@@ -209,15 +209,19 @@ MathOptInterface communicates the nonlinear portion of an optimization problem
209
209
to solvers using concrete subtypes of [ ` AbstractNLPEvaluator ` ] ( @ref ) , which
210
210
implement the [ Nonlinear programming] ( @ref ) API.
211
211
212
- [ ` NonlinearData ` ] ( @ref ) is a subtype of [ ` AbstractNLPEvaluator ` ] ( @ref ) , but the
213
- functions of the [ Nonlinear programming] ( @ref ) API that it implements depends
214
- upon the chosen [ ` Nonlinear.AbstractAutomaticDifferentiation ` ] ( @ref ) backend.
215
-
216
- There are two to choose from within MOI, although other packages may add more
217
- options by sub-typing [ ` Nonlinear.AbstractAutomaticDifferentiation ` ] ( @ref ) :
212
+ [ ` Nonlinear.NonlinearData ` ] ( @ref ) is a subtype of [ ` AbstractNLPEvaluator ` ] ( @ref ) ,
213
+ but the functions of the [ Nonlinear programming] ( @ref ) API that it implements
214
+ depends upon the chosen [ ` Nonlinear.AbstractAutomaticDifferentiation ` ] (@ref
215
+ backend.
216
+
217
+ There following backends are available to choose from within MOI, although other
218
+ packages may add more options by sub-typing
219
+ [ ` Nonlinear.AbstractAutomaticDifferentiation ` ] ( @ref ) :
218
220
* [ ` Nonlinear.ExprGraphOnly ` ] ( @ref )
219
221
220
- Set the differentiation backend using [ ` Nonlinear.set_differentiation_backend ` ] ( @ref ) .
222
+ Set the differentiation backend using
223
+ ` Nonlinear.set_differentiation_backend ` ] ( @ref ) .
224
+
221
225
If we set [ ` Nonlinear.ExprGraphOnly ` ] ( @ref ) , then we get access to ` :ExprGraph ` :
222
226
``` jldoctest nonlinear_developer
223
227
julia> Nonlinear.set_differentiation_backend(
0 commit comments