We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,我再跑clusterGvis的函数的时候遇到报错: visCluster(object = st.data, plot.type = "heatmap", markGenes = unique(pbmc.markers1$gene), column_title_rot = 45, cluster.order = 1:9, show_column_names = F, sample.cell.order = rev(new.cluster.ids), sample.col = jjAnno::useMyCol("paired",n = 9)) 报错如下: 错误于ComplexHeatmap::Heatmap(as.matrix(mat), name = "Z-score", cluster_columns = cluster_columns, : 正式参数"show_column_names"有多个与之相对应的实际参数。 请问这是什么原因? sessionInfo() R version 4.4.1 (2024-06-14 ucrt) Platform: x86_64-w64-mingw32/x64 Running under: Windows 11 x64 (build 22631)
Matrix products: default
locale: [1] LC_COLLATE=Chinese (Simplified)_China.utf8 [2] LC_CTYPE=Chinese (Simplified)_China.utf8 [3] LC_MONETARY=Chinese (Simplified)_China.utf8 [4] LC_NUMERIC=C [5] LC_TIME=Chinese (Simplified)_China.utf8
time zone: Asia/Shanghai tzcode source: internal
attached base packages: [1] grid splines stats4 stats graphics [6] grDevices utils datasets methods base
other attached packages: [1] ComplexHeatmap_2.20.0 org.Hs.eg.db_3.19.1 [3] AnnotationDbi_1.66.0 IRanges_2.38.0 [5] S4Vectors_0.42.0 ClusterGVis_0.1.0 [7] monocle_2.32.0 DDRTree_0.1.5 [9] irlba_2.3.5.1 VGAM_1.1-11 [11] Biobase_2.64.0 BiocGenerics_0.50.0 [13] Matrix_1.7-0 Seurat_5.1.0 [15] lubridate_1.9.3 forcats_1.0.0 [17] stringr_1.5.1 dplyr_1.1.4 [19] purrr_1.0.2 readr_2.1.5 [21] tidyr_1.3.1 tibble_3.2.1 [23] ggplot2_3.5.1 tidyverse_2.0.0 [25] SeuratObject_5.0.2 sp_2.1-4
loaded via a namespace (and not attached): [1] fs_1.6.4 [2] matrixStats_1.3.0 [3] spatstat.sparse_3.1-0 [4] enrichplot_1.24.0 [5] doParallel_1.0.17 [6] HDO.db_0.99.1 [7] httr_1.4.7 [8] RColorBrewer_1.1-3 [9] tools_4.4.1 [10] sctransform_0.4.1 [11] utf8_1.2.4 [12] R6_2.5.1 [13] lazyeval_0.2.2 [14] uwot_0.2.2 [15] GetoptLong_1.0.5 [16] withr_3.0.0 [17] gridExtra_2.3 [18] progressr_0.14.0 [19] cli_3.6.3 [20] Cairo_1.6-2 [21] spatstat.explore_3.2-7 [22] fastDummies_1.7.3 [23] scatterpie_0.2.3 [24] labeling_0.4.3 [25] slam_0.1-50 [26] spatstat.data_3.1-2 [27] ggridges_0.5.6 [28] pbapply_1.7-2 [29] yulab.utils_0.1.4 [30] gson_0.1.0 [31] DOSE_3.30.1 [32] parallelly_1.37.1 [33] limma_3.60.3 [34] rstudioapi_0.16.0 [35] RSQLite_2.3.7 [36] shape_1.4.6.1 [37] generics_0.1.3 [38] gridGraphics_0.5-1 [39] combinat_0.0-8 [40] ica_1.0-3 [41] spatstat.random_3.2-3 [42] GO.db_3.19.1 [43] fansi_1.0.6 [44] abind_1.4-5 [45] terra_1.7-78 [46] lifecycle_1.0.4 [47] SummarizedExperiment_1.34.0 [48] qvalue_2.36.0 [49] SparseArray_1.4.8 [50] Rtsne_0.17 [51] blob_1.2.4 [52] promises_1.3.0 [53] crayon_1.5.3 [54] miniUI_0.1.1.1 [55] lattice_0.22-6 [56] cowplot_1.1.3 [57] KEGGREST_1.44.1 [58] magick_2.8.3 [59] pillar_1.9.0 [60] fgsea_1.30.0 [61] GenomicRanges_1.56.1 [62] rjson_0.2.21 [63] boot_1.3-30 [64] future.apply_1.11.2 [65] codetools_0.2-20 [66] fastmatch_1.1-4 [67] leiden_0.4.3.1 [68] glue_1.7.0 [69] leidenbase_0.1.27 [70] ggfun_0.1.5 [71] data.table_1.15.4 [72] vctrs_0.6.5 [73] png_0.1-8 [74] treeio_1.28.0 [75] spam_2.10-0 [76] org.Mm.eg.db_3.19.1 [77] gtable_0.3.5 [78] cachem_1.1.0 [79] S4Arrays_1.4.1 [80] mime_0.12 [81] tidygraph_1.3.1 [82] HSMMSingleCell_1.24.0 [83] survival_3.7-0 [84] SingleCellExperiment_1.26.0 [85] pheatmap_1.0.12 [86] iterators_1.0.14 [87] fastICA_1.2-4 [88] statmod_1.5.0 [89] fitdistrplus_1.1-11 [90] ROCR_1.0-11 [91] nlme_3.1-165 [92] ggtree_3.12.0 [93] bit64_4.0.5 [94] RcppAnnoy_0.0.22 [95] GenomeInfoDb_1.40.1 [96] KernSmooth_2.23-24 [97] colorspace_2.1-0 [98] DBI_1.2.3 [99] tidyselect_1.2.1 [100] bit_4.0.5 [101] compiler_4.4.1 [102] DelayedArray_0.30.1 [103] plotly_4.10.4 [104] shadowtext_0.1.3 [105] scales_1.3.0 [106] lmtest_0.9-40 [107] digest_0.6.36 [108] goftest_1.2-3 [109] spatstat.utils_3.0-5 [110] presto_1.0.0 [111] minqa_1.2.7 [112] XVector_0.44.0 [113] htmltools_0.5.8.1 [114] pkgconfig_2.0.3 [115] lme4_1.1-35.5 [116] MatrixGenerics_1.16.0 [117] fastmap_1.2.0 [118] GlobalOptions_0.1.2 [119] rlang_1.1.4 [120] htmlwidgets_1.6.4 [121] UCSC.utils_1.0.0 [122] shiny_1.8.1.1 [123] farver_2.1.2 [124] zoo_1.8-12 [125] jsonlite_1.8.8 [126] BiocParallel_1.38.0 [127] GOSemSim_2.30.0 [128] magrittr_2.0.3 [129] GenomeInfoDbData_1.2.12 [130] ggplotify_0.1.2 [131] dotCall64_1.1-1 [132] patchwork_1.2.0 [133] munsell_0.5.1 [134] Rcpp_1.0.12 [135] ape_5.8 [136] viridis_0.6.5 [137] reticulate_1.38.0 [138] stringi_1.8.4 [139] ggraph_2.2.1 [140] jjAnno_0.0.3 [141] zlibbioc_1.50.0 [142] MASS_7.3-61 [143] plyr_1.8.9 [144] parallel_4.4.1 [145] listenv_0.9.1 [146] ggrepel_0.9.5 [147] deldir_2.0-4 [148] Biostrings_2.72.1 [149] graphlayouts_1.1.1 [150] tensor_1.5 [151] circlize_0.4.16 [152] hms_1.1.3 [153] igraph_2.0.3 [154] spatstat.geom_3.2-9 [155] RcppHNSW_0.6.0 [156] pkgload_1.4.0 [157] reshape2_1.4.4 [158] foreach_1.5.2 [159] nloptr_2.1.1 [160] tzdb_0.4.0 [161] tweenr_2.0.3 [162] httpuv_1.6.15 [163] RANN_2.6.1 [164] polyclip_1.10-6 [165] clue_0.3-65 [166] future_1.33.2 [167] scattermore_1.2 [168] ggforce_0.4.2 [169] xtable_1.8-4 [170] monocle3_1.3.1 [171] RSpectra_0.16-1 [172] tidytree_0.4.6 [173] later_1.3.2 [174] viridisLite_0.4.2 [175] clusterProfiler_4.12.0 [176] aplot_0.2.3 [177] memoise_2.0.1 [178] cluster_2.1.6 [179] timechange_0.3.0 [180] globals_0.16.3
The text was updated successfully, but these errors were encountered:
show_column_names注释掉试试
Sorry, something went wrong.
No branches or pull requests
您好,我再跑clusterGvis的函数的时候遇到报错:
visCluster(object = st.data,
plot.type = "heatmap",
markGenes = unique(pbmc.markers1$gene),
column_title_rot = 45,
cluster.order = 1:9,
show_column_names = F,
sample.cell.order = rev(new.cluster.ids),
sample.col = jjAnno::useMyCol("paired",n = 9))
报错如下:
错误于ComplexHeatmap::Heatmap(as.matrix(mat), name = "Z-score", cluster_columns = cluster_columns, :
正式参数"show_column_names"有多个与之相对应的实际参数。
请问这是什么原因?
sessionInfo()
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)
Matrix products: default
locale:
[1] LC_COLLATE=Chinese (Simplified)_China.utf8
[2] LC_CTYPE=Chinese (Simplified)_China.utf8
[3] LC_MONETARY=Chinese (Simplified)_China.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=Chinese (Simplified)_China.utf8
time zone: Asia/Shanghai
tzcode source: internal
attached base packages:
[1] grid splines stats4 stats graphics
[6] grDevices utils datasets methods base
other attached packages:
[1] ComplexHeatmap_2.20.0 org.Hs.eg.db_3.19.1
[3] AnnotationDbi_1.66.0 IRanges_2.38.0
[5] S4Vectors_0.42.0 ClusterGVis_0.1.0
[7] monocle_2.32.0 DDRTree_0.1.5
[9] irlba_2.3.5.1 VGAM_1.1-11
[11] Biobase_2.64.0 BiocGenerics_0.50.0
[13] Matrix_1.7-0 Seurat_5.1.0
[15] lubridate_1.9.3 forcats_1.0.0
[17] stringr_1.5.1 dplyr_1.1.4
[19] purrr_1.0.2 readr_2.1.5
[21] tidyr_1.3.1 tibble_3.2.1
[23] ggplot2_3.5.1 tidyverse_2.0.0
[25] SeuratObject_5.0.2 sp_2.1-4
loaded via a namespace (and not attached):
[1] fs_1.6.4
[2] matrixStats_1.3.0
[3] spatstat.sparse_3.1-0
[4] enrichplot_1.24.0
[5] doParallel_1.0.17
[6] HDO.db_0.99.1
[7] httr_1.4.7
[8] RColorBrewer_1.1-3
[9] tools_4.4.1
[10] sctransform_0.4.1
[11] utf8_1.2.4
[12] R6_2.5.1
[13] lazyeval_0.2.2
[14] uwot_0.2.2
[15] GetoptLong_1.0.5
[16] withr_3.0.0
[17] gridExtra_2.3
[18] progressr_0.14.0
[19] cli_3.6.3
[20] Cairo_1.6-2
[21] spatstat.explore_3.2-7
[22] fastDummies_1.7.3
[23] scatterpie_0.2.3
[24] labeling_0.4.3
[25] slam_0.1-50
[26] spatstat.data_3.1-2
[27] ggridges_0.5.6
[28] pbapply_1.7-2
[29] yulab.utils_0.1.4
[30] gson_0.1.0
[31] DOSE_3.30.1
[32] parallelly_1.37.1
[33] limma_3.60.3
[34] rstudioapi_0.16.0
[35] RSQLite_2.3.7
[36] shape_1.4.6.1
[37] generics_0.1.3
[38] gridGraphics_0.5-1
[39] combinat_0.0-8
[40] ica_1.0-3
[41] spatstat.random_3.2-3
[42] GO.db_3.19.1
[43] fansi_1.0.6
[44] abind_1.4-5
[45] terra_1.7-78
[46] lifecycle_1.0.4
[47] SummarizedExperiment_1.34.0
[48] qvalue_2.36.0
[49] SparseArray_1.4.8
[50] Rtsne_0.17
[51] blob_1.2.4
[52] promises_1.3.0
[53] crayon_1.5.3
[54] miniUI_0.1.1.1
[55] lattice_0.22-6
[56] cowplot_1.1.3
[57] KEGGREST_1.44.1
[58] magick_2.8.3
[59] pillar_1.9.0
[60] fgsea_1.30.0
[61] GenomicRanges_1.56.1
[62] rjson_0.2.21
[63] boot_1.3-30
[64] future.apply_1.11.2
[65] codetools_0.2-20
[66] fastmatch_1.1-4
[67] leiden_0.4.3.1
[68] glue_1.7.0
[69] leidenbase_0.1.27
[70] ggfun_0.1.5
[71] data.table_1.15.4
[72] vctrs_0.6.5
[73] png_0.1-8
[74] treeio_1.28.0
[75] spam_2.10-0
[76] org.Mm.eg.db_3.19.1
[77] gtable_0.3.5
[78] cachem_1.1.0
[79] S4Arrays_1.4.1
[80] mime_0.12
[81] tidygraph_1.3.1
[82] HSMMSingleCell_1.24.0
[83] survival_3.7-0
[84] SingleCellExperiment_1.26.0
[85] pheatmap_1.0.12
[86] iterators_1.0.14
[87] fastICA_1.2-4
[88] statmod_1.5.0
[89] fitdistrplus_1.1-11
[90] ROCR_1.0-11
[91] nlme_3.1-165
[92] ggtree_3.12.0
[93] bit64_4.0.5
[94] RcppAnnoy_0.0.22
[95] GenomeInfoDb_1.40.1
[96] KernSmooth_2.23-24
[97] colorspace_2.1-0
[98] DBI_1.2.3
[99] tidyselect_1.2.1
[100] bit_4.0.5
[101] compiler_4.4.1
[102] DelayedArray_0.30.1
[103] plotly_4.10.4
[104] shadowtext_0.1.3
[105] scales_1.3.0
[106] lmtest_0.9-40
[107] digest_0.6.36
[108] goftest_1.2-3
[109] spatstat.utils_3.0-5
[110] presto_1.0.0
[111] minqa_1.2.7
[112] XVector_0.44.0
[113] htmltools_0.5.8.1
[114] pkgconfig_2.0.3
[115] lme4_1.1-35.5
[116] MatrixGenerics_1.16.0
[117] fastmap_1.2.0
[118] GlobalOptions_0.1.2
[119] rlang_1.1.4
[120] htmlwidgets_1.6.4
[121] UCSC.utils_1.0.0
[122] shiny_1.8.1.1
[123] farver_2.1.2
[124] zoo_1.8-12
[125] jsonlite_1.8.8
[126] BiocParallel_1.38.0
[127] GOSemSim_2.30.0
[128] magrittr_2.0.3
[129] GenomeInfoDbData_1.2.12
[130] ggplotify_0.1.2
[131] dotCall64_1.1-1
[132] patchwork_1.2.0
[133] munsell_0.5.1
[134] Rcpp_1.0.12
[135] ape_5.8
[136] viridis_0.6.5
[137] reticulate_1.38.0
[138] stringi_1.8.4
[139] ggraph_2.2.1
[140] jjAnno_0.0.3
[141] zlibbioc_1.50.0
[142] MASS_7.3-61
[143] plyr_1.8.9
[144] parallel_4.4.1
[145] listenv_0.9.1
[146] ggrepel_0.9.5
[147] deldir_2.0-4
[148] Biostrings_2.72.1
[149] graphlayouts_1.1.1
[150] tensor_1.5
[151] circlize_0.4.16
[152] hms_1.1.3
[153] igraph_2.0.3
[154] spatstat.geom_3.2-9
[155] RcppHNSW_0.6.0
[156] pkgload_1.4.0
[157] reshape2_1.4.4
[158] foreach_1.5.2
[159] nloptr_2.1.1
[160] tzdb_0.4.0
[161] tweenr_2.0.3
[162] httpuv_1.6.15
[163] RANN_2.6.1
[164] polyclip_1.10-6
[165] clue_0.3-65
[166] future_1.33.2
[167] scattermore_1.2
[168] ggforce_0.4.2
[169] xtable_1.8-4
[170] monocle3_1.3.1
[171] RSpectra_0.16-1
[172] tidytree_0.4.6
[173] later_1.3.2
[174] viridisLite_0.4.2
[175] clusterProfiler_4.12.0
[176] aplot_0.2.3
[177] memoise_2.0.1
[178] cluster_2.1.6
[179] timechange_0.3.0
[180] globals_0.16.3
The text was updated successfully, but these errors were encountered: