(os.path.join(os.path.split(__file__)[0], 'SAHYSMOD.py')) +modelo.estab_conv_tiempo(mod_base='mds', conv=6) + +# Couple models(Change variable names as needed) +modelo.conectar(var_mds='Soil salinity Tinamit CropA', mds_fuente=False, var_bf="CrA - Root zone salinity crop A") +modelo.conectar(var_mds='Soil salinity Tinamit CropB', mds_fuente=False, var_bf="CrB - Root zone salinity crop B") +modelo.conectar(var_mds='Watertable depth Tinamit', mds_fuente=False, var_bf="Dw - Groundwater depth") +modelo.conectar(var_mds='ECdw Tinamit', mds_fuente=False, var_bf='Cqf - Aquifer salinity') +modelo.conectar(var_mds='Lc', mds_fuente=True, var_bf='Lc - Canal percolation') +modelo.conectar(var_mds='Ia CropA', mds_fuente=True, var_bf='IaA - Crop A field irrigation') +modelo.conectar(var_mds='Ia CropB', mds_fuente=True, var_bf='IaB - Crop B field irrigation') +modelo.conectar(var_mds='Gw', mds_fuente=True, var_bf='Gw - Groundwater extraction') +modelo.conectar(var_mds='Irrigation efficiency', mds_fuente=True, var_bf='FsA - Water storage efficiency crop A') +modelo.conectar(var_mds='Fw', mds_fuente=True, var_bf='Fw - Fraction well water to irrigation') + - # Establish SDM and Biofisical model paths. The Biofisical model path must point to the Python wrapper for the model - modelo.estab_mds(os.path.join(os.path.split(__file__)[0], 'Tinamit_sub_v4.vpm')) +# 4. Finally, run the model +if use_simple: + runs = runs_simple +else: + runs = runs_complex - modelo.estab_bf(os.path.join(os.path.split(__file__)[0], 'SAHYSMOD.py')) +# Run the model for all desired runs +for n_run, run in runs.items(): - modelo.estab_conv_tiempo(mod_base='mds', conv=6) + print('Runing model %s.' % n_run) # Set appropriate switches for policy analysis - for switch, val in switches.items(): + for switch, val in run.items(): modelo.mds.inic_val(var=switch, val=val) - # Couple models(Change variable names as needed) - modelo.conectar(var_mds='Soil salinity Tinamit CropA', mds_fuente=False, var_bf="CrA - Root zone salinity crop A") - modelo.conectar(var_mds='Soil salinity Tinamit CropB', mds_fuente=False, var_bf="CrB - Root zone salinity crop B") - modelo.conectar(var_mds='Watertable depth Tinamit', mds_fuente=False, var_bf="Dw - Groundwater depth") - modelo.conectar(var_mds='ECdw Tinamit', mds_fuente=False, var_bf='Cqf - Aquifer salinity') - modelo.conectar(var_mds='Lc', mds_fuente=True, var_bf='Lc - Canal percolation') - modelo.conectar(var_mds='Ia CropA', mds_fuente=True, var_bf='IaA - Crop A field irrigation') - modelo.conectar(var_mds='Ia CropB', mds_fuente=True, var_bf='IaB - Crop B field irrigation') - modelo.conectar(var_mds='Gw', mds_fuente=True, var_bf='Gw - Groundwater extraction') - modelo.conectar(var_mds='Irrigation efficiency', mds_fuente=True, var_bf='FsA - Water storage efficiency crop A') - modelo.conectar(var_mds='Fw', mds_fuente=True, var_bf='Fw - Fraction well water to irrigation') - # Simulate the coupled model - modelo.simular(paso=1, tiempo_final=20, nombre_corrida=name) # time step and final time are in months + modelo.simular(paso=1, tiempo_final=20, nombre_corrida=n_run) # time step and final time are in months -# Run the model for all desired runs -for n_run, run in enumerate(runs): - print('Runing model %s.' % run) - run_model(run, runs[run]) +# Climate change runs +location = Lugar(lat=32.178207, long=73.217391, elev=217) +location.observar('مشاہدہ بارش.csv', mes='مہینہ', año='سال', + datos={'Precipitación': 'بارش (میٹر)'}) +for rcp in [2.6, 4.5, 6.0, 8.5]: + modelo.simular(paso=1, tiempo_final=50, fecha_inic=1990, lugar=location, tcr=rcp) + diff --git a/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/SAHYSMOD.py b/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/SAHYSMOD.py index 12427a66..a5960ec3 100644 --- a/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/SAHYSMOD.py +++ b/tinamit/Ejemplos/en/Ejemplo_SAHYSMOD/SAHYSMOD.py @@ -1,6 +1,6 @@ import os -from tinamit.EnvolturaBF.en.SAHYSMOD.wrapper_spatial import ModeloSAHYSMOD +from tinamit.EnvolturaBF.en.SAHYSMOD.SAHYSMOD_Wrapper import ModeloSAHYSMOD # Path to SAHYSMOD executable. Change as needed on your computer. SAHYSMOD = 'C:\\Users\\jmalar1\\Documents\\SAHYSMOD\\SahysModConsole.exe' diff --git a/tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD.inp b/tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD.inp index 0f5dea1b..d72fa8c4 100644 --- a/tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD.inp +++ b/tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD.inp @@ -246,7 +246,7 @@ Internal nodes are surrounded by polygonal boundaries 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 0.69719171524 +0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.600000023842 0.158 0.016 0.016 0.016 0.016 0.212 0.016 0.212 0.016 0.016 0.212 0.158 0.016 0.212 0.016 0.212 0.212 0.158 0.016 0.212 0.016 0.158 0.212 0.158 0.212 0.158 0.016 0.212 0.016 0.212 0.016 0.016 0.158 0.212 0.212 0.016 0.016 0.016 0.016 0.212 0.212 0.016 0.016 0.016 0.016 0.016 0.212 0.212 0.212 0.158 0.016 0.016 0.016 0.158 0.158 0.212 0.016 0.016 0.158 0.212 0.016 0.158 0.212 0.158 0.016 0.158 0.016 0.158 0.158 0.212 0.358 0.358 0.016 0.358 0.016 0.016 0.016 0.212 0.358 0.358 0.358 0.358 0.016 0.016 0.016 0.016 0.016 0.358 0.016 0.358 0.358 0.158 0.158 0.016 0.016 0.016 0.358 0.016 0.158 0.158 0.016 0.358 0.158 0.158 0.158 0.016 0.158 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.076 0.08 0.115 0.08 0.115 0.115 0.08 0.115 0.076 0.115 0.08 0.076 0.08 0.076 0.076 0.08 0.115 0.115 0.076 0.08 0.115 0.08 0.08 0.115 0.08 0.08 0.08 0.115 0.08 0.115 0.08 0.08 0.08 0.08 0.08 0.115 0.08 0.08 0.08 0.08 0.115 0.115 0.076 0.08 0.08 0.08 0.08 0.076 0.115 0.076 0.076 0.08 0.08 0.08 0.076 0.115 0.115 0.076 0.076 0.115 0.115 0.08 0.076 0.076 0.08 0.08 0.076 0.076 0.076 0.076 0.115 0.321 0.08 0.08 0.08 0.076 0.08 0.08 0.321 0.321 0.321 0.321 0.321 0.08 0.076 0.08 0.08 0.321 0.08 0.321 0.321 0.076 0.076 0.08 0.08 0.08 0.08 0.08 0.08 0.076 0.076 0.321 0.08 0.076 0.076 0.08 0.076 0.076 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 -1.0 0.65 0.65 -1.0 -1.0 -1.0 0.65 -1.0 0.65 0.65 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 0.65 -1.0 -1.0 0.65 0.65 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 0.65 -1.0 0.65 0.65 0.65 0.65 0.65 0.65 -1.0 0.65 -1.0 -1.0 -1.0 0.65 0.65 -1.0 -1.0 0.65 0.65 -1.0 0.65 0.65 0.65 0.65 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 0.65 -1.0 -1.0 -1.0 -1.0 -1.0 0.65 0.65 0.65 -1.0 -1.0 0.65 0.65 0.65 0.076 0.08 0.08 0.08 0.08 0.115 0.08 0.115 0.08 0.08 0.115 0.076 0.08 0.115 0.08 0.115 0.115 0.076 0.08 0.115 0.08 0.076 0.115 0.076 0.115 0.076 0.08 0.115 0.08 0.115 0.08 0.08 0.076 0.115 0.115 0.08 0.08 0.08 0.08 0.115 0.115 0.08 0.08 0.08 0.08 0.08 0.115 0.115 0.115 0.076 0.08 0.08 0.08 0.076 0.076 0.115 0.08 0.08 0.076 0.115 0.08 0.076 0.115 0.076 0.08 0.076 0.08 0.076 0.076 0.115 0.321 0.321 0.08 0.321 0.08 0.08 0.08 0.115 0.321 0.321 0.321 0.321 0.08 0.08 0.08 0.08 0.08 0.321 0.08 0.321 0.321 0.076 0.076 0.08 0.08 0.08 0.321 0.08 0.076 0.076 0.08 0.321 0.076 0.076 0.076 0.08 0.076 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 -1.0 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 -1.0 -1.0 0.65 -1.0 0.65 0.65 -1.0 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 -1.0 -1.0 -1.0 -1.0 0.65 0.65 0.65 0.65 0.65 0.65 0.65 -1.0 0.65 0.65 -1.0 0.65 0.65 0.65 0.65 @@ -267,13 +267,13 @@ Internal nodes are surrounded by polygonal boundaries 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 -1.0 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 -1.0 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 -1.0 -1.0 0.913 -1.0 0.913 0.913 -1.0 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913 -1.0 -1.0 -1.0 -1.0 0.913 0.913 0.913 0.913 0.913 0.913 0.913 -1.0 0.913 0.913 -1.0 0.913 0.913 0.913 0.913 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 -1.0 0.18 -1.0 -1.0 0.18 0.18 0.18 -1.0 -1.0 0.18 -1.0 0.18 0.18 -1.0 -1.0 -1.0 -1.0 -1.0 0.18 -1.0 -1.0 -1.0 -1.0 -1.0 0.18 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.18 0.18 -1.0 -1.0 -1.0 -1.0 0.18 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 -1.0 -1.0 -1.0 0.18 -1.0 0.18 -1.0 0.18 0.18 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.18 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 -1.0 -1.0 -1.0 -1.0 0.18 0.18 0.18 0.18 0.18 -1.0 -1.0 -1.0 -1.0 0.18 -1.0 -1.0 -1.0 -1.0 0.18 0.18 0.18 0.18 -1.0 0.18 -1.0 -1.0 -1.0 -1.0 -1.0 0.18 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 -1.0 -1.0 -1.0 -1.0 0.18 0.18 -1.0 -1.0 -1.0 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 -1.0 0.18 -1.0 -1.0 -1.0 0.18 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.0 -1.0 -1.0 0.18 0.18 0.18 0.18 0.18 -1.0 0.18 0.18 0.18 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 -1.0 -1.0 0.24 0.24 -1.0 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 -1.0 0.24 0.24 -1.0 0.24 0.24 0.24 -1.0 0.24 0.24 -1.0 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 0.24 0.24 0.24 0.24 -1.0 0.24 -1.0 0.24 -0.177818849683 0.177818849683 0.177818849683 0.177818849683 0.177818849683 0.177818849683 0.177818849683 0.177818849683 0.177818849683 0.17460000515 0.181484773755 0.17460000515 0.17460000515 0.181484773755 0.181484773755 0.17460000515 0.179875269532 0.181484773755 0.17460000515 0.17460000515 0.179875269532 0.179845541716 0.179845541716 0.17460000515 0.177335321903 0.177335321903 0.175725147128 0.179845541716 0.17460000515 0.17460000515 0.177335321903 0.175037562847 0.175037562847 0.177818849683 0.177818849683 0.17460000515 0.17460000515 0.174671441317 0.174671441317 0.174671441317 0.174693927169 0.17460000515 0.17460000515 0.175462990999 0.174671441317 0.175238773227 0.175717875361 0.176037251949 0.174653664231 0.174720749259 0.17460000515 0.175462990999 0.176944553852 0.174671441317 0.175144731998 0.175553277135 0.175825640559 0.175224244595 0.175224244595 0.175224244595 0.175462990999 0.175462990999 0.176944553852 0.174671441317 0.178674265742 0.178674265742 0.178674265742 0.174808084965 0.174808084965 0.175723686814 0.175723686814 0.175136968493 0.175136968493 0.174671441317 0.176360487938 0.178674265742 0.178674265742 0.175206035376 0.177473828197 0.174808084965 0.174808084965 0.174794211984 0.174794211984 0.174794211984 0.175136968493 0.175136968493 0.176360487938 0.176360487938 0.176360487938 0.175071358681 0.175717607141 0.175717607141 0.233971849084 0.174808084965 0.174808084965 0.174808084965 0.174794211984 0.174794211984 0.174794211984 0.175136968493 0.176360487938 0.176360487938 0.176360487938 0.175536394119 0.174689784646 0.175238639116 0.175238639116 0.233971849084 0.174766466022 0.174766466022 0.174794211984 0.174794211984 0.174794211984 0.174753412604 0.174753412604 0.175627738237 0.176360487938 0.176360487938 0.175328299403 0.174689784646 0.174689784646 0.197689056396 0.197689056396 0.174766466022 0.174766466022 0.174724861979 0.174724861979 0.174753412604 0.174753412604 0.174753412604 0.174999669194 0.174999669194 0.175605997443 0.174704045057 0.174704045057 0.182176560163 0.184341281652 0.197689056396 0.185841709375 0.174766466022 0.174724861979 0.174724861979 0.174724861979 0.174753412604 0.174753412604 0.174752250314 0.174752250314 0.175605997443 0.175605997443 0.174704045057 0.183258935809 0.182176560163 0.184341281652 0.197689056396 0.185841709375 0.174724861979 0.174724861979 0.174724861979 0.174753412604 0.174753412604 0.174753412604 0.174752250314 0.175605997443 0.175605997443 0.175605997443 0.174704045057 0.175148308277 0.175559535623 0.175833702087 0.183343544602 0.183343544602 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.175605997443 0.175605997443 0.175605997443 0.192191660404 0.192191660404 0.192191660404 0.176585629582 0.177930876613 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.175482496619 0.176144376397 0.177930876613 0.177930876613 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.188114643097 0.185111388564 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.180606499314 +0.179758250713 0.179758250713 0.179758250713 0.179758250713 0.179758250713 0.179758250713 0.179758250713 0.179758250713 0.179758250713 0.2113571316 0.185632929206 0.2113571316 0.2113571316 0.185632929206 0.185632929206 0.188894450665 0.209306389093 0.185632929206 0.188894450665 0.188894450665 0.209306389093 0.183006033301 0.183006033301 0.188894450665 0.192595899105 0.192595899105 0.205480262637 0.183006033301 0.188894450665 0.188894450665 0.192595899105 0.186608985066 0.186608985066 0.179758250713 0.179758250713 0.184401899576 0.184401899576 0.176560655236 0.176560655236 0.176560655236 0.178855389357 0.184401899576 0.184401899576 0.213870614767 0.176560655236 0.175459578633 0.176104277372 0.176534071565 0.177031651139 0.180071219802 0.184401899576 0.213870614767 0.190025061369 0.176560655236 0.175326451659 0.175871267915 0.176234483719 0.210136204958 0.210136204958 0.210136204958 0.213870614767 0.213870614767 0.190025061369 0.176560655236 0.277009367943 0.277009367943 0.277009367943 0.18644541502 0.18644541502 0.233824208379 0.233824208379 0.199035048485 0.199035048485 0.176560655236 0.218850970268 0.277009367943 0.277009367943 0.193530440331 0.182705655694 0.18644541502 0.18644541502 0.184836283326 0.184836283326 0.184836283326 0.199035048485 0.199035048485 0.218850970268 0.218850970268 0.218850970268 0.189323678613 0.177752196789 0.177752196789 0.257291465998 0.18644541502 0.18644541502 0.18644541502 0.184836283326 0.184836283326 0.184836283326 0.199035048485 0.218850970268 0.218850970268 0.218850970268 0.204887002707 0.177404507995 0.176401257515 0.176401257515 0.257291465998 0.184076324105 0.184076324105 0.184836283326 0.184836283326 0.184836283326 0.181581452489 0.181581452489 0.203844487667 0.218850970268 0.218850970268 0.198156565428 0.177404507995 0.177404507995 0.206757798791 0.206757798791 0.184076324105 0.184076324105 0.181180477142 0.181180477142 0.181581452489 0.181581452489 0.181581452489 0.185972854495 0.185972854495 0.199886262417 0.177965223789 0.177965223789 0.187613755465 0.191331967711 0.206757798791 0.18964342773 0.184076324105 0.181180477142 0.181180477142 0.181180477142 0.181581452489 0.181581452489 0.178932517767 0.178932517767 0.199886262417 0.199886262417 0.177965223789 0.189472869039 0.187613755465 0.191331967711 0.206757798791 0.18964342773 0.181180477142 0.181180477142 0.181180477142 0.181581452489 0.181581452489 0.181581452489 0.178932517767 0.199886262417 0.199886262417 0.199886262417 0.177965223789 0.175429463387 0.176051542163 0.176466286182 0.186300441623 0.186300441623 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.199886262417 0.199886262417 0.199886262417 0.199101179838 0.199101179838 0.199101179838 0.177603766322 0.179057314992 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.175935000181 0.176936268806 0.179057314992 0.179057314992 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.189934134483 0.186526551843 0.17460000515 0.17460000515 0.17460000515 0.17460000515 0.181415185332 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.059 0.048 0.059 0.059 0.048 0.048 0.059 0.041 0.048 0.041 0.059 0.041 0.032 0.032 0.059 0.041 0.028 0.028 0.032 0.039 0.059 0.041 0.028 0.028 0.032 0.032 0.039 0.059 0.028 0.028 0.028 0.047 0.039 0.039 0.048 0.019 0.029 0.029 0.029 0.031 0.047 0.039 0.048 0.027 0.019 0.02 0.026 0.039 0.048 0.048 0.048 0.048 0.048 0.027 0.019 0.062 0.062 0.062 0.048 0.048 0.048 0.048 0.048 0.048 0.019 0.062 0.062 0.062 0.039 0.049 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.062 0.062 0.062 0.039 0.049 0.049 0.046 0.032 0.032 0.048 0.048 0.048 0.048 0.048 0.062 0.062 0.062 0.037 0.039 0.033 0.033 0.046 0.032 0.032 0.032 0.048 0.048 0.048 0.048 0.057 0.062 0.062 0.037 0.026 0.026 0.046 0.046 0.032 0.032 0.032 0.032 0.032 0.032 0.048 0.057 0.057 0.062 0.037 0.037 0.039 0.039 0.046 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.038 0.038 0.041 0.041 0.025 0.026 0.039 0.039 0.046 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.038 0.041 0.041 0.041 0.025 0.026 0.023 0.035 0.031 0.031 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.041 0.041 0.041 0.031 0.031 0.031 0.036 0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.031 0.024 0.021 0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.039 0.039 0.0 0.0 0.0 0.0 0.026 -2.02 2.01 2.05 2.01 2.01 2.01 4.81 2.01 2.01 4.27 2.0 1.46 4.32 2.0 2.0 2.0 5.5 2.0 1.99 6.08 1.88 2.0 5.92 6.06 2.19 6.61 0.493 2.0 5.01 2.09 3.28 4.31 7.46 2.0 2.0 1.99 2.03 2.0 1.58 4.65 1.99 2.0 2.0 2.53 1.58 3.29 3.04 4.27 2.0 2.0 2.01 1.37 1.51 4.51 2.11 5.32 2.38 6.2 2.02 2.03 1.99 5.98 4.04 2.0 1.61 6.63 4.88 2.0 2.0 0.39 1.23 2.0 5.93 5.91 1.8 1.74 1.63 5.19 2.97 2.0 2.0 2.0 2.06 2.06 1.99 2.0 5.36 5.42 5.36 5.11 2.35 2.01 4.12 5.93 5.93 2.0 2.0 5.9 1.77 5.43 5.3 1.79 1.87 5.49 5.75 1.0 5.62 5.04 5.9 5.98 5.98 2.0 2.07 2.0 2.06 1.61 1.85 1.89 5.41 5.18 0.282 2.28 3.25 5.92 1.99 1.99 3.6 1.99 2.0 2.01 1.66 1.66 2.06 2.0 2.0 7.57 1.37 2.45 5.23 4.1 2.0 5.94 5.94 3.61 1.99 2.0 2.01 2.01 2.0 1.99 1.65 2.07 1.63 2.07 1.78 2.0 2.13 5.06 5.93 1.0 0.31 2.0 1.73 1.85 0.531 1.99 1.99 2.06 1.97 1.76 1.73 1.99 1.99 1.99 1.97 4.13 2.82 5.91 3.41 15.1 3.96 1.85 2.21 2.39 1.77 4.81 1.99 1.99 1.95 1.98 1.99 1.98 1.25 0.723 0.55 0.746 0.359 1.0 0.927 1.42 5.62 1.99 1.95 1.97 3.42 3.42 1.34 0.37 4.4 3.32 1.99 1.99 1.98 1.36 6.42 -2.02 2.0 2.04 2.01 2.01 2.0 18.1 2.0 0.0704 6.29 0.0306 0.116 6.17 0.0326 0.0304 2.0 0.0446 0.0326 0.0424 6.01 2.05 5.16e-06 1.79e-05 5.99 11.9 17.9 0.00731 0.000207 0.000211 2.06 17.8 0.00852 0.00779 1.36e-05 1.31e-05 0.000294 2.01 0.00853 0.0259 0.0509 0.0236 0.000262 2.0 0.0317 1.0 0.0147 0.0738 0.073 4.12e-05 0.0235 2.01 0.0292 1.98e-05 1.0 1.0 1.0 0.0131 6.24 2.02 0.03 0.0683 0.112 0.00257 1.0 0.0628 11.8 6.07 0.0301 0.0284 0.105 0.106 0.112 0.0284 1.0 1.99 2.06 0.059 0.167 0.108 0.108 0.108 0.111 2.05 2.04 0.0303 0.247 0.184 0.173 0.183 0.00705 12.0 0.0324 0.0201 0.0182 0.00221 0.108 0.0281 0.0278 11.9 0.0318 0.0661 0.0661 2.1 0.0067 0.00994 12.0 4.73e-06 6.08 5.9 5.99 5.99 2.0 2.07 1.99 2.06 2.03 2.09 2.13 6.41 1.0 12.0 12.0 11.9 5.92 1.99 1.99 12.0 1.99 2.0 2.01 2.0 1.99 2.05 2.0 2.0 18.0 2.0 12.0 12.4 12.0 2.0 5.94 5.94 12.0 1.99 2.0 2.01 2.01 2.0 1.0 1.0 2.08 2.06 2.07 2.09 2.0 18.0 18.0 5.92 18.0 1.99 2.0 2.0 2.0 2.0 1.0 1.0 1.0 18.0 2.05 2.04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 18.0 18.0 12.0 18.0 12.0 18.0 18.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 17.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 18.8 18.4 1.0 1.0 1.0 1.0 17.9 -0.16726590693 0.146040409803 0.154017984867 0.0490019246936 0.158933237195 0.155094921589 0.0708277896047 0.167392909527 0.167392909527 0.444046318531 0.207894593477 0.454899936914 0.350916385651 0.205730050802 0.206379190087 0.255924761295 0.540120303631 0.201666459441 0.255924761295 0.254037469625 0.51566439867 0.18978407979 0.18978407979 0.255924761295 0.342208266258 0.340880274773 0.488851189613 0.18978407979 0.25459676981 0.255924761295 0.342208266258 0.515144884586 0.515017926693 0.167392909527 0.167392909527 0.216923698783 0.216923698783 0.194412395358 0.194412395358 0.194412395358 0.238008141518 0.201094120741 0.193555697799 0.353289246559 0.194412395358 0.329018115997 0.476908832788 0.483061790466 0.192503422499 0.260985702276 0.204417541623 0.325730234385 0.295131593943 0.191491410136 0.253297001123 0.316139400005 0.406844675541 0.296136498451 0.305867731571 0.305867731571 0.353289246559 0.353289246559 0.305360615253 0.194412395358 0.594876408577 0.596679449081 0.546225726604 0.184737131 0.189842879772 0.468721777201 0.468721777201 0.269627034664 0.269627034664 0.194412395358 0.545667231083 0.584059715271 0.596679449081 0.489244788885 0.234349399805 0.147205784917 0.171821042895 0.180357336998 0.170068025589 0.178347200155 0.269627034664 0.269627034664 0.545667231083 0.545667231083 0.545667231083 0.519836723804 0.150820240378 0.149325504899 0.414801537991 0.11646386236 0.189842879772 0.189842879772 0.188539803028 0.188539803028 0.188149571419 0.269627034664 0.545667231083 0.545667231083 0.545667231083 0.587664961815 0.185428395867 0.02324100025 0.112754322588 0.596679449081 0.175852999091 0.178240388632 0.188539803028 0.188539803028 0.188539803028 0.17120090127 0.167508661747 0.596679449081 0.530348539352 0.544566988945 0.589442610741 0.184539392591 0.17622640729 0.336834251881 0.338865786791 0.17511883378 0.144818335772 0.166214704514 0.150252446532 0.17120090127 0.17120090127 0.17120090127 0.452096223831 0.452096223831 0.361616611481 0.215062305331 0.21963429451 0.398627698421 0.476562917233 0.354994773865 0.470432132483 0.177010923624 0.154449313879 0.164730474353 0.161301478744 0.153674885631 0.17120090127 0.253836452961 0.251163899899 0.368308603764 0.368308603764 0.21963429451 0.436989337206 0.399955689907 0.461377084255 0.340425789356 0.458875179291 0.155840456486 0.141429156065 0.133829012513 0.145886942744 0.0193039998412 0.0510251484811 0.225896462798 0.326271623373 0.271747380495 0.145827159286 0.209347307682 0.208506554365 0.24977709353 0.220191016793 0.374712109566 0.344117254019 0.126171186566 0.117279075086 0.113577239215 0.126802071929 0.105347849429 0.107446432114 0.0707697495818 0.363551616669 0.0170180015266 0.0886564925313 0.120702534914 0.235352292657 0.264591425657 0.19286634028 0.171159997582 0.131168723106 0.131830438972 0.130904018879 0.122833445668 0.130904018879 0.129051402211 0.127998009324 0.0800144374371 0.0685844421387 0.081157438457 0.0245110020041 0.0116840004921 0.0293147675693 0.176145166159 0.195056959987 0.115339405835 0.126750439405 0.131830438972 0.131830438972 0.131830438972 0.109351441264 0.0517081208527 0.343453526497 0.373795866966 0.127766445279 0.131830438972 0.131433397532 0.107634335756 0.278015345335 +1.68 1.77 1.62 1.49 1.6 1.7 0.0689 1.68 1.56 4.37 1.39 1.05 4.08 1.4 1.39 1.45 3.87 1.41 1.43 4.38 1.39 1.45 4.12 4.43 6.74 10.7 0.156 1.5 10.8 1.41 10.1 6.57 7.14 1.57 1.53 1.45 1.54 11.1 14.0 15.0 1.15 1.63 1.71 5.73 13.7 10.2 5.15 5.29 1.36 1.07 1.65 5.36 8.03 14.4 1.92 5.31 7.21 3.33 1.05 1.06 1.06 3.06 8.1 1.67 1.34 4.58 4.21 1.5 1.48 0.901 2.6 1.25 3.65 4.66 1.54 1.46 1.56 1.96 4.04 1.56 1.56 1.54 1.64 1.66 1.25 1.25 4.54 5.62 4.46 3.0 7.49 1.62 2.79 5.83 4.05 1.48 1.5 4.37 5.99 8.24 4.45 1.53 1.86 2.04 5.97 1.0 11.4 4.32 4.21 4.17 4.14 1.45 1.56 1.69 1.64 0.708 1.61 1.73 1.93 5.06 12.8 6.38 9.61 4.19 1.51 1.5 7.64 1.45 1.52 1.71 1.47 1.47 1.73 1.72 1.58 7.79 1.37 6.16 6.15 6.3 1.51 4.27 4.51 7.88 1.54 1.54 1.56 1.53 1.54 1.59 1.46 1.62 1.57 1.71 1.46 1.66 11.3 12.3 4.59 0.943 0.00623 1.73 1.67 1.68 1.64 1.62 1.59 1.55 19.2 1.48 1.68 1.77 1.81 1.82 1.69 15.2 10.7 5.87 11.9 15.1 6.68 13.9 8.47 10.7 20.6 14.6 1.74 1.74 1.73 1.78 1.74 1.75 8.77 16.4 17.7 16.6 1.0 1.0 0.354 16.5 11.3 1.82 1.72 1.72 9.13 9.13 13.5 18.9 17.6 10.1 1.76 1.74 1.63 13.9 9.16 +2.01 2.0 2.07 2.12 2.0 2.0 17.9 2.0 0.00755 6.96 0.00164 0.0205 6.45 0.00185 0.00164 1.99 0.00329 0.00185 0.00301 6.02 2.08 1.81e-10 1.55e-09 6.05 11.9 17.9 0.000107 1.44e-07 1.7e-07 2.0 17.9 0.000158 0.000132 3.34e-10 5.09e-10 3.27e-07 1.99 0.00016 0.00123 0.00431 0.00102 1.54e-07 2.0 0.00176 1.0 0.000431 0.00837 0.0082 0.00385 0.00102 2.0 0.00148 2.05e-09 1.0 1.0 1.0 0.000234 6.27 1.99 0.0016 0.00722 0.018 1.66e-05 1.0 0.00686 11.9 6.24 0.00161 0.00146 0.0173 0.0174 0.018 0.00145 1.0 2.0 2.12 0.00556 0.0376 0.0157 0.0169 0.0169 0.0177 2.05 2.11 0.00162 0.0768 0.045 0.0383 0.0451 0.000109 11.9 0.00161 0.000726 0.000611 1.1e-05 0.0169 0.00142 0.00139 11.9 0.00176 0.00686 0.00687 2.39 9.85e-05 0.000214 12.0 1.52e-10 6.24 5.79 5.78 5.91 1.99 2.15 1.99 1.99 2.0 2.14 2.27 6.32 1.0 12.0 11.9 11.9 5.77 1.96 1.99 12.0 1.9 1.99 1.99 1.99 1.99 2.06 2.0 2.0 18.0 2.0 11.9 12.0 12.0 2.0 5.77 5.91 12.0 1.99 2.0 2.0 2.0 2.0 1.0 1.0 2.18 2.19 2.15 2.12 2.16 18.0 18.0 5.77 18.0 1.99 2.0 2.0 2.0 2.0 1.0 1.0 1.0 18.0 2.01 2.03 1.0 1.0 1.0 1.0 1.0 1.0 1.0 18.0 18.0 12.0 18.0 12.0 18.0 18.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 17.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 22.0 20.1 1.0 1.0 1.0 1.0 17.9 +0.154889091849 0.135341957211 0.142120376229 0.0435990095139 0.146658048034 0.143684521317 0.0647299811244 0.155016079545 0.155016079545 0.300200521946 0.186923295259 0.302124947309 0.231500536203 0.184990659356 0.185570299625 0.195104151964 0.435792505741 0.181322053075 0.195104151964 0.193687796593 0.416165649891 0.172655850649 0.172655850649 0.195104151964 0.287114620209 0.287114620209 0.598761081696 0.172655850649 0.195104151964 0.195104151964 0.287114620209 0.445579767227 0.445452779531 0.155016079545 0.155016079545 0.173700004816 0.173700004816 0.179013028741 0.179013028741 0.179013028741 0.278645306826 0.160900846124 0.150332003832 0.298304408789 0.179013028741 0.297972172499 0.426201283932 0.49174836278 0.213654458523 0.313074380159 0.163725599647 0.270745426416 0.246080130339 0.176092028618 0.230714932084 0.280243635178 0.362073093653 0.300344794989 0.310220122337 0.310220122337 0.298304408789 0.298304408789 0.257637143135 0.179013028741 0.493156850338 0.494758784771 0.450197964907 0.183018431067 0.18807336688 0.460312336683 0.460312336683 0.233589425683 0.233589425683 0.179013028741 0.285908102989 0.483561575413 0.494758784771 0.594719648361 0.305012732744 0.145771443844 0.17022998631 0.176608994603 0.166546940804 0.174589335918 0.233589425683 0.233589425683 0.285908102989 0.285908102989 0.285908102989 0.576987802982 0.175319328904 0.174042254686 0.443351298571 0.115262180567 0.18807336688 0.18807336688 0.184609532356 0.184609532356 0.184228032827 0.233589425683 0.285908102989 0.285908102989 0.285908102989 0.714824140072 0.178389176726 0.0290684942156 0.122554779053 0.501798510551 0.173505559564 0.175858706236 0.184609532356 0.184609532356 0.184609532356 0.157454118133 0.154080733657 0.725833296776 0.27804505825 0.285096526146 0.717304944992 0.17750017345 0.170515164733 0.258625566959 0.256626009941 0.17278188467 0.142909869552 0.162019357085 0.14600071311 0.157454118133 0.157454118133 0.157454118133 0.398294955492 0.398294955492 0.213939860463 0.207834258676 0.212406247854 0.403577655554 0.482599884272 0.272754997015 0.395030319691 0.17464505136 0.150432363153 0.160478711128 0.157049715519 0.139928117394 0.157454118133 0.230350449681 0.227937579155 0.217804640532 0.217804640532 0.212406247854 0.441818773746 0.403577655554 0.46722638607 0.261059045792 0.383473306894 0.151588708162 0.138793632388 0.131331428885 0.132271394134 0.0193039998412 0.0616961233318 0.202410459518 0.17576764524 0.160781636834 0.138683632016 0.202119261026 0.200943335891 0.240777716041 0.226440027356 0.314992815256 0.286423951387 0.121539004147 0.113030001521 0.109474003315 0.122174009681 0.1005840078 0.102615997195 0.0660400018096 0.214375644922 0.0170180015266 0.127144321799 0.0918110087514 0.17352154851 0.202110424638 0.216819033027 0.1455822438 0.12636500597 0.127000004053 0.126111000776 0.11836399883 0.126111000776 0.124333009124 0.12331700325 0.0751840025187 0.0637540072203 0.0763270035386 0.0245110020041 0.0116840004921 0.0572119913995 0.150404691696 0.173346146941 0.110617004335 0.121919997036 0.127000004053 0.127000004053 0.127000004053 0.104521006346 0.0476250015199 0.334630429745 0.309213489294 0.12293599546 0.127000004053 0.126619011164 0.103505000472 0.23838186264 0.273 0.322 0.316 0.764 0.297 0.307 0.565 0.32 0.271 0.449 0.282 0.33 0.431 0.313 0.283 0.347 0.307 0.279 0.296 0.364 0.332 0.146 0.1 0.357 0.319 0.216 0.281 0.102 0.123 0.373 0.318 0.252 0.307 0.107 0.104 0.125 0.357 0.201 0.218 0.277 0.251 0.125 0.194 0.3 0.081 0.363 0.303 0.301 0.112 0.267 0.147 0.457 0.241 0.181 0.182 0.186 0.368 0.262 0.276 -1.0 0.267 0.317 0.199 0.094 0.336 0.346 0.357 0.329 0.256 0.263 0.276 0.27 0.272 0.087 0.342 0.371 0.411 0.224 0.374 0.352 0.33 0.292 0.301 0.324 0.306 0.262 0.345 0.455 0.363 0.325 0.392 0.454 0.446 0.133 0.107 0.267 0.261 0.266 0.263 0.28 0.338 0.349 0.465 0.279 0.359 0.941 0.153 0.316 0.1 0.101 0.128 0.301 0.431 0.267 0.3 0.313 0.356 0.428 0.255 0.167 0.451 0.331 0.442 0.14 0.104 0.125 0.16 0.106 0.103 0.302 0.37 0.308 0.421 0.286 0.248 0.282 0.23 0.382 0.315 0.155 0.151 0.192 0.121 0.153 0.147 0.199 0.151 0.146 0.19 0.093 0.112 0.336 0.298 0.423 0.303 0.302 0.151 0.143 0.154 0.667 0.31 0.195 0.219 0.263 0.628 0.31 0.115 0.102 0.382 0.316 0.354 0.001 0.001 0.001 0.001 0.001 0.001 0.001 6.36 1.44 0.542 0.242 0.204 0.166 0.404 0.126 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.546 0.159 0.129 0.117 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.424 0.422 0.001 0.001 0.001 0.001 0.136 -0.0 0.0212255027145 0.005754920654 0.0593359768391 0.00122066412587 0.0121709834784 0.0678631067276 0.0 0.0 0.00288564572111 0.0 0.0 0.0954745858908 0.00216455501504 0.00151538942009 0.0 0.0 0.00584715045989 0.0 0.00188730028458 0.0244558677077 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0143055832013 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00735893426463 0.0119981616735 0.0 0.0 0.0 0.0 0.0 0.0 0.00973124802113 0.0 0.0 0.0 0.0 0.0 0.0 0.00194077775814 0.0 0.0543092191219 0.00510574318469 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0135836219415 0.0 0.115650504827 0.00536017166451 0.0322230942547 0.0180218368769 0.00818245857954 0.0184717662632 0.00765260960907 0.0 0.0 0.0 0.0 0.0 0.0305593218654 0.00396964186803 0.00267038913444 0.0292136687785 0.0516620092094 0.0 0.0 0.0 0.0 0.000390221306589 0.0 0.0 0.0 0.0 0.00970302149653 0.0 0.0 0.0268073808402 0.0 0.00238738348708 0.0 0.0 0.0 0.0 0.0 0.00369224464521 0.0 0.015318768099 0.000592280644923 0.0 0.0 0.0 0.0167635921389 0.0 0.0031215515919 0.0334220565856 0.00207175151445 0.0 0.0 0.0 0.0 0.0 0.0 0.00669198622927 0.0 0.0 0.0 0.0 0.0 0.0 0.00110246404074 0.00837615318596 0.0 0.0 0.0 0.0 0.0 0.00267259287648 0.0 0.0 0.0 0.0 0.0 0.014423802495 0.0119020193815 0.0 0.0 0.0143533181399 0.0211914498359 0.0013109483989 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0162365417928 0.000990580767393 0.0 0.0117988521233 0.00489725638181 0.014551365748 0.0182531960309 0.00502837589011 0.00133658631239 0.0 0.0013706900645 0.0 0.0 0.0 0.141025900841 0.00732613261789 0.0 0.0 0.00104817131069 0.000661722442601 0.0 0.000926403445192 0.0089969933033 0.000926403445192 0.0027790425811 0.00370542751625 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0343012101948 0.00239403638989 0.0 0.0 0.0 0.0 0.0 0.00862131640315 0.0109416740015 0.014740918763 0.0 0.0 0.000397036899813 0.0165761057287 0.00182216509711 +0.0 0.0195471365005 0.00527571840212 0.0523620806634 0.0011190387886 0.0112045696005 0.0615841113031 0.0 0.0 0.00192444527056 0.0 0.0 0.0621154047549 0.00193264859263 0.00135300273541 0.0 0.0 0.00522026373073 0.0 0.00141634931788 0.0196269061416 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0112751536071 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00889818556607 0.00946639012545 0.0 0.0 0.0 0.0 0.0 0.0 0.00987532921135 0.0 0.0 0.0 0.0 0.0 0.0 0.00160194723867 0.0 0.0445608347654 0.00505495397374 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0111972047016 0.0 0.141107723117 0.00706247938797 0.0318879336119 0.0178433805704 0.00800054054707 0.0180625971407 0.00748019851744 0.0 0.0 0.0 0.0 0.0 0.0339907482266 0.00466082571074 0.00314389239065 0.031269274652 0.0510941855609 0.0 0.0 0.0 0.0 0.000381521502277 0.0 0.0 0.0 0.0 0.0118466755375 0.0 0.0 0.0293311681598 0.0 0.00235315575264 0.0 0.0 0.0 0.0 0.0 0.00337338680401 0.0 0.00786304939538 0.000303600536427 0.0 0.0 0.0 0.0127324545756 0.0 0.00307681178674 0.0329488329589 0.00201534316875 0.0 0.0 0.0 0.0 0.0 0.0 0.00386476679705 0.0 0.0 0.0 0.0 0.0 0.0 0.00108663900755 0.00814133975655 0.0 0.0 0.0 0.0 0.0 0.00241287820973 0.0 0.0 0.0 0.0 0.0 0.0146114910021 0.00902896467596 0.0 0.0 0.014065079391 0.0207652766258 0.00117971957661 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0156231448054 0.00101946480572 0.0 0.00977285485715 0.00469900015742 0.0139700006694 0.0175260007381 0.0048259999603 0.00127000000793 0.0 0.00127000000793 0.0 0.0 0.0 0.106108427048 0.0053478856571 0.0 0.0 0.000885442364961 0.000635000003967 0.0 0.000889000075404 0.00863600149751 0.000889000075404 0.00266700005159 0.00355600030161 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0302715413272 0.00228600017726 0.0 0.0 0.0 0.0 0.0 0.00787399988621 0.0106539577246 0.0121165802702 0.0 0.0 0.000381000019843 0.0158750005066 0.00155077525415 0.478 0.564 0.552 1.34 0.521 0.536 0.988 0.561 0.473 0.787 0.493 0.577 0.755 0.548 0.496 0.608 0.538 0.488 0.517 0.638 0.58 0.255 0.176 0.624 0.558 0.378 0.492 0.178 0.216 0.653 0.557 0.442 0.537 0.187 0.181 0.219 0.624 0.352 0.382 0.485 0.439 0.219 0.339 0.524 0.141 0.635 0.53 0.527 0.196 0.467 0.257 0.799 0.422 0.317 0.319 0.326 0.644 0.458 0.482 0.448 0.467 0.555 0.348 0.164 0.587 0.605 0.625 0.575 0.449 0.46 0.483 0.472 0.475 0.152 0.599 0.65 0.719 0.393 0.655 0.616 0.577 0.512 0.526 0.567 0.536 0.459 0.604 0.796 0.636 0.569 0.685 0.795 0.78 0.232 0.188 0.467 0.457 0.465 0.46 0.49 0.591 0.611 0.813 0.488 0.628 -1.0 0.268 0.552 0.175 0.177 0.224 0.527 0.754 0.467 0.525 0.547 0.624 0.75 0.446 0.292 0.79 0.58 0.773 0.245 0.182 0.218 0.279 0.185 0.18 0.529 0.647 0.54 0.737 0.501 0.434 0.494 0.402 0.669 0.551 0.271 0.264 0.336 0.212 0.269 0.258 0.348 0.263 0.255 0.332 0.164 0.197 0.589 0.522 0.741 0.53 0.528 0.264 0.25 0.269 1.17 -1.0 0.342 0.384 0.461 1.1 0.543 0.202 0.179 0.669 0.553 0.619 0.002 0.002 0.002 0.002 0.002 0.002 0.002 -1.0 -1.0 0.949 -1.0 0.357 0.29 -1.0 0.221 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 -1.0 -1.0 -1.0 -1.0 0.204 0.002 0.002 0.002 0.002 0.002 0.002 -1.0 0.743 0.738 -1.0 0.002 0.002 0.002 0.237 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 0.0 -1.0 -1.0 0.0 0.0 0.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 -1.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 0.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 -1.0 -1.0 0.0 0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 -1.0 0.0 @@ -295,20 +295,20 @@ Internal nodes are surrounded by polygonal boundaries -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.800000011921 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 -0.21297109127 0.21297109127 0.21297109127 0.165049344301 0.21297109127 0.203570172191 0.108006499708 0.21297109127 0.21297109127 0.150022923946 0.21297109127 0.141779527068 0.110430888832 0.21297109127 0.21297109127 0.21297109127 0.0565591901541 0.21297109127 0.21297109127 0.21297109127 0.0584869123995 0.21297109127 0.21297109127 0.21297109127 0.101328544319 0.108006499708 0.0 0.21297109127 0.108006499708 0.203570172191 0.101328544319 0.0815345272422 0.0809378176928 0.21297109127 0.21297109127 0.21297109127 0.203570172191 0.101328544319 0.101328544319 0.108006499708 0.21297109127 0.21297109127 0.203570172191 0.101328544319 0.101328544319 0.101328544319 0.101328544319 0.0 0.21297109127 0.21297109127 0.21297109127 0.101328544319 0.101328544319 0.108006499708 0.21297109127 0.0967255160213 0.101328544319 0.200523972511 0.200523972511 0.200523972511 0.21297109127 0.203570172191 0.108006499708 0.21297109127 0.0 0.0 0.0 0.21297109127 0.21297109127 0.127957716584 0.127957716584 0.21297109127 0.21297109127 0.21297109127 0.0510121956468 0.0 0.0 0.0 0.108006499708 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.0510121956468 0.0510121956468 0.0510121956468 0.0 0.108006499708 0.21297109127 0.0 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.101328544319 0.108006499708 0.0510121956468 0.0510121956468 0.0510121956468 0.0 0.169542118907 0.0 0.108006499708 0.0 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.0 0.0522055067122 0.048671323806 0.0 0.165365368128 0.101328544319 0.101328544319 0.108006499708 0.21297109127 0.21297109127 0.21297109127 0.108006499708 0.21297109127 0.21297109127 0.21297109127 0.144583255053 0.144583255053 0.21297109127 0.21297109127 0.203570172191 0.108006499708 0.120116584003 0.101328544319 0.108006499708 0.108006499708 0.203570172191 0.203570172191 0.21297109127 0.108006499708 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.152453318238 0.196723774076 0.117821633816 0.21297109127 0.064712703228 0.21297109127 0.101328544319 0.108006499708 0.203570172191 0.0 0.0 0.211573496461 0.0308699626476 0.0 0.0 0.21297109127 0.21297109127 0.203570172191 0.0 0.0996654853225 0.0123208109289 0.21297109127 0.21297109127 0.21297109127 0.203570172191 0.108006499708 0.108006499708 0.184868648648 0.101328544319 0.0 0.0 0.101328544319 0.0174548830837 0.101328544319 0.0 0.0808612629771 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.21297109127 0.101328544319 0.101328544319 0.101328544319 0.101328544319 0.0 0.0 0.0 0.099220611155 0.108006499708 0.21297109127 0.21297109127 0.21297109127 0.108006499708 0.108006499708 0.101328544319 0.101328544319 0.0 0.101328544319 0.21297109127 0.21297109127 0.203570172191 0.101328544319 0.108006499708 +0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.180696293712 0.180390566587 0.192201897502 0.192201897502 0.180696293712 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.169237166643 0.180390566587 0.0 0.192201897502 0.180390566587 0.180696293712 0.169237166643 0.169237166643 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.180696293712 0.169237166643 0.169237166643 0.180390566587 0.192201897502 0.192201897502 0.180696293712 0.169237166643 0.169237166643 0.169237166643 0.169237166643 0.100190192461 0.192201897502 0.192201897502 0.192201897502 0.169237166643 0.169237166643 0.180390566587 0.192201897502 0.180696293712 0.169237166643 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.180696293712 0.180390566587 0.192201897502 0.180696293712 0.169237166643 0.180696293712 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.180696293712 0.180696293712 0.0 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.0603948421776 0.180390566587 0.192201897502 0.071386449039 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.169237166643 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.0 0.192201897502 0.0 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.0 0.192201897502 0.192201897502 0.0 0.192201897502 0.169237166643 0.169237166643 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.180696293712 0.180390566587 0.180696293712 0.169237166643 0.180390566587 0.180390566587 0.180696293712 0.180696293712 0.192201897502 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.169237166643 0.180390566587 0.180696293712 0.0 0.0211008638144 0.192201897502 0.192201897502 0.180696293712 0.0558345392346 0.192201897502 0.192201897502 0.180696293712 0.0558649674058 0.192201897502 0.160460889339 0.192201897502 0.192201897502 0.192201897502 0.180696293712 0.180390566587 0.180390566587 0.180696293712 0.169237166643 0.0 0.0 0.169237166643 0.150381088257 0.169237166643 0.0331332758069 0.174437299371 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.192201897502 0.169237166643 0.169237166643 0.169237166643 0.169237166643 0.0130858272314 0.0 0.0 0.169237166643 0.180390566587 0.192201897502 0.192201897502 0.192201897502 0.180390566587 0.180390566587 0.169237166643 0.169237166643 0.0950577631593 0.169237166643 0.192201897502 0.192201897502 0.180696293712 0.169237166643 0.180390566587 0.246 0.246 0.246 0.221 0.246 0.221 0.229 0.221 0.12 0.229 0.152 0.12 0.229 0.15 0.152 0.229 0.15 0.15 0.152 0.229 0.206 0.15 0.152 0.221 0.206 0.206 0.15 0.12 0.154 0.206 0.206 0.15 0.152 0.154 0.154 0.154 0.206 0.15 0.12 0.1 0.154 0.154 0.206 0.15 0.12 0.152 0.1 0.1 0.154 0.154 0.206 0.15 0.152 0.12 0.066 0.1 0.154 0.206 0.206 0.15 0.12 0.1 0.1 0.1 0.154 0.206 0.206 0.15 0.152 0.1 0.1 0.1 0.154 0.154 0.206 0.206 0.152 0.066 0.1 0.1 0.1 0.1 0.206 0.206 0.152 0.066 0.1 0.1 0.1 0.154 0.206 0.15 0.152 0.066 0.1 0.1 0.154 0.154 0.206 0.15 0.154 0.154 0.206 0.15 0.152 0.206 0.152 0.18 0.22 0.28 0.25 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.18 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -144.0 147.0 145.0 147.0 145.0 146.0 145.0 145.0 145.0 148.0 144.0 145.0 145.0 143.0 143.0 144.0 144.0 143.0 143.0 144.0 144.0 141.0 142.0 143.0 143.0 143.0 144.0 141.0 141.0 143.0 143.0 143.0 144.0 140.0 140.0 140.0 142.0 142.0 143.0 143.0 140.0 140.0 141.0 143.0 142.0 143.0 143.0 143.0 139.0 140.0 140.0 141.0 141.0 142.0 142.0 142.0 143.0 139.0 139.0 139.0 140.0 141.0 141.0 141.0 144.0 144.0 144.0 138.0 138.0 140.0 140.0 139.0 140.0 140.0 141.0 143.0 144.0 142.0 145.0 137.0 137.0 138.0 138.0 139.0 140.0 140.0 140.0 142.0 142.0 142.0 142.0 143.0 143.0 137.0 136.0 137.0 136.0 138.0 138.0 139.0 140.0 140.0 141.0 141.0 140.0 141.0 141.0 142.0 136.0 134.0 135.0 136.0 137.0 138.0 138.0 140.0 139.0 140.0 139.0 139.0 140.0 140.0 142.0 136.0 135.0 135.0 135.0 135.0 136.0 137.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 140.0 140.0 136.0 135.0 135.0 135.0 135.0 136.0 137.0 137.0 137.0 138.0 138.0 138.0 139.0 140.0 141.0 140.0 135.0 135.0 135.0 136.0 137.0 137.0 136.0 137.0 137.0 138.0 138.0 138.0 138.0 140.0 140.0 140.0 133.0 134.0 134.0 135.0 135.0 135.0 136.0 139.0 138.0 138.0 138.0 138.0 139.0 140.0 139.0 133.0 134.0 135.0 135.0 135.0 136.0 136.0 137.0 137.0 137.0 138.0 138.0 139.0 139.0 139.0 136.0 138.0 137.0 137.0 137.0 138.0 138.0 142.0 142.0 137.0 138.0 139.0 139.0 141.0 +144.0 147.0 145.0 147.0 145.0 146.0 146.0 145.0 145.0 146.0 144.0 144.0 144.0 143.0 143.0 144.0 144.0 143.0 143.0 144.0 144.0 141.0 142.0 143.0 143.0 143.0 145.0 141.0 141.0 143.0 143.0 143.0 144.0 140.0 140.0 140.0 143.0 142.0 143.0 143.0 140.0 140.0 141.0 142.0 142.0 143.0 143.0 143.0 139.0 140.0 140.0 141.0 141.0 142.0 142.0 142.0 144.0 139.0 139.0 139.0 139.0 140.0 141.0 141.0 142.0 142.0 143.0 138.0 138.0 139.0 139.0 139.0 140.0 140.0 141.0 142.0 143.0 142.0 145.0 137.0 138.0 138.0 138.0 139.0 140.0 140.0 140.0 142.0 141.0 142.0 142.0 143.0 143.0 137.0 136.0 137.0 137.0 138.0 138.0 139.0 140.0 140.0 141.0 141.0 140.0 141.0 141.0 142.0 136.0 135.0 135.0 136.0 137.0 138.0 139.0 140.0 139.0 139.0 139.0 139.0 140.0 140.0 142.0 136.0 136.0 135.0 135.0 136.0 137.0 138.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 140.0 142.0 136.0 136.0 136.0 135.0 136.0 137.0 137.0 137.0 137.0 138.0 138.0 139.0 139.0 140.0 141.0 141.0 135.0 137.0 136.0 136.0 137.0 137.0 137.0 137.0 137.0 138.0 138.0 138.0 138.0 140.0 140.0 141.0 133.0 134.0 134.0 135.0 135.0 135.0 136.0 139.0 138.0 138.0 138.0 138.0 139.0 140.0 139.0 133.0 134.0 135.0 135.0 135.0 136.0 136.0 137.0 137.0 137.0 138.0 138.0 139.0 140.0 139.0 136.0 138.0 137.0 137.0 137.0 138.0 138.0 142.0 142.0 137.0 138.0 139.0 139.0 141.0 2.3 2.3 1.96 2.11 1.9 1.98 1.95 1.97 1.94 1.95 1.94 1.97 1.96 1.96 1.91 1.93 2.09 1.95 2.06 1.97 2.0 2.07 2.1 2.28 2.13 2.02 2.1 1.9 2.17 2.08 2.03 1.94 1.91 1.9 1.94 2.13 2.29 2.1 1.97 1.91 1.95 2.03 2.15 2.24 2.14 1.91 1.96 2.22 1.96 1.93 2.0 2.2 2.06 2.05 1.93 1.97 2.06 2.0 1.92 1.91 1.96 2.09 2.01 1.99 2.13 2.16 2.04 1.99 2.04 1.92 1.94 2.0 2.03 1.95 2.02 2.09 1.98 1.99 1.99 2.09 1.94 1.95 1.94 2.02 2.19 2.11 2.13 1.95 1.95 1.97 1.96 1.95 1.95 1.99 2.1 1.93 1.97 1.94 2.16 2.29 2.2 2.13 2.02 1.99 1.98 1.97 2.06 2.17 2.22 2.2 2.01 2.05 1.93 2.05 2.2 2.07 2.17 2.11 2.03 1.95 1.95 2.14 2.13 2.12 2.17 2.08 2.11 2.19 2.13 2.13 2.04 2.29 2.2 2.14 2.18 2.21 2.16 2.19 2.18 1.99 1.95 2.19 2.25 2.36 2.19 2.22 2.15 2.28 2.15 2.01 2.19 2.02 2.13 2.11 2.06 2.02 2.2 2.48 1.9 1.9 2.5 1.9 1.9 1.9 2.46 2.19 2.13 2.1 2.16 2.08 2.02 2.11 2.11 2.15 2.29 2.3 2.08 2.25 1.9 2.46 2.46 2.33 2.26 2.28 2.29 2.25 2.0 2.0 2.0 2.0 2.11 2.0 2.09 2.36 2.17 2.17 2.17 1.98 1.98 1.98 2.23 2.06 2.33 2.4 2.02 2.17 1.98 1.98 1.98 2.21 2.02 2.12 1.98 1.98 2.23 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -3.57 3.1 3.59286 2.81564 3.390326 3.91 23.6558 3.39 1.17 30.6 1.69 2.7 9.48177 1.83 1.6 3.68 5.63 1.76 1.46 11.0 3.08 2.0 6.84 9.37 14.6 22.2 7.10705 2.63 8.75 3.94 21.9 5.88 9.62 1.9 1.97 1.66 2.9 3.51 5.14 9.62 1.96 4.03 3.6912 3.22 8.6 5.75 4.63 17.2406 2.17 2.01 6.71092 9.1215 5.82 11.1975 3.3129 5.2607 5.0201 8.57 3.24 4.66 1.87 5.69 15.3126 2.59 2.28 31.4 11.1 1.55 1.54 0.999 2.51 2.02 4.99 7.31 3.31 7.02 5.1 6.15 2.14 1.70328 1.51 2.19 2.74 4.83976 1.57 2.16 4.83 20.9 7.73 3.0759 20.5 2.29 9.22922 6.74366 5.63 1.92 1.57 4.88 12.6 6.67 5.22 1.74 8.62 15.3 2.9665 14.6098 14.1 17.0 14.4 9.26 10.7 4.59 3.65 4.99 3.88 3.87 3.62 5.59492 20.2384 4.34224 18.616 18.5 11.2545 12.7 2.53265 3.14 20.89602 2.94 2.93 3.99 3.57 3.91 3.86 6.87663 5.34 30.9 3.3 17.3 19.934 12.15002 2.238462 5.35074 13.32915 10.80872 3.17 4.62 3.8 4.14 4.91 2.73 3.515316 4.23 5.07465 4.3 4.25604 1.127592 17.74892 13.27736 7.55719 16.436 2.48783 1.958724 2.42607 2.22994 3.73468 1.212772 2.61 2.87 25.381 4.17 3.60152 1.014086 1.63 1.6 1.7 7.16275 4.81664 1.416592 19.3014 14.985 15.6832 20.26 16.3087 32.0303 25.0045 11.5284 1.74 1.74 1.73 1.68 1.74 1.72 4.72 2.53352 2.7704 3.3749 7.36764 16.128 7.11525 4.86618 12.0 1.210289 1.69 1.76 7.24 6.86 13.94809 2.8347 60.3 31.0 1.73 1.77 1.95 6.82 34.8 -6.33864 4.05288 3.59286 2.81564 3.390326 5.461 23.6558 3.9258 1.42592 24.4931 2.02784 1.76445 9.48177 2.63724 2.6556 5.49551 8.19452 2.71937 1.7883 20.6228 5.37744 2.18245 8.19216 12.17962 20.3975 29.1972 7.10705 3.20015 12.12605 5.71219 31.9362 8.28702 11.36336 2.14831 2.27275 1.92593 3.78236 4.306 6.4798 11.0304 2.60416 4.03 3.6912 5.281 10.7892 7.14328 6.26216 17.2406 2.4136 3.68 6.71092 9.1215 5.82 11.1975 3.3129 5.2607 5.0201 17.65209 4.7466 4.66 3.07873 8.64869 15.3126 3.04694 1.45526 24.9704 11.922 1.85618 1.78975 0.827052 2.05526 2.64721 6.86264 8.34532 5.35268 4.42611 4.4088 16.2843 2.14 1.70328 1.65911 3.89288 3.89938 4.83976 1.92475 3.27378 6.83704 17.5348 5.33575 3.0759 23.8892 2.28272 9.22922 6.74366 6.85038 2.67198 1.80568 6.6096 28.1204 9.7659 7.91984 2.50648 7.48012 12.88034 2.9665 14.6098 14.4674 14.305 25.9443 9.4914 11.0528 5.373 3.7403 6.03496 4.56013 3.84213 6.40025 5.59492 20.2384 4.34224 18.616 23.7924 11.2545 13.5684 2.47 3.23196 20.89602 3.01344 3.0179 4.43088 4.6024 5.2636 5.07278 6.87663 6.1016 35.0154 4.05447 19.8696 19.934 12.15002 2.238462 5.35074 13.32915 10.80872 3.1944 4.80858 4.05252 4.48268 5.31837 2.75312 3.515316 4.3692 5.07465 4.3 4.25604 1.127592 17.74892 13.27736 7.55719 16.436 2.48783 1.958724 2.42607 2.22994 3.73468 1.212772 2.61444 2.86271 25.381 4.1778 3.60152 1.014086 1.5664 1.53457 1.67702 7.16275 4.81664 1.416592 19.3014 14.985 15.6832 20.26 16.3087 32.0303 25.0045 11.5284 1.74 1.74 1.72216 1.6466 1.73043 1.71127 4.68348 2.53352 2.7704 3.3749 7.36764 16.128 7.11525 4.86618 11.9948 1.210289 1.66651 1.76 7.36688 6.8526 13.94809 2.8347 60.2751 30.928 0.0 1.77 1.9714 6.83062 37.5378 -6.33864 4.05288 1.02 3.05 0.797 5.461 14.6 3.9258 1.42592 24.4931 2.02784 1.76445 21.9 2.63724 2.6556 5.49551 8.19452 2.71937 1.7883 20.6228 5.37744 2.18245 8.19216 12.17962 20.3975 29.1972 16.0 3.20015 12.12605 5.71219 31.9362 8.28702 11.36336 2.14831 2.27275 1.92593 3.78236 4.306 6.4798 11.0304 2.60416 0.971 2.07 5.281 10.7892 7.14328 6.26216 13.7 2.4136 3.68 2.55 17.2 7.86 10.2 2.73 4.07 14.4 17.65209 4.7466 4.66 3.07873 8.64869 14.4 3.04694 1.45526 24.9704 11.922 1.85618 1.78975 0.827052 2.05526 2.64721 6.86264 8.34532 5.35268 4.42611 4.4088 16.2843 22.0 1.74 1.65911 3.89288 3.89938 3.43 1.92475 3.27378 6.83704 17.5348 5.33575 20.6 23.8892 2.28272 20.2 2.98 6.85038 2.67198 1.80568 6.6096 28.1204 9.7659 7.91984 2.50648 7.48012 12.88034 6.12 14.5 14.4674 14.305 25.9443 9.4914 11.0528 5.373 3.7403 6.03496 4.56013 3.84213 6.40025 8.94 13.6 2.8 14.9 23.7924 51.8 13.5684 2.53265 3.23196 6.53 3.01344 3.0179 4.43088 4.6024 5.2636 5.07278 2.99 6.1016 35.0154 4.05447 19.8696 14.2 2.03 0.276 0.78 2.11 1.66 3.1944 4.80858 4.05252 4.48268 5.31837 2.75312 0.966 4.3692 6.5 8.78 2.68 0.276 2.09 2.09 1.02 14.9 2.12 0.254 0.465 0.882 4.07 0.913 2.61444 2.86271 14.5 4.1778 3.17 0.281 1.5664 1.53457 1.67702 2.09 1.69 0.844 19.4 14.1 14.5 14.9 11.8 14.9 14.4 8.58 1.74 1.74 1.72216 1.6466 1.73043 1.71127 4.68348 2.09 2.36 2.54 7.12 14.5 7.95 3.18 11.9948 0.281 1.66651 1.76 7.36688 6.8526 4.87 2.4 60.2751 30.928 0.292 1.77 1.9714 6.83062 37.5378 +3.33 2.88 3.33238 4.3008 3.091206 3.7 23.8654 3.17 0.598 26.3 0.852 0.893 18.2588 0.963 0.824 3.44 3.37 0.93 0.643 10.7 2.63 1.1 3.8 8.43 15.0 18.0 5.36241 1.59 3.3 3.8 22.0 2.96 3.66 1.08 1.12 0.786 3.44 2.14 2.69 3.13 0.998 3.27 3.39908 2.79 3.76 2.92 2.22 10.51493 1.22 0.972 7.7372 10.03505 5.7656 8.089 4.8199 6.14685 3.2646 7.7 2.48 2.86 0.95 2.94 10.68114 1.93 1.2 20.6 9.14 0.868 0.816 1.1 3.01 0.984 2.49 4.82 3.37 3.76 9.12 1.24 1.32 0.989948 1.2 1.24 2.4 5.34357 1.11 1.11 2.76 25.2 3.79 1.88007 25.2 1.81 7.3625 7.43158 3.1 1.06 1.22 2.82 13.1 3.01 3.51 1.11 9.59 9.54 2.9758 14.4915 3.61 12.5 12.4 9.09 8.02 3.92 3.29 4.63 4.65 2.21 3.64 6.20288 12.2482 3.3995 19.645 17.5 14.281 10.5 14.2389 2.5 18.12416 4.19 3.83 4.76 3.32 3.48 3.7 6.81561 4.62 21.3 3.1 16.7 15.198 12.16564 2.186683 8.69744 14.63065 23.4144 5.03 3.91 3.07 3.16 4.39 2.05 4.5457 3.58 5.29158 4.24 6.07175 0.7855404 34.00844 18.13832 6.612505 16.336 2.45783 3.01015 2.03813 1.64869 2.97668 1.121692 1.98 2.01 25.7616 3.62 5.97126 0.5536822 0.992 0.975 1.01 1.867275 1.356112 0.578328 14.2986 14.985 16.1136 19.831 14.20629 29.255 25.455 5.4081 1.05 1.06 1.05 1.02 1.05 1.04 1.45 1.333952 1.39048 2.079827 4.23704 16.4984 4.0979 3.86516 3.68 0.6941503 1.02 1.05 1.84 1.67 5.59037 0.924115 101.0 52.1 1.04 1.12 1.34 2.01 23.3 +6.48392 3.82734 3.33238 4.3008 3.091206 5.2906 23.8654 3.67196 0.705852 21.9581 0.973952 1.362665 18.2588 1.377687 1.445992 4.69179 4.435 1.54128 0.75556 19.0106 4.4292 1.20235 4.5512 10.65138 19.2515 22.7481 5.36241 1.9158 4.22247 5.2259 30.0134 3.5852 4.15344 1.22418 1.293 0.929052 4.67066 2.5977 3.22592 3.4224 1.331792 3.27 3.39908 3.62814 4.74514 3.51584 2.7048 10.51493 1.36007 1.86378 7.7372 10.03505 5.7656 8.089 4.8199 6.14685 3.2646 24.6634 3.72713 2.86 1.30606 3.93009 10.68114 2.28376 3.95233 27.4761 24.97172 1.043932 0.94587 1.1483 3.64492 1.234884 3.2516 5.52228 4.95468 5.96961 6.7764 1.92376 1.32 0.989948 1.60404 2.341 3.62718 5.34357 1.4583 1.60827 3.51264 21.1546 5.27365 1.88007 28.9098 1.80454 7.3625 7.43158 3.82768 1.45864 1.60298 3.76 31.6088 3.7072 4.82216 1.38872 10.88122 7.8213 2.9758 14.4915 3.28435 15.195 27.5803 10.3449 8.62417 4.65575 3.3796 5.63764 6.95145 3.31551 6.73375 6.20288 12.2482 3.3995 19.645 21.9844 14.281 11.502 14.4 2.73232 18.12416 4.74488 4.3574 5.62172 4.2596 4.6992 4.89306 6.81561 5.31632 24.5129 3.80965 18.7148 15.198 12.16564 2.186683 8.69744 14.63065 23.4144 5.3289 4.11654 3.42524 3.52904 4.75206 2.11936 4.5457 3.724 5.29158 4.24 6.07175 0.7855404 34.00844 18.13832 6.612505 16.336 2.45783 3.01015 2.03813 1.64869 2.97668 1.121692 1.99998 2.04402 25.7616 3.629 5.97126 0.5536822 0.95702 0.937196 1.000042 1.867275 1.356112 0.578328 14.2986 14.985 16.1136 19.831 14.20629 29.255 25.455 5.4081 1.05 1.06 1.05 0.999292 1.05 1.04 1.42261 1.333952 1.39048 2.079827 4.23704 16.4984 4.0979 3.86516 3.57288 0.6941503 1.003557 1.05 1.84 1.67 5.59037 0.924115 100.9519 52.096 0.0 1.12 1.37424 1.828044 25.289 +6.48392 3.82734 1.06 5.64 0.837 5.2906 14.5 3.67196 0.705852 21.9581 0.973952 1.362665 14.9 1.377687 1.445992 4.69179 4.435 1.54128 0.75556 19.0106 4.4292 1.20235 4.5512 10.65138 19.2515 22.7481 14.8 1.9158 4.22247 5.2259 30.0134 3.5852 4.15344 1.22418 1.293 0.929052 4.67066 2.5977 3.22592 3.4224 1.331792 0.64 1.94 3.62814 4.74514 3.51584 2.7048 14.3 1.36007 1.86378 2.61 17.2 6.5 6.64 4.84 6.36 15.7 24.6634 3.72713 2.86 1.30606 3.93009 9.93 2.28376 3.95233 27.4761 24.97172 1.043932 0.94587 1.1483 3.64492 1.234884 3.2516 5.52228 4.95468 5.96961 6.7764 1.92376 19.4 1.37 1.60404 2.341 3.62718 5.51 1.4583 1.60827 3.51264 21.1546 5.27365 18.2 28.9098 1.80454 17.2 3.27 3.82768 1.45864 1.60298 3.76 31.6088 3.7072 4.82216 1.38872 10.88122 7.8213 6.76 14.4 3.28435 15.195 27.5803 10.3449 8.62417 4.65575 3.3796 5.63764 6.95145 3.31551 6.73375 11.1 14.0 2.15 15.0 21.9844 60.2 11.502 14.2389 2.73232 5.74 4.74488 4.3574 5.62172 4.2596 4.6992 4.89306 4.28 5.31632 24.5129 3.80965 18.7148 13.6 3.16 0.339 5.15 3.51 9.7 5.3289 4.11654 3.42524 3.52904 4.75206 2.11936 6.21 3.724 12.9 15.5 14.0 0.0527 6.53 3.23 0.745 14.8 2.09 1.25 0.305 0.452 2.98 0.913 1.99998 2.04402 14.8 3.629 10.7 0.0547 0.95702 0.937196 1.000042 0.375 0.331 0.165 14.2 14.1 15.0 13.6 9.31 14.9 14.6 4.86 1.05 1.06 1.05 0.999292 1.05 1.04 1.42261 0.392 0.646 0.977 4.08 14.9 4.4 2.0 3.57288 0.0547 1.003557 1.05 1.84 1.67 2.0 0.487 100.9519 52.096 0.0572 1.12 1.37424 1.828044 25.289 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -4.06 3.51 3.46 4.47 2.76 2.67 41.6 2.59 1.83 24.3 1.52 1.81 9.75 1.49 1.95 2.08 4.08 1.62 2.0 8.73 3.45 1.78 3.54 9.03 11.9 17.2 7.12 0.751 3.6 2.25 13.8 7.09 9.26 1.27 1.21 1.82 3.11 5.47 3.47 9.43 0.972 1.74 1.89 5.75 1.99 5.1 4.67 7.3 1.53 0.639 2.56 9.41 5.9 6.6 2.33 6.8 6.64 4.66 0.409 0.0821 1.46 6.72 5.72 1.35 1.95 23.7 16.2 1.91 1.87 0.635 3.97 2.15 4.3 3.44 1.83 5.1 4.6 2.18 3.29 2.68 2.9 1.22 4.74 4.4 2.04 1.27 5.78 17.9 5.55 3.36 20.3 2.28 10.4 3.19 4.59 0.757 2.08 2.46 19.6 5.99 2.98 1.38 7.44 13.2 5.3 14.8 8.85 13.1 6.72 9.46 11.1 2.74 4.04 2.38 4.08 1.7 3.37 3.89 3.73 2.88 19.6 12.9 11.2 8.94 2.72 3.29 11.4 3.02 2.94 3.93 2.21 1.8 4.14 3.54 2.04 18.1 1.56 14.4 15.4 6.87 2.47 6.46 13.6 11.2 3.21 2.43 3.68 4.16 2.01 2.73 3.35 3.33 2.69 4.31 3.02 1.59 19.1 15.3 7.55 12.3 1.16 2.16 1.76 1.66 2.33 1.6 2.75 3.01 19.4 3.13 3.0 1.27 1.74 1.67 1.77 10.5 7.14 2.3 15.9 20.0 13.1 9.85 7.61 12.1 21.6 7.93 1.83 1.85 1.82 1.75 1.83 1.81 7.76 5.8 3.9 4.72 2.2 11.0 2.55 4.61 13.3 1.56 1.26 1.86 8.14 7.91 5.6 3.2 51.6 27.5 1.78 1.87 1.95 8.57 12.4 -2.03 2.01 2.07 2.03 2.01 2.01 18.2 2.01 2.01 6.58 2.0 2.0 6.29 2.0 2.0 2.01 5.98 2.0 2.0 6.12 2.08 2.0 5.91 6.11 12.0 18.0 12.0 2.0 18.0 2.1 18.0 18.0 18.0 2.0 2.0 2.0 2.05 18.0 18.0 18.0 2.0 2.0 2.01 18.0 18.0 18.0 12.0 12.0 2.0 2.01 2.02 12.0 12.0 18.0 2.12 6.12 12.0 6.41 2.05 2.06 2.01 6.03 12.0 2.0 2.03 12.0 6.3 2.0 2.0 2.03 6.0 2.0 5.92 5.9 2.01 2.11 2.07 6.08 12.0 2.0 2.0 2.0 2.08 2.07 2.0 2.0 6.0 6.25 5.95 5.93 12.1 2.02 6.11 5.92 5.93 2.0 2.0 5.89 12.0 18.0 5.92 2.0 2.2 6.17 5.94 12.0 12.0 6.21 5.89 5.98 5.99 2.0 2.09 2.0 2.08 2.04 2.13 2.18 6.45 5.89 12.0 12.0 12.0 5.92 1.99 1.99 12.0 1.99 2.0 2.01 2.0 2.0 2.08 2.0 2.0 18.0 2.0 12.0 12.5 12.0 2.0 5.93 5.94 12.0 1.99 2.0 2.01 2.01 2.0 1.99 2.01 2.09 2.07 2.09 2.1 2.0 18.0 18.0 5.92 18.0 1.99 2.0 2.0 2.0 2.0 1.99 1.99 2.08 18.0 2.06 2.05 1.98 1.99 1.99 1.96 17.8 12.0 5.9 18.0 18.0 12.0 18.0 12.0 18.0 18.0 17.7 1.99 1.98 1.94 1.97 1.99 1.97 12.0 17.6 17.6 17.6 17.3 18.0 18.0 17.8 17.9 1.99 1.94 1.96 12.0 12.0 17.3 17.6 19.1 18.6 1.99 1.99 1.98 17.7 17.9 +4.34 3.28 3.11 5.78 2.44 2.56 35.6 2.3 0.932 21.7 0.757 0.486 14.9 0.834 1.09 1.98 2.34 0.876 0.912 8.25 3.02 0.998 1.92 7.55 11.0 12.7 5.95 0.47 1.48 1.68 13.4 1.73 2.91 0.747 0.74 0.951 1.71 2.09 1.83 4.96 0.465 1.14 1.56 1.04 1.33 1.57 1.31 4.2 0.862 0.33 2.76 8.54 4.45 4.02 2.68 7.36 3.05 3.68 1.1 0.515 0.816 2.49 3.76 0.984 1.56 8.17 5.44 1.12 1.0 0.0163 0.377 0.985 2.07 2.37 1.78 1.82 7.27 0.42 0.842 1.62 0.994 0.718 4.07 4.55 0.528 0.562 3.75 21.8 2.14 2.04 23.7 1.8 7.16 3.35 2.38 0.451 0.38 1.6 23.9 2.26 1.69 0.919 12.7 8.05 5.21 14.8 3.51 5.92 4.43 5.68 6.66 2.36 3.67 2.18 2.23 0.595 3.52 5.03 2.57 2.38 21.4 13.4 13.5 5.56 3.4 2.7 13.3 1.38 0.964 2.28 2.05 1.58 4.16 3.44 1.78 12.6 1.46 13.9 9.39 6.39 2.28 4.32 13.9 12.1 1.38 1.67 2.55 2.65 1.67 1.86 1.18 2.77 2.79 4.16 3.29 1.03 8.24 9.23 5.46 12.2 1.03 1.33 1.45 1.26 2.32 1.23 1.95 1.99 20.5 2.7 4.07 0.647 1.07 0.992 1.02 1.3 1.02 0.736 14.6 20.5 12.9 13.0 9.57 11.6 22.0 4.08 1.11 1.15 1.12 1.04 1.11 1.03 0.99 0.609 1.72 2.7 1.44 11.5 1.47 2.43 2.52 0.855 0.763 1.08 1.52 1.33 4.17 0.878 85.9 51.6 1.05 1.16 1.19 1.06 10.1 +2.02 2.01 2.08 2.15 2.01 2.01 18.0 2.01 2.01 7.19 1.99 2.0 6.54 2.0 2.0 2.0 5.84 2.0 2.0 6.03 2.1 2.0 5.81 6.08 12.0 18.0 12.0 2.0 17.9 2.01 18.0 17.9 17.9 2.0 2.0 2.0 2.0 17.9 17.9 18.0 2.0 2.0 2.0 17.9 17.9 17.9 12.0 12.0 2.0 2.01 2.0 12.0 12.0 17.9 2.22 6.18 12.0 6.34 2.0 2.01 2.0 5.82 12.0 2.0 2.01 12.0 6.31 2.0 2.0 2.01 5.84 2.0 5.81 5.8 2.01 2.16 2.32 5.91 11.9 2.0 2.0 2.0 2.07 2.14 1.98 2.0 5.91 6.7 5.81 5.8 12.0 2.01 5.97 5.82 5.8 1.99 2.0 5.79 12.1 17.9 5.79 2.0 2.5 6.1 5.93 12.0 12.0 6.28 5.78 5.78 5.9 2.0 2.16 2.0 2.0 2.01 2.17 2.31 6.32 5.78 12.0 12.0 12.0 5.77 1.96 1.99 12.0 1.89 1.98 2.0 2.0 2.0 2.08 2.0 2.0 18.0 2.0 12.0 12.0 12.0 2.0 5.77 5.91 12.0 1.99 2.0 2.0 2.0 2.0 1.99 1.99 2.19 2.2 2.17 2.12 2.16 17.9 17.9 5.77 18.0 1.98 2.0 2.0 2.0 2.0 1.98 1.99 2.03 18.0 2.01 2.04 1.98 1.99 1.99 1.95 16.7 12.0 5.76 18.0 18.0 12.0 18.0 12.0 18.0 18.0 16.8 1.98 1.98 1.96 1.98 1.98 1.98 12.0 16.6 16.9 17.0 16.8 18.0 17.9 16.9 17.0 1.98 1.93 1.96 12.0 12.0 16.2 16.9 22.7 20.3 1.98 1.98 1.9 16.8 17.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 diff --git a/tinamit/EnvolturaBF/en/SAHYSMOD/wrapper_spatial.py b/tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD_Wrapper.py similarity index 97% rename from tinamit/EnvolturaBF/en/SAHYSMOD/wrapper_spatial.py rename to tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD_Wrapper.py index 31171aed..f77a443c 100644 --- a/tinamit/EnvolturaBF/en/SAHYSMOD/wrapper_spatial.py +++ b/tinamit/EnvolturaBF/en/SAHYSMOD/SAHYSMOD_Wrapper.py @@ -1,8 +1,8 @@ import os import re +from subprocess import run from warnings import warn -from subprocess import run import numpy as np from tinamit.BF import ModeloImpaciente @@ -30,14 +30,16 @@ def __init__(self, sayhsmod_exe, initial_data): """ - # The following attributes are specific to the SAHYSMOD wrapper + # The following attributes are specific to the SAHYSMOD wrapper, so edit them as you like. - # Create some useful model attributes - self.n_poly = None # Number of (internal) polygons in the model + # Number of (internal) polygons in the model + self.n_poly = None # Set the path from which to read input data. current_dir = os.path.dirname(os.path.realpath(__file__)) self.input = os.path.join(current_dir, 'SAHYSMOD.inp') + + # Empty dictionary to store input data later on self.dic_input = {} # Set the working directory to write model output, and remember where the initial data is stored. @@ -48,10 +50,16 @@ def __init__(self, sayhsmod_exe, initial_data): args = dict(SAHYSMOD=sayhsmod_exe, input=self.input, output=self.output) self.command = '{SAHYSMOD} {input} {output}'.format(**args) - # Inicialise as the super class. + # Inicialise as the parent class. super().__init__() + # Set climatic variables. Actually, "variable" for the moment. + self.conectar_var_clima(var='Pp - Rainfall', var_clima='Precipitación', combin='total') + def inic_vars(self): + """ + + """ # DON'T change the names of the dictionary keys here. Bad things will happen if you do, because they are # specific to Tinamit's model wrapper class. @@ -79,11 +87,15 @@ def inic_vars(self): self.tipos_vars['EgrEstacionales'] = [codes_to_vars[x] for x in seasonal_outputs] def iniciar_modelo(self, **kwargs): - pass # Nothing specific to do. Variables have already been read in .inic_vars() + """ + Nothing specific to do. Variables have already been read in .inic_vars() + """ + + pass def avanzar_modelo(self): """ - + This function advances the SAHYSMOD simulation. """ # Clear any previously existing output file @@ -103,7 +115,10 @@ def avanzar_modelo(self): 'This probably means it crashed. Have fun debugging! :)') def cerrar_modelo(self): - pass # Ne specific closing actions necessary. + """ + No specific closing actions necessary. + """ + pass def escribir_archivo_ingr(self, n_años_simul, dic_ingr): """ diff --git a/tinamit/EnvolturaBF/es/Lector.py b/tinamit/EnvolturaBF/es/DSSAT/Lector.py similarity index 100% rename from tinamit/EnvolturaBF/es/Lector.py rename to tinamit/EnvolturaBF/es/DSSAT/Lector.py diff --git a/tinamit/EnvolturaBF/es/envoltTikon.py b/tinamit/EnvolturaBF/es/DSSAT/__init__.py similarity index 100% rename from tinamit/EnvolturaBF/es/envoltTikon.py rename to tinamit/EnvolturaBF/es/DSSAT/__init__.py diff --git a/tinamit/EnvolturaBF/es/envoltDSSAT.py b/tinamit/EnvolturaBF/es/DSSAT/envoltDSSAT.py similarity index 81% rename from tinamit/EnvolturaBF/es/envoltDSSAT.py rename to tinamit/EnvolturaBF/es/DSSAT/envoltDSSAT.py index 543e62e0..4e54606b 100644 --- a/tinamit/EnvolturaBF/es/envoltDSSAT.py +++ b/tinamit/EnvolturaBF/es/DSSAT/envoltDSSAT.py @@ -2,6 +2,7 @@ class ModeloDSSAT(ModeloFlexible): + def __init__(símismo, exe_DSSAT, archivo_ingr): super().__init__() @@ -11,8 +12,9 @@ def __init__(símismo, exe_DSSAT, archivo_ingr): símismo.día_act = 0 # El día actual de la simulación símismo.día_princ_últ_sim = 0 # El primer día de la última llamada a DSSAT - def iniciar_modelo(símismo, **kwargs): - pass # Aquí no hay nada que hacer. + def iniciar_modelo(símismo, tiempo_final, **kwargs): + + símismo.inic_vars_clima(tiempo_final=tiempo_final) def cerrar_modelo(símismo): pass # Aquí no hay nada que hacer. @@ -26,7 +28,7 @@ def inic_vars(símismo): 'unidades': dic['unidades'], 'ingreso': dic['ingr'], 'egreso': dic['egr'], - 'dims': (1,) # Para hacer: dimensiones múltiples + 'dims': (1,) } def obt_unidad_tiempo(símismo): @@ -43,6 +45,12 @@ def incrementar(símismo, paso): def cambiar_vals_modelo_interno(símismo, valores): raise NotImplementedError + def mandar_simul(símismo): + raise NotImplementedError + + def inic_vars_clima(símismo, tiempo_final): + raise NotImplementedError + vars_DSSAT = { 'Rendimiento': { 'Código': None, diff --git a/tinamit/EnvolturaBF/es/Tikon/__init__.py b/tinamit/EnvolturaBF/es/Tikon/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/tinamit/EnvolturaBF/es/Tikon/envoltTikon.py b/tinamit/EnvolturaBF/es/Tikon/envoltTikon.py new file mode 100644 index 00000000..c68d9e36 --- /dev/null +++ b/tinamit/EnvolturaBF/es/Tikon/envoltTikon.py @@ -0,0 +1,30 @@ +from tinamit.BF import ModeloImpaciente + + +class ModeloTikon(ModeloImpaciente): + """ + + """ + def escribir_archivo_ingr(símismo, n_años_simul, dic_ingr): + pass + + def leer_archivo_vals_inic(símismo): + pass + + def act_vals_clima(símismo, n_paso, f): + pass + + def leer_archivo_egr(símismo, n_años_egr): + pass + + def inic_vars(símismo): + pass + + def iniciar_modelo(símismo, **kwargs): + pass + + def avanzar_modelo(símismo): + pass + + def cerrar_modelo(símismo): + pass diff --git a/tinamit/EnvolturaBF/es/__init__.py b/tinamit/EnvolturaBF/es/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/tinamit/Geog/Geog.py b/tinamit/Geog/Geog.py new file mode 100644 index 00000000..1d12db1f --- /dev/null +++ b/tinamit/Geog/Geog.py @@ -0,0 +1,70 @@ +import datetime as ft +import numpy as np +import pandas as pd + +from taqdir.مقامات import مقام + + +# Ofrecemos la oportunidad de utilizar تقدیر, taqdir, en español +conv_vars = { + 'Precipitación': 'بارش', + 'Radiación solar': 'شمسی_تابکاری', + 'Temperatura máxima': 'درجہ_حرارت_زیادہ', + 'Temperatura promedia': 'درجہ_حرارت_کم', + 'Temperatura mínima': 'درجہ_حرارت_اوسط' +} + + +# Una subclase traducida +class Lugar(مقام): + def __init__(símismo, lat, long, elev): + + super().__init__(lat=lat, long=long, elev=elev) + + def observar(símismo, archivo, datos, fecha=None, mes=None, año=None): + super().cargar_datos(archivo=archivo, cols_datos=datos, fecha=fecha, mes=mes, año=año) + + def prep_datos(símismo, primer_año, último_año, rcp, n_rep=1, diario=True, mensual=True, + postdict=None, predict=None, regenerar=True): + super().prep_datos(primer_año, último_año, rcp, n_rep=1, diario=True, mensual=True, + postdict=None, predict=None, regenerar=True) + + def comb_datos(símismo, vars_clima, combin, f_inic, f_final): + """ + + :param vars_clima: + :type vars_clima: list[str] + :param combin: + :type combin: list[str] + :param f_inic: + :type f_inic: ft.datetime + :param f_final: + :type f_final: ft.datetime + :return: + :rtype: dict[np.ndarray] + """ + + bd = símismo.datos['diario'] # type: pd.DataFrame + datos_interés = bd[vars_clima][(bd['دن'] >= f_inic) & (bd['دن'] <= f_final)] + + resultados = {} + for v, c in zip(vars_clima, combin): + try: + v_conv = conv_vars[v] + except KeyError: + raise ValueError('El variable "{}" está erróneo. Debe ser uno de:\n' + '\t{}'.format(v, ', '.join(conv_vars))) + if c is None: + if v in ['درجہ_حرارت_زیادہ', 'درجہ_حرارت_کم', 'درجہ_حرارت_اوسط']: + c = 'prom' + else: + c = 'total' + + if c == 'prom': + resultados[v] = datos_interés[v_conv].mean() + elif c == 'total': + resultados[v] = datos_interés[v_conv].sum() + else: + raise ValueError + + return resultados diff --git a/tinamit/Geog/__init__.py b/tinamit/Geog/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/tinamit/MDS.py b/tinamit/MDS.py index fb7b6584..285aebdd 100644 --- a/tinamit/MDS.py +++ b/tinamit/MDS.py @@ -43,6 +43,22 @@ def obt_unidad_tiempo(símismo): """ raise NotImplementedError + def iniciar_modelo(símismo, nombre_corrida, tiempo_final): + """ + Este método se deja a las subclases de :class:`~tinamit.MDS.EnvolturaMDS` para implementar. Notar que la + implementación de este método debe incluir la aplicación de valores iniciales. + + Ver :func:`Modelo.Modelo.iniciar_modelo` para más información. + + :param nombre_corrida: El nombre de la corrida (útil para guardar datos). + :type nombre_corrida: str + + :param tiempo_final: El tiempo final de la simulación. + :type tiempo_final: int + + """ + raise NotImplementedError + def cambiar_vals_modelo_interno(símismo, valores): """ Este método se deja a las subclases de :class:`~tinamit.MDS.EnvolturaMDS` para implementar. @@ -81,22 +97,6 @@ def leer_vals(símismo): """ raise NotImplementedError - def iniciar_modelo(símismo, nombre_corrida, tiempo_final): - """ - Este método se deja a las subclases de :class:`~tinamit.MDS.EnvolturaMDS` para implementar. Notar que la - implementación de este método debe incluir la aplicación de valores iniciales. - - Ver :func:`Modelo.Modelo.iniciar_modelo` para más información. - - :param nombre_corrida: El nombre de la corrida (útil para guardar datos). - :type nombre_corrida: str - - :param tiempo_final: El tiempo final de la simulación. - :type tiempo_final: int - - """ - raise NotImplementedError - def cerrar_modelo(símismo): """ Este método se deja a las subclases de :class:`~tinamit.MDS.EnvolturaMDS` para implementar. @@ -318,7 +318,7 @@ def iniciar_modelo(símismo, tiempo_final, nombre_corrida): """ # En Vensim, tenemos que incializar los valores de variables constantes antes de empezar la simulación. - símismo.cambiar_vals({var: val for var, val in símismo.vals_exo['inic'].items() + símismo.cambiar_vals({var: val for var, val in símismo.vals_inic.items() if var in símismo.constantes}) # Establecer el nombre de la corrida. @@ -338,7 +338,7 @@ def iniciar_modelo(símismo, tiempo_final, nombre_corrida): mensaje_error='Error inicializando el juego VENSIM.') # Aplicar los valores iniciales de variables editables (que - símismo.cambiar_vals({var: val for var, val in símismo.vals_exo['inic'].items() + símismo.cambiar_vals({var: val for var, val in símismo.vals_inic.items() if var not in símismo.constantes}) def cambiar_vals_modelo_interno(símismo, valores): @@ -558,14 +558,3 @@ def generar_mds(archivo): # Mensaje para modelos todavía no incluidos en Tinamit. raise ValueError('El tipo de modelo "{}" no se acepta como modelo DS en Tinamit al momento. Si piensas' 'que podrías contribuir aquí, ¡contáctenos!'.format(ext)) - - -def limpiar_mem(mem): - """ - Limpia la memoria de un objeto ctypes. - - :param mem: El objeto de memoria - """ - - tmñ = len(mem) - mem.value = b'\x00' * tmñ diff --git a/tinamit/Modelo.py b/tinamit/Modelo.py index 8ed68cc2..6908c6ab 100644 --- a/tinamit/Modelo.py +++ b/tinamit/Modelo.py @@ -1,7 +1,12 @@ from warnings import warn as avisar +from dateutil.relativedelta import relativedelta as deltarelativo +import datetime as ft import numpy as np +import Geog.Geog as Geog +from Unidades.Unidades import convertir + class Modelo(object): """ @@ -39,11 +44,9 @@ def __init__(símismo, nombre): # Un diccionarior para guardar valores de variables iniciales hasta el momento que empezamos la simulación. # Es muy útil para modelos cuyos variables no podemos cambiar antes de empezar una simulación (como VENSIM). - símismo.vals_exo = {'inic': {}, 'temporal': {}} - símismo.vars_clima = { -# '': , -# '': - } + símismo.vals_inic = {} + símismo.vars_clima = {} # Formato: var_intern1: {'nombre_extrn': nombre_oficial, 'combin': 'prom' | 'total'} + símismo.datos_clima = None # type: Geog.Lugar # Listas de los nombres de los variables que sirven de conexión con otro modelo. símismo.vars_saliendo = [] @@ -126,7 +129,7 @@ def inic_val(símismo, var, val): # Guardamos el valor en el diccionario `vals_inic`. Se aplicarán los valores iniciales únicamente al momento # de empezar la simulación. - símismo.vals_exo['inic'][var] = val + símismo.vals_inic[var] = val def limp_vals_inic(símismo): """ @@ -134,17 +137,42 @@ def limp_vals_inic(símismo): """ # Limpiar el diccionario. - for v in símismo.vals_exo.values(): + for v in símismo.vals_inic.values(): v.clear() - def act_exógenos(símismo, i): + def conectar_var_clima(símismo, var, var_clima, combin=None): + """ + + :param var: + :type var: + :param var_clima: + :type var_clima: + :param combin: + :type combin: + + """ + if var not in símismo.variables: + raise ValueError('El variable "{}" no existe en este modelo. ¿De pronto lo escribiste mal?'.format(var)) + if var_clima not in Geog.conv_vars: + raise ValueError('El variable climático "{}" no es una posibilidad. Debe ser uno de:\n' + '\t{}'.format(var_clima, ', '.join(Geog.conv_vars))) + + if combin not in ['prom', 'total', None]: + raise ValueError('"Combin" debe ser "prom", "total", o None, no "{}".'.format(combin)) - símismo.cambiar_vals({var: val[i] for var, val in símismo.vals_exo['temporal'].items()}) + símismo.vars_clima[var] = {'nombre_extrn': var_clima, + 'combin': combin} - def aplicar_clima(símismo, datos): - for v_intern, v_clima in símismo.vars_clima.items(): - datos_var = datos[v_clima] - símismo.vals_exo['temporal'][v_intern] = datos_var + def desconectar_var_clima(símismo, var): + """ + Esta función desconecta un variable climático. + + :param var: + :type var: str + + """ + + símismo.vars_clima.pop(var) def cambiar_vals(símismo, valores): """ @@ -188,3 +216,55 @@ def cerrar_modelo(símismo): Si no aplica, usar ``pass``. """ raise NotImplementedError + + def act_vals_clima(símismo, n_paso, f): + """ + + :param n_paso: El número de pasos para avanzar + :type n_paso: + :param f: + :type f: ft.datetime + """ + + if not len(símismo.vars_clima): + return + + # La lista de variables climáticos + vars_clima = list(símismo.vars_clima) + nombres_extrn = [d['nombre_extrn'] for d in símismo.vars_clima.values()] + + # La lista de maneras de combinar los valores diarios + combins = [d['combin'] for d in símismo.vars_clima.values()] + + # La fecha final + if símismo.unidad_tiempo == 'Días': + f_final = f + deltarelativo(days=+n_paso) + n_meses = n_paso / 30 + else: + try: + n_meses = convertir(de=símismo.unidad_tiempo, a='Mes', val=n_paso) + if int(n_meses) != n_meses: + avisar('Tuvimos que redondear la unidad de tiempo, {} {}, a {} meses'. + format(n_meses, símismo.unidad_tiempo, int(n_meses))) + except ValueError: + raise ValueError('La unidad de tiempo "{}" no se pudo convertir a meses.') + + f_final = deltarelativo(months=n_meses) + + if n_meses > 1: + avisar('El paso ({} {}) es superior a 1 mes. Puede ser que las predicciones climáticas no sean confiables' + .format(n_paso, símismo.unidad_tiempo)) + + # Calcular los datos + datos = símismo.datos_clima.comb_datos(vars_clima=nombres_extrn, combin=combins, + f_inic=f, f_final=f_final) + + # Aplicar los valores de variables calculados + for i, var in enumerate(vars_clima): + # Para cada variable en la lista de clima... + + # El nombre oficial del variable de clima + var_clima = nombres_extrn[i] + + # Aplicar el cambio + símismo.cambiar_vals(valores={var: datos[var_clima]})