Skip to content

Commit b566120

Browse files
committed
added documentation
1 parent 0f0ca1d commit b566120

File tree

3 files changed

+25
-21
lines changed

3 files changed

+25
-21
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,11 +5,11 @@ This repository is an adjunct to the "Ten Simple Rules for Reproducible Research
55
The example notebooks demonstrate some of rules.
66

77
## Example 1
8-
This example demonstrates a 3-step workflow for predicting the protein fold type using a Machine Learning approach.
8+
This example demonstrates a 4-step workflow for predicting the protein fold type using a Machine Learning approach.
99

10-
You can launch the top level notebook directly in your web browser: [example1/0-Workflow.ipynb](https://mybinder.org/v2/gh/jupyter-guide/ten-rules-jupyter/master?filepath=example1%2F0-Workflow.ipynb).
10+
You can launch the top level notebook directly in your web browser: [0-Workflow.ipynb](https://mybinder.org/v2/gh/jupyter-guide/ten-rules-jupyter/master?filepath=example1%2F0-Workflow.ipynb).
1111

12-
Then follow the steps in the notebook to run the 3 steps of the workflow.
12+
Then follow the steps in the notebook to run the 4 steps of the workflow.
1313

1414
## Example 2
1515

example1/0-Workflow.ipynb

Lines changed: 7 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -158,12 +158,10 @@
158158
]
159159
},
160160
{
161-
"cell_type": "code",
162-
"execution_count": null,
161+
"cell_type": "markdown",
163162
"metadata": {},
164-
"outputs": [],
165163
"source": [
166-
"[3-FitModel.ipynb](./3-FitModel.ipynb)"
164+
"[4-Predict.ipynb](./4-Predict.ipynb)"
167165
]
168166
},
169167
{
@@ -186,13 +184,15 @@
186184
},
187185
{
188186
"cell_type": "code",
189-
"execution_count": 1,
187+
"execution_count": 2,
190188
"metadata": {},
191189
"outputs": [
192190
{
193191
"name": "stdout",
194192
"output_type": "stream",
195193
"text": [
194+
"The watermark extension is already loaded. To reload it, use:\n",
195+
" %reload_ext watermark\n",
196196
"CPython 3.6.3\n",
197197
"IPython 6.3.1\n",
198198
"\n",
@@ -208,23 +208,14 @@
208208
"machine : x86_64\n",
209209
"processor : i386\n",
210210
"CPU cores : 4\n",
211-
"interpreter: 64bit\n",
212-
"Git hash : 13806bae2b84b9732346ca9b09b58c05b5a2d641\n",
213-
"Git repo : https://github.com/pwrose/ten-rules-jupyter.git\n"
211+
"interpreter: 64bit\n"
214212
]
215213
}
216214
],
217215
"source": [
218216
"%load_ext watermark\n",
219-
"%watermark -v -m -p gensim,matplotlib,numpy,pandas,sklearn -r -g"
217+
"%watermark -v -m -p gensim,matplotlib,numpy,pandas,sklearn"
220218
]
221-
},
222-
{
223-
"cell_type": "code",
224-
"execution_count": null,
225-
"metadata": {},
226-
"outputs": [],
227-
"source": []
228219
}
229220
],
230221
"metadata": {

example1/3-FitModel.ipynb

Lines changed: 15 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,6 @@
1616
"import pandas as pd\n",
1717
"import mlutils\n",
1818
"from sklearn import svm, metrics, preprocessing\n",
19-
"from sklearn.linear_model import LogisticRegression\n",
20-
"from sklearn.ensemble import RandomForestClassifier\n",
2119
"from sklearn.model_selection import train_test_split\n",
2220
"from sklearn.externals import joblib"
2321
]
@@ -343,6 +341,21 @@
343341
"source": [
344342
"joblib.dump(classifier, \"./classifier\")"
345343
]
344+
},
345+
{
346+
"cell_type": "markdown",
347+
"metadata": {},
348+
"source": [
349+
"## Next Step\n",
350+
"After you saved the classifier model here, go back to the [0-Workflow.ipynb](./0-Workflow.ipynb) to run the next step of the analysis."
351+
]
352+
},
353+
{
354+
"cell_type": "code",
355+
"execution_count": null,
356+
"metadata": {},
357+
"outputs": [],
358+
"source": []
346359
}
347360
],
348361
"metadata": {

0 commit comments

Comments
 (0)