Skip to content

Commit 36c96ab

Browse files
committed
Updates from nonlinear-api changes
1 parent 5babfa7 commit 36c96ab

File tree

4 files changed

+273
-301
lines changed

4 files changed

+273
-301
lines changed

docs/src/submodules/Nonlinear/overview.md

+15-17
Original file line numberDiff line numberDiff line change
@@ -372,10 +372,10 @@ function build_model(model; backend)
372372
x = MOI.add_variable(model)
373373
y = MOI.add_variable(model)
374374
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
375-
data = MOI.Nonlinear.NonlinearData()
376-
MOI.Nonlinear.set_objective(data, :($x^2 + $y^2))
377-
MOI.Nonlinear.set_differentiation_backend(data, backend, [x, y])
378-
MOI.set(model, MOI.NLPBlock(), MOI.NLPBlockData(data))
375+
nl_model = MOI.Nonlinear.Model()
376+
MOI.Nonlinear.set_objective(nl_model, :($x^2 + $y^2))
377+
evaluator = MOI.Nonlinear.Evaluator(nl_model, backend, [x, y])
378+
MOI.set(model, MOI.NLPBlock(), MOI.NLPBlockData(evaluator))
379379
return
380380
end
381381
@@ -388,7 +388,7 @@ build_model(model; backend = MOI.Nonlinear.SparseReverseMode())
388388

389389
[`Nonlinear.Model`](@ref) stores nonlinear expressions in
390390
[`Nonlinear.Expression`](@ref)s. This section explains the design of
391-
the expression graph datastructure in [`Nonlinear.Expression`](@ref).
391+
the expression graph data structure in [`Nonlinear.Expression`](@ref).
392392

393393
Given a nonlinear function like `f(x) = sin(x)^2 + x`, a conceptual aid for
394394
thinking about the graph representation of the expression is to convert it into
@@ -411,7 +411,7 @@ julia> struct ExprNode
411411
julia> expr = ExprNode(:+, [ExprNode(:^, [ExprNode(:sin, [x]), 2.0]), x]);
412412
```
413413

414-
This datastructure follows our Polish prefix notation very closely, and we can
414+
This data structure follows our Polish prefix notation very closely, and we can
415415
easily identify the arguments to an operator. However, it has a significant
416416
draw-back: each node in the graph requires a `Vector`, which is heap-allocated
417417
and tracked by Julia's garbage collector (GC). For large models, we can expect
@@ -447,7 +447,7 @@ challenges:
447447

448448
### Sketch of the design in Nonlinear
449449

450-
`Nonlinear` overcomes these problems by decomposing the datastructure into a
450+
`Nonlinear` overcomes these problems by decomposing the data structure into a
451451
number of different concrete-typed vectors.
452452

453453
First, we create vectors of the supported uni- and multivariate operators.
@@ -510,7 +510,7 @@ julia> expr = Expression(
510510
);
511511
```
512512

513-
This is less readable than the other options, but does this datastructure meet
513+
This is less readable than the other options, but does this data structure meet
514514
our design goals?
515515

516516
Instead of a heap-allocated object for each node, we only have two `Vector`s for
@@ -547,18 +547,16 @@ subexpressions in the model.
547547

548548
## ReverseAD
549549

550-
`Nonlinear.ReverseAD` is a submodule for computing derivatives of the problem
551-
inside [`Nonlinear.NonlinearData`](@ref) using sparse reverse-mode automatic
552-
differentiation (AD).
550+
`Nonlinear.ReverseAD` is a submodule for computing derivatives of a nonlinear
551+
optimization problem using sparse reverse-mode automatic differentiation (AD).
553552

554553
This section does not attempt to explain how sparse reverse-mode AD works, but
555554
instead explains why MOI contains it's own implementation, and highlights
556555
notable differences from similar packages.
557556

558557
!!! warning
559558
You should not interact with `ReverseAD` directly. Instead, you should
560-
create a [`Nonlinear.NonlinearData`](@ref) object, call
561-
[`Nonlinear.set_differentiation_backend`](@ref) with
559+
create a [`Nonlinear.Evaluator`](@ref) object with
562560
[`Nonlinear.SparseReverseMode`](@ref), and then query the MOI API methods.
563561

564562
### Why another AD package?
@@ -582,10 +580,10 @@ Here are four reasons:
582580
input and then trace an expression graph using operator overloading. This
583581
means they must deal (or detect and ignore) with control flow, I/O, and other
584582
vagaries of Julia. In contrast, `ReverseAD` only accepts functions in the
585-
form of [`Nonlinear.NonlinearExpression`](@ref), which greatly limits the
586-
range of syntax that it must deal with. By reducing the scope of what we
587-
accept as input to functions relevant for mathematical optimization, we can
588-
provide a simpler implementation with various performance optimizations.
583+
form of [`Nonlinear.Expression`](@ref), which greatly limits the range of
584+
syntax that it must deal with. By reducing the scope of what we accept as
585+
input to functions relevant for mathematical optimization, we can provide a
586+
simpler implementation with various performance optimizations.
589587
* **Historical:** `ReverseAD` started life as [ReverseDiffSparse.jl](https://github.com/mlubin/ReverseDiffSparse.jl),
590588
development of which begain in early 2014(!). This was well before the other
591589
packages started development. Because we had a well-tested, working AD in

src/Nonlinear/ReverseAD/types.jl

+4-4
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ mutable struct _SubexpressionStorage
1111
linearity::Linearity
1212

1313
function _SubexpressionStorage(
14-
expr::Nonlinear.NonlinearExpression,
14+
expr::Nonlinear.Expression,
1515
subexpression_linearity,
1616
moi_index_to_consecutive_index,
1717
)
@@ -131,7 +131,7 @@ end
131131

132132
"""
133133
NLPEvaluator(
134-
data::Nonlinear.NonlinearData,
134+
model::Nonlinear.Model,
135135
ordered_variables::Vector{MOI.VariableIndex},
136136
)
137137
@@ -142,7 +142,7 @@ interface.
142142
Before using, you must initialize the evaluator using `MOI.initialize`.
143143
"""
144144
mutable struct NLPEvaluator <: MOI.AbstractNLPEvaluator
145-
data::Nonlinear.NonlinearData
145+
data::Nonlinear.Model
146146
ordered_variables::Vector{MOI.VariableIndex}
147147

148148
objective::Union{Nothing,_FunctionStorage}
@@ -180,7 +180,7 @@ mutable struct NLPEvaluator <: MOI.AbstractNLPEvaluator
180180
max_chunk::Int # chunk size for which we've allocated storage
181181

182182
function NLPEvaluator(
183-
data::Nonlinear.NonlinearData,
183+
data::Nonlinear.Model,
184184
ordered_variables::Vector{MOI.VariableIndex},
185185
)
186186
return new(data, ordered_variables)

src/Nonlinear/types.jl

+3-4
Original file line numberDiff line numberDiff line change
@@ -273,11 +273,10 @@ features in the MOI nonlinear interface.
273273
"""
274274
struct SparseReverseMode <: AbstractAutomaticDifferentiation end
275275

276-
function set_differentiation_backend(
277-
data::NonlinearData,
276+
function Evaluator(
277+
model::Model,
278278
::SparseReverseMode,
279279
ordered_variables::Vector{MOI.VariableIndex},
280280
)
281-
data.inner = ReverseAD.NLPEvaluator(data, ordered_variables)
282-
return
281+
return Evaluator(model, ReverseAD.NLPEvaluator(model, ordered_variables))
283282
end

0 commit comments

Comments
 (0)