-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessScores.m
45 lines (31 loc) · 1.06 KB
/
ProcessScores.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
load TrainingDataSet;
temp = size(JueJuTrainBad);
JueJuBadTag = ones(temp(1),1);
JueJuTrainBad2 = [JueJuTrainBad,JueJuBadTag];
temp = size(JueJuTrainGood);
JueJuGoodTag = 2*ones(temp(1),1);
JueJuTrainGood2 = [JueJuTrainGood,JueJuGoodTag];
temp = size(LvShiTrainBad);
LvShiBadTag = ones(temp(1),1);
LvShiTrainBad2 = [LvShiTrainBad,LvShiBadTag];
temp = size(LvShiTrainGood);
LvShiGoodTag = 2*ones(temp(1),1);
LvShiTrainGood2 = [LvShiTrainGood,LvShiGoodTag];
MegaMatrix = [JueJuTrainBad2;JueJuTrainGood2;LvShiTrainBad2;LvShiTrainGood2];
%annova analysis
%name the different matrices:
GoodBadTag = MegaMatrix(:,6);
struct = MegaMatrix(:,1);
emotion = MegaMatrix(:,2);
condense =MegaMatrix(:,3);
rhyme = MegaMatrix(:,4);
rhymeType =MegaMatrix(:,5);
p = anovan(GoodBadTag,{struct,emotion condense rhyme rhymeType});
%SVM
%Linear:
Training = [JueJuTrainBad;JueJuTrainGood;LvShiTrainBad;LvShiTrainGood];
Group = [JueJuBadTag;JueJuGoodTag;LvShiBadTag;LvShiGoodTag];
svmStruct = svmtrain(Training,Group);
%multilayer
Sample = Training(20,:);
newGroup = svmclassify(svmStruct,Sample);