@@ -187,13 +187,13 @@ end
187
187
function test_constraint_quadratic_univariate ()
188
188
x = MOI. VariableIndex (1 )
189
189
model = Nonlinear. Model ()
190
- Nonlinear. add_constraint (model, :($ x^ 2 <= 2.0 ))
190
+ Nonlinear. add_constraint (model, :($ x^ 2 ), MOI . LessThan ( 2.0 ))
191
191
evaluator = Nonlinear. Evaluator (model, Nonlinear. SparseReverseMode (), [x])
192
192
MOI. initialize (evaluator, [:Grad , :Jac , :Hess ])
193
193
g = [NaN ]
194
194
x_val = [1.2 ]
195
195
MOI. eval_constraint (evaluator, g, x_val)
196
- @test g == x_val .^ 2 .- 2
196
+ @test g == x_val .^ 2
197
197
@test MOI. jacobian_structure (evaluator) == [(1 , 1 )]
198
198
J = [NaN ]
199
199
MOI. eval_constraint_jacobian (evaluator, J, x_val)
@@ -209,14 +209,14 @@ function test_constraint_quadratic_multivariate()
209
209
x = MOI. VariableIndex (1 )
210
210
y = MOI. VariableIndex (2 )
211
211
model = Nonlinear. Model ()
212
- Nonlinear. add_constraint (model, :($ x^ 2 + $ x * $ y + $ y^ 2 <= 2.0 ))
212
+ Nonlinear. add_constraint (model, :($ x^ 2 + $ x * $ y + $ y^ 2 ), MOI . LessThan ( 2.0 ))
213
213
evaluator =
214
214
Nonlinear. Evaluator (model, Nonlinear. SparseReverseMode (), [x, y])
215
215
MOI. initialize (evaluator, [:Grad , :Jac , :Hess ])
216
216
g = [NaN ]
217
217
x_val = [1.2 , 2.3 ]
218
218
MOI. eval_constraint (evaluator, g, x_val)
219
- @test g == [x_val[1 ]^ 2 + x_val[1 ] * x_val[2 ] + x_val[2 ]^ 2 ] .- 2
219
+ @test g == [x_val[1 ]^ 2 + x_val[1 ] * x_val[2 ] + x_val[2 ]^ 2 ]
220
220
@test MOI. jacobian_structure (evaluator) == [(1 , 1 ), (1 , 2 )]
221
221
J = [NaN , NaN ]
222
222
MOI. eval_constraint_jacobian (evaluator, J, x_val)
@@ -236,14 +236,14 @@ function test_constraint_quadratic_multivariate_subexpressions()
236
236
ex = Nonlinear. add_expression (model, :($ x^ 2 ))
237
237
ey = Nonlinear. add_expression (model, :($ y^ 2 ))
238
238
exy = Nonlinear. add_expression (model, :($ ex + $ x * $ y))
239
- Nonlinear. add_constraint (model, :($ exy + $ ey <= 2.0 ))
239
+ Nonlinear. add_constraint (model, :($ exy + $ ey), MOI . LessThan ( 2.0 ))
240
240
evaluator =
241
241
Nonlinear. Evaluator (model, Nonlinear. SparseReverseMode (), [x, y])
242
242
MOI. initialize (evaluator, [:Grad , :Jac , :Hess ])
243
243
g = [NaN ]
244
244
x_val = [1.2 , 2.3 ]
245
245
MOI. eval_constraint (evaluator, g, x_val)
246
- @test g ≈ [x_val[1 ]^ 2 + x_val[1 ] * x_val[2 ] + x_val[2 ]^ 2 ] .- 2
246
+ @test g ≈ [x_val[1 ]^ 2 + x_val[1 ] * x_val[2 ] + x_val[2 ]^ 2 ]
247
247
# Jacobian
248
248
@test MOI. jacobian_structure (evaluator) == [(1 , 1 ), (1 , 2 )]
249
249
J = [NaN , NaN ]
@@ -436,10 +436,10 @@ end
436
436
function test_NLPBlockData ()
437
437
model = Nonlinear. Model ()
438
438
x = MOI. VariableIndex (1 )
439
- Nonlinear. add_constraint (model, :($ x <= 1 ))
440
- Nonlinear. add_constraint (model, :($ x >= 2 ))
441
- Nonlinear. add_constraint (model, :($ x == 3 ))
442
- Nonlinear. add_constraint (model, :(4 <= $ x <= 5 ))
439
+ Nonlinear. add_constraint (model, :($ x - 1 ), MOI . LessThan ( 0.0 ))
440
+ Nonlinear. add_constraint (model, :($ x - 2 ), MOI . GreaterThan ( 0.0 ))
441
+ Nonlinear. add_constraint (model, :($ x - 3 ), MOI . EqualTo ( 0.0 ))
442
+ Nonlinear. add_constraint (model, :($ x), MOI . Interval ( 4.0 , 5.0 ))
443
443
evaluator = Nonlinear. Evaluator (model, Nonlinear. SparseReverseMode (), [x])
444
444
block = MOI. NLPBlockData (evaluator)
445
445
@test block. constraint_bounds == [
0 commit comments