Skip to content

Commit b347b38

Browse files
committed
Add ScalarPenaltyRelaxation
1 parent 21072a3 commit b347b38

File tree

3 files changed

+178
-86
lines changed

3 files changed

+178
-86
lines changed

docs/src/submodules/Utilities/overview.md

+28
Original file line numberDiff line numberDiff line change
@@ -348,6 +348,34 @@ julia> map[c]
348348
MathOptInterface.ScalarAffineFunction{Float64}(MathOptInterface.ScalarAffineTerm{Float64}[MathOptInterface.ScalarAffineTerm{Float64}(1.0, MathOptInterface.VariableIndex(2))], 0.0)
349349
```
350350

351+
You can also modify a single constraint using [`Utilities.ScalarPenaltyRelaxation`](@ref):
352+
```jldoctest
353+
julia> model = MOI.Utilities.Model{Float64}();
354+
355+
julia> x = MOI.add_variable(model);
356+
357+
julia> MOI.set(model, MOI.VariableName(), x, "x")
358+
359+
julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));
360+
361+
julia> f = MOI.modify(model, c, MOI.Utilities.ScalarPenaltyRelaxation(2.0));
362+
363+
julia> print(model)
364+
Minimize ScalarAffineFunction{Float64}:
365+
0.0 + 2.0 v[2]
366+
367+
Subject to:
368+
369+
ScalarAffineFunction{Float64}-in-LessThan{Float64}
370+
0.0 + 1.0 x - 1.0 v[2] <= 2.0
371+
372+
VariableIndex-in-GreaterThan{Float64}
373+
v[2] >= 0.0
374+
375+
julia> f
376+
MathOptInterface.ScalarAffineFunction{Float64}(MathOptInterface.ScalarAffineTerm{Float64}[MathOptInterface.ScalarAffineTerm{Float64}(1.0, MathOptInterface.VariableIndex(2))], 0.0)
377+
```
378+
351379
## Utilities.MatrixOfConstraints
352380

353381
The constraints of [`Utilities.Model`](@ref) are stored as a vector of tuples

docs/src/submodules/Utilities/reference.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -90,10 +90,11 @@ Utilities.identity_index_map
9090
Utilities.ModelFilter
9191
```
9292

93-
## Feasibility relaxation
93+
## Penalty relaxation
9494

9595
```@docs
9696
Utilities.PenaltyRelaxation
97+
Utilities.ScalarPenaltyRelaxation
9798
```
9899

99100
## MatrixOfConstraints

src/Utilities/penalty_relaxation.jl

+148-85
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,139 @@
44
# Use of this source code is governed by an MIT-style license that can be found
55
# in the LICENSE.md file or at https://opensource.org/licenses/MIT.
66

7+
"""
8+
ScalarPenaltyRelaxation(penalty::T) where {T}
9+
10+
A problem modifier that, when passed to [`MOI.modify`](@ref), destructively
11+
modifies the constraint in-place to create a penalized relaxation of the
12+
constraint.
13+
14+
!!! warning
15+
This is a destructive routine that modifies the constraint in-place. If you
16+
don't want to modify the original model, use `JuMP.copy_model` to create a
17+
copy before calling [`MOI.modify`](@ref).
18+
19+
## Reformulation
20+
21+
The penalty relaxation modifies constraints of the form ``f(x) \\in S`` into
22+
``f(x) + y - z \\in S``, where ``y, z \\ge 0``, and then it introduces a penalty
23+
term into the objective of ``a \\times (y + z)`` (if minimizing, else ``-a``),
24+
where `a` is the value in the `penalties` dictionary associated with the
25+
constraint that is being relaxed. If no value exists, the default is `default`.
26+
27+
When `S` is [`MOI.LessThan`](@ref) or [`MOI.GreaterThan`](@ref), we omit `y` or
28+
`z` respectively as a performance optimization.
29+
30+
## Return value
31+
32+
`MOI.modify(model, ci, ScalarPenaltyRelaxation(penalty))` returns a
33+
[`MOI.ScalarAffineFunction`](@ref) comprised of `y + z`. In an optimal solution,
34+
query the value of this function to compute the violation of the constraint.
35+
36+
## Examples
37+
38+
```jldoctest; setup=:(import MathOptInterface; const MOI = MathOptInterface)
39+
julia> model = MOI.Utilities.Model{Float64}();
40+
41+
julia> x = MOI.add_variable(model);
42+
43+
julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));
44+
45+
julia> f = MOI.modify(model, c, MOI.Utilities.ScalarPenaltyRelaxation(2.0));
46+
47+
julia> print(model)
48+
Minimize ScalarAffineFunction{Float64}:
49+
0.0 + 2.0 v[2]
50+
51+
Subject to:
52+
53+
ScalarAffineFunction{Float64}-in-LessThan{Float64}
54+
0.0 + 1.0 v[1] - 1.0 v[2] <= 2.0
55+
56+
VariableIndex-in-GreaterThan{Float64}
57+
v[2] >= 0.0
58+
59+
julia> f isa MOI.ScalarAffineFunction{Float64}
60+
true
61+
```
62+
"""
63+
struct ScalarPenaltyRelaxation{T}
64+
penalty::T
65+
end
66+
67+
function MOI.supports(
68+
::MOI.ModelLike,
69+
::ScalarPenaltyRelaxation{T},
70+
::Type{<:MOI.ConstraintIndex{F,<:MOI.AbstractScalarSet}},
71+
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
72+
return true
73+
end
74+
75+
function MOI.supports(
76+
::MOI.ModelLike,
77+
::ScalarPenaltyRelaxation,
78+
::Type{<:MOI.ConstraintIndex},
79+
)
80+
return false
81+
end
82+
83+
function MOI.modify(
84+
model::MOI.ModelLike,
85+
ci::MOI.ConstraintIndex{F,<:MOI.AbstractScalarSet},
86+
relax::ScalarPenaltyRelaxation{T},
87+
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
88+
y = MOI.add_variable(model)
89+
z = MOI.add_variable(model)
90+
MOI.add_constraint(model, y, MOI.GreaterThan(zero(T)))
91+
MOI.add_constraint(model, z, MOI.GreaterThan(zero(T)))
92+
MOI.modify(model, ci, MOI.ScalarCoefficientChange(y, one(T)))
93+
MOI.modify(model, ci, MOI.ScalarCoefficientChange(z, -one(T)))
94+
sense = MOI.get(model, MOI.ObjectiveSense())
95+
scale = sense == MOI.MIN_SENSE ? one(T) : -one(T)
96+
a = scale * relax.penalty
97+
O = MOI.get(model, MOI.ObjectiveFunctionType())
98+
obj = MOI.ObjectiveFunction{O}()
99+
MOI.modify(model, obj, MOI.ScalarCoefficientChange(y, a))
100+
MOI.modify(model, obj, MOI.ScalarCoefficientChange(z, a))
101+
return one(T) * y + one(T) * z
102+
end
103+
104+
function MOI.modify(
105+
model::MOI.ModelLike,
106+
ci::MOI.ConstraintIndex{F,MOI.GreaterThan{T}},
107+
relax::ScalarPenaltyRelaxation{T},
108+
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
109+
# Performance optimization: we don't need the z relaxation variable.
110+
y = MOI.add_variable(model)
111+
MOI.add_constraint(model, y, MOI.GreaterThan(zero(T)))
112+
MOI.modify(model, ci, MOI.ScalarCoefficientChange(y, one(T)))
113+
sense = MOI.get(model, MOI.ObjectiveSense())
114+
scale = sense == MOI.MIN_SENSE ? one(T) : -one(T)
115+
a = scale * relax.penalty
116+
O = MOI.get(model, MOI.ObjectiveFunctionType())
117+
obj = MOI.ObjectiveFunction{O}()
118+
MOI.modify(model, obj, MOI.ScalarCoefficientChange(y, a))
119+
return one(T) * y
120+
end
121+
122+
function MOI.modify(
123+
model::MOI.ModelLike,
124+
ci::MOI.ConstraintIndex{F,MOI.LessThan{T}},
125+
relax::ScalarPenaltyRelaxation{T},
126+
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
127+
# Performance optimization: we don't need the y relaxation variable.
128+
z = MOI.add_variable(model)
129+
MOI.add_constraint(model, z, MOI.GreaterThan(zero(T)))
130+
MOI.modify(model, ci, MOI.ScalarCoefficientChange(z, -one(T)))
131+
sense = MOI.get(model, MOI.ObjectiveSense())
132+
scale = sense == MOI.MIN_SENSE ? one(T) : -one(T)
133+
a = scale * relax.penalty
134+
O = MOI.get(model, MOI.ObjectiveFunctionType())
135+
obj = MOI.ObjectiveFunction{O}()
136+
MOI.modify(model, obj, MOI.ScalarCoefficientChange(z, a))
137+
return one(T) * z
138+
end
139+
7140
"""
8141
PenaltyRelaxation(
9142
penalties = Dict{MOI.ConstraintIndex,Float64}();
@@ -16,15 +149,18 @@ modifies the model in-place to create a penalized relaxation of the constraints.
16149
!!! warning
17150
This is a destructive routine that modifies the model in-place. If you don't
18151
want to modify the original model, use `JuMP.copy_model` to create a copy
19-
before setting this attribute.
152+
before calling [`MOI.modify`](@ref).
20153
21154
## Reformulation
22155
23156
The penalty relaxation modifies constraints of the form ``f(x) \\in S`` into
24157
``f(x) + y - z \\in S``, where ``y, z \\ge 0``, and then it introduces a penalty
25158
term into the objective of ``a \\times (y + z)`` (if minimizing, else ``-a``),
26159
where `a` is the value in the `penalties` dictionary associated with the
27-
constraint that is being relaxed. If no value exists, the default is `default`.
160+
constraint that is being relaxed.
161+
162+
If no value exists for the constraint in `penalties`, the penalty is `default`.
163+
If `default` is also `nothing`, then the constraint is skipped.
28164
29165
When `S` is [`MOI.LessThan`](@ref) or [`MOI.GreaterThan`](@ref), we omit `y` or
30166
`z` respectively as a performance optimization.
@@ -138,11 +274,7 @@ function MOI.modify(model::MOI.ModelLike, relax::PenaltyRelaxation{T}) where {T}
138274
end
139275
map = Dict{MOI.ConstraintIndex,MOI.ScalarAffineFunction{T}}()
140276
for (F, S) in MOI.get(model, MOI.ListOfConstraintTypesPresent())
141-
if MOI.supports(model, relax, MOI.ConstraintIndex{F,S})
142-
_modify_penalty_relaxation(map, model, relax, F, S)
143-
else
144-
@warn("Skipping PenaltyRelaxation of constraints of type $F-in-$S")
145-
end
277+
_modify_penalty_relaxation(map, model, relax, F, S)
146278
end
147279
return map
148280
end
@@ -155,85 +287,16 @@ function _modify_penalty_relaxation(
155287
::Type{S},
156288
) where {T,F,S}
157289
for ci in MOI.get(model, MOI.ListOfConstraintIndices{F,S}())
158-
if relax.default !== nothing || haskey(relax.penalties, ci)
159-
f = MOI.modify(model, ci, relax)
160-
if f !== nothing
161-
map[ci] = f
162-
end
290+
penalty = get(relax.penalties, ci, relax.default)
291+
if penalty === nothing
292+
continue
163293
end
294+
attr = ScalarPenaltyRelaxation(penalty)
295+
if !MOI.supports(model, attr, MOI.ConstraintIndex{F,S})
296+
@warn("Skipping PenaltyRelaxation of constraints of type $F-in-$S")
297+
return
298+
end
299+
map[ci] = MOI.modify(model, ci, attr)
164300
end
165301
return map
166302
end
167-
168-
function MOI.supports(
169-
::MOI.ModelLike,
170-
::PenaltyRelaxation{T},
171-
::Type{<:MOI.ConstraintIndex{F,<:MOI.AbstractScalarSet}},
172-
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
173-
return true
174-
end
175-
176-
function MOI.supports(
177-
::MOI.ModelLike,
178-
::PenaltyRelaxation,
179-
::Type{<:MOI.ConstraintIndex},
180-
)
181-
return false
182-
end
183-
184-
function MOI.modify(
185-
model::MOI.ModelLike,
186-
ci::MOI.ConstraintIndex{F,<:MOI.AbstractScalarSet},
187-
relax::PenaltyRelaxation{T},
188-
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
189-
y = MOI.add_variable(model)
190-
z = MOI.add_variable(model)
191-
MOI.add_constraint(model, y, MOI.GreaterThan(zero(T)))
192-
MOI.add_constraint(model, z, MOI.GreaterThan(zero(T)))
193-
MOI.modify(model, ci, MOI.ScalarCoefficientChange(y, one(T)))
194-
MOI.modify(model, ci, MOI.ScalarCoefficientChange(z, -one(T)))
195-
sense = MOI.get(model, MOI.ObjectiveSense())
196-
scale = sense == MOI.MIN_SENSE ? one(T) : -one(T)
197-
a = scale * get(relax.penalties, ci, relax.default)
198-
O = MOI.get(model, MOI.ObjectiveFunctionType())
199-
obj = MOI.ObjectiveFunction{O}()
200-
MOI.modify(model, obj, MOI.ScalarCoefficientChange(y, a))
201-
MOI.modify(model, obj, MOI.ScalarCoefficientChange(z, a))
202-
return one(T) * y + one(T) * z
203-
end
204-
205-
function MOI.modify(
206-
model::MOI.ModelLike,
207-
ci::MOI.ConstraintIndex{F,MOI.GreaterThan{T}},
208-
relax::PenaltyRelaxation{T},
209-
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
210-
# Performance optimization: we don't need the z relaxation variable.
211-
y = MOI.add_variable(model)
212-
MOI.add_constraint(model, y, MOI.GreaterThan(zero(T)))
213-
MOI.modify(model, ci, MOI.ScalarCoefficientChange(y, one(T)))
214-
sense = MOI.get(model, MOI.ObjectiveSense())
215-
scale = sense == MOI.MIN_SENSE ? one(T) : -one(T)
216-
a = scale * get(relax.penalties, ci, relax.default)
217-
O = MOI.get(model, MOI.ObjectiveFunctionType())
218-
obj = MOI.ObjectiveFunction{O}()
219-
MOI.modify(model, obj, MOI.ScalarCoefficientChange(y, a))
220-
return one(T) * y
221-
end
222-
223-
function MOI.modify(
224-
model::MOI.ModelLike,
225-
ci::MOI.ConstraintIndex{F,MOI.LessThan{T}},
226-
relax::PenaltyRelaxation{T},
227-
) where {T,F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}}}
228-
# Performance optimization: we don't need the y relaxation variable.
229-
z = MOI.add_variable(model)
230-
MOI.add_constraint(model, z, MOI.GreaterThan(zero(T)))
231-
MOI.modify(model, ci, MOI.ScalarCoefficientChange(z, -one(T)))
232-
sense = MOI.get(model, MOI.ObjectiveSense())
233-
scale = sense == MOI.MIN_SENSE ? one(T) : -one(T)
234-
a = scale * get(relax.penalties, ci, relax.default)
235-
O = MOI.get(model, MOI.ObjectiveFunctionType())
236-
obj = MOI.ObjectiveFunction{O}()
237-
MOI.modify(model, obj, MOI.ScalarCoefficientChange(z, a))
238-
return one(T) * z
239-
end

0 commit comments

Comments
 (0)