|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# How to use pythreejs to plot a superellipsoid" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "A superellipsoid is given by a parametric function and the equation is very similar to an ellipse equation. We only have different exponents which give us different shapes. For more informations: https://en.wikipedia.org/wiki/Superellipsoid.\n", |
| 15 | + "\n", |
| 16 | + "The idea of this example is to construct the mesh of the square $[0, 1]\\times[0,1]$ and to do a projection of these points on the superillipse which is the 2D shape and then to do a spherical product to have the 3D shape." |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 2, |
| 22 | + "metadata": { |
| 23 | + "collapsed": false |
| 24 | + }, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "import numpy as np\n", |
| 28 | + "\n", |
| 29 | + "n = 10 # number of discretisation points for the square in each direction \n", |
| 30 | + "x_box = np.concatenate((np.linspace(-1, 1., n), np.ones(n-2), np.linspace(1, -1., n), -np.ones(n-2)))\n", |
| 31 | + "y_box = np.concatenate((-np.ones(n-1), np.linspace(-1, 1., n), np.ones(n-2), np.linspace(1, -1., n-1, endpoint=False)))\n", |
| 32 | + "nx_box = x_box.size\n", |
| 33 | + "\n", |
| 34 | + "coords = np.empty((nx_box**2, 3))\n", |
| 35 | + "\n", |
| 36 | + "def superellipse(rx, ry, m):\n", |
| 37 | + " \"\"\"\n", |
| 38 | + " superellipse formula with the projection of the unit square\n", |
| 39 | + " \n", |
| 40 | + " Parameters\n", |
| 41 | + " ----------\n", |
| 42 | + " rx : the radius in the x direction \n", |
| 43 | + " ry : the radius in the y direction \n", |
| 44 | + " m : the exponent of the superellipse\n", |
| 45 | + " \n", |
| 46 | + " Output\n", |
| 47 | + " ------\n", |
| 48 | + " the coordinates of the superellipse\n", |
| 49 | + " \"\"\"\n", |
| 50 | + " return x_box*rx*(1. - .5*np.abs(y_box)**(2./m))**(m/2.), y_box*ry*(1. - .5*np.abs(x_box)**(2./m))**(m/2.)\n" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 3, |
| 56 | + "metadata": { |
| 57 | + "collapsed": true |
| 58 | + }, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "def superellipsoid(rx, ry, rz, m1, m2):\n", |
| 62 | + " \"\"\"\n", |
| 63 | + " superellipsoid formula with the spherical product of two superellipse\n", |
| 64 | + " and update of the global coords array\n", |
| 65 | + " \n", |
| 66 | + " Parameters\n", |
| 67 | + " ----------\n", |
| 68 | + " rx : the radius in the x direction \n", |
| 69 | + " ry : the radius in the y direction \n", |
| 70 | + " rz : the radius in the z direction \n", |
| 71 | + " m1 : the exponent of the first superellipse\n", |
| 72 | + " m2 : the exponent of the second superellipse\n", |
| 73 | + " \"\"\" \n", |
| 74 | + " gx, gy = superellipse(1, 1, m2)\n", |
| 75 | + " hx, hy = superellipse(1, 1, m1)\n", |
| 76 | + "\n", |
| 77 | + " \n", |
| 78 | + " coords[:, 0] = rx*(gx[np.newaxis, :]*hx[:, np.newaxis]).flatten()\n", |
| 79 | + " coords[:, 1] = ry*(gx[np.newaxis, :]*hy[:, np.newaxis]).flatten()\n", |
| 80 | + " coords[:, 2] = rz*(gy[np.newaxis, :]*np.ones(hx.size)[:, np.newaxis]).flatten()" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": 4, |
| 86 | + "metadata": { |
| 87 | + "collapsed": false |
| 88 | + }, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "# superellipsoid parameters\n", |
| 92 | + "rx = ry = rz = 1.\n", |
| 93 | + "m1 = m2 = 1.\n", |
| 94 | + "\n", |
| 95 | + "superellipsoid(rx, ry, rz, m1, m2)" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "markdown", |
| 100 | + "metadata": {}, |
| 101 | + "source": [ |
| 102 | + "We construct the triangulation by using the ConveHull function in scipy." |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": 5, |
| 108 | + "metadata": { |
| 109 | + "collapsed": false |
| 110 | + }, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "import scipy.spatial as spatial\n", |
| 114 | + "\n", |
| 115 | + "cvx = spatial.ConvexHull(coords)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 6, |
| 121 | + "metadata": { |
| 122 | + "collapsed": false |
| 123 | + }, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "from pythreejs import *\n", |
| 127 | + "from IPython.display import display\n", |
| 128 | + "\n", |
| 129 | + "surf_g = PlainGeometry(vertices=coords.tolist(), faces=cvx.simplices.tolist())\n", |
| 130 | + "surf = Mesh(geometry=surf_g, material=BasicMaterial(color='green', wireframe=True))\n", |
| 131 | + "scene = Scene(children=[surf, AmbientLight(color='#777777')])\n", |
| 132 | + "c = PerspectiveCamera(position=[2, 2, 3], up=[0, 0, 1],\n", |
| 133 | + " children=[DirectionalLight(color='white',\n", |
| 134 | + " position=[3, 5, 1],\n", |
| 135 | + " intensity=0.6)])\n", |
| 136 | + "renderer = Renderer(camera=c, scene=scene, controls=[OrbitControls(controlling=c)])\n", |
| 137 | + "display(renderer)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": 7, |
| 143 | + "metadata": { |
| 144 | + "collapsed": true |
| 145 | + }, |
| 146 | + "outputs": [], |
| 147 | + "source": [ |
| 148 | + "from ipywidgets import FloatSlider, HBox, VBox\n", |
| 149 | + "\n", |
| 150 | + "m1_slider, m2_slider = (FloatSlider(description='m1', min=0.01, max=4.0, step=0.01, value=m1,\n", |
| 151 | + " continuous_update=False, orientation='vertical'),\n", |
| 152 | + " FloatSlider(description='m2', min=0.01, max=4.0, step=0.01, value=m2,\n", |
| 153 | + " continuous_update=False, orientation='vertical'))" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": 8, |
| 159 | + "metadata": { |
| 160 | + "collapsed": true |
| 161 | + }, |
| 162 | + "outputs": [], |
| 163 | + "source": [ |
| 164 | + "rx_slider, ry_slider, rz_slider = (FloatSlider(description='rx', min=0.01, max=10.0, step=0.01, value=rx, \n", |
| 165 | + " continuous_update=False, orientation='horizontal'),\n", |
| 166 | + " FloatSlider(description='ry', min=0.01, max=10.0, step=0.01, value=ry, \n", |
| 167 | + " continuous_update=False, orientation='horizontal'),\n", |
| 168 | + " FloatSlider(description='rz', min=0.01, max=10.0, step=0.01, value=rz, \n", |
| 169 | + " continuous_update=False, orientation='horizontal'))" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": 9, |
| 175 | + "metadata": { |
| 176 | + "collapsed": false |
| 177 | + }, |
| 178 | + "outputs": [], |
| 179 | + "source": [ |
| 180 | + "def update(change):\n", |
| 181 | + " superellipsoid(rx_slider.value, ry_slider.value, rz_slider.value, \n", |
| 182 | + " m1_slider.value, m2_slider.value)\n", |
| 183 | + " surf_g.vertices = coords.tolist()\n", |
| 184 | + " \n", |
| 185 | + "m1_slider.observe(update, names=['value'])\n", |
| 186 | + "m2_slider.observe(update, names=['value'])\n", |
| 187 | + "rx_slider.observe(update, names=['value'])\n", |
| 188 | + "ry_slider.observe(update, names=['value'])\n", |
| 189 | + "rz_slider.observe(update, names=['value'])" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 10, |
| 195 | + "metadata": { |
| 196 | + "collapsed": false |
| 197 | + }, |
| 198 | + "outputs": [], |
| 199 | + "source": [ |
| 200 | + "VBox([HBox([renderer, m1_slider, m2_slider]), rx_slider, ry_slider, rz_slider])" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": null, |
| 206 | + "metadata": { |
| 207 | + "collapsed": true |
| 208 | + }, |
| 209 | + "outputs": [], |
| 210 | + "source": [] |
| 211 | + } |
| 212 | + ], |
| 213 | + "metadata": { |
| 214 | + "anaconda-cloud": {}, |
| 215 | + "kernelspec": { |
| 216 | + "display_name": "Python [conda root]", |
| 217 | + "language": "python", |
| 218 | + "name": "conda-root-py" |
| 219 | + }, |
| 220 | + "language_info": { |
| 221 | + "codemirror_mode": { |
| 222 | + "name": "ipython", |
| 223 | + "version": 3 |
| 224 | + }, |
| 225 | + "file_extension": ".py", |
| 226 | + "mimetype": "text/x-python", |
| 227 | + "name": "python", |
| 228 | + "nbconvert_exporter": "python", |
| 229 | + "pygments_lexer": "ipython3", |
| 230 | + "version": "3.5.2" |
| 231 | + }, |
| 232 | + "widgets": { |
| 233 | + "state": { |
| 234 | + "5eb4554c95814fc6b83135c8b1a7a5ee": { |
| 235 | + "views": [ |
| 236 | + { |
| 237 | + "cell_index": 8 |
| 238 | + } |
| 239 | + ] |
| 240 | + }, |
| 241 | + "b9b3e029e6554c0caee4a3cd691eb821": { |
| 242 | + "views": [ |
| 243 | + { |
| 244 | + "cell_index": 12 |
| 245 | + } |
| 246 | + ] |
| 247 | + } |
| 248 | + }, |
| 249 | + "version": "1.2.0" |
| 250 | + } |
| 251 | + }, |
| 252 | + "nbformat": 4, |
| 253 | + "nbformat_minor": 1 |
| 254 | +} |
0 commit comments