-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadamgrad.py
101 lines (85 loc) · 4.53 KB
/
adamgrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# -*- coding: utf-8 -*-
from __future__ import division
import cifar10, cifar10_input
import tensorflow as tf
import numpy as np
from datetime import datetime
import time
max_steps = 30000
batch_size = 128
data_dir = '/tmp/cifar10_data/cifar-10-batches-bin'
def variable_with_weight_loss(shape, stddev, w1):
var = tf.Variable(tf.truncated_normal(shape, stddev = stddev))
if w1 is not None:
weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name = 'weight_loss')
tf.add_to_collection('losses', weight_loss)
return var
cifar10.maybe_download_and_extract()
images_train, labels_train = cifar10_input.distorted_inputs(data_dir = data_dir, batch_size = batch_size)
images_test, labels_test = cifar10_input.inputs(eval_data = True, data_dir = data_dir, batch_size = batch_size)
image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.int32, [batch_size])
weight1 = variable_with_weight_loss(shape = [5, 5, 3, 64], stddev = 5e-2, w1 = 0.0)
kernel1 = tf.nn.conv2d(image_holder, weight1, [1, 1, 1, 1], padding = 'SAME')
bias1 = tf.Variable(tf.constant(0.0, shape = [64]))
conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
pool1 = tf.nn.max_pool(conv1, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'SAME')
norm1 = tf.nn.lrn(pool1, 4, bias = 1.0, alpha = 0.001 / 9.0, beta = 0.75)
weight2 = variable_with_weight_loss(shape = [5, 5, 64, 64], stddev = 5e-2, w1 = 0.0)
kernel2 = tf.nn.conv2d(norm1, weight2, [1, 1, 1, 1], padding = 'SAME')
bias2 = tf.Variable(tf.constant(0.1, shape = [64]))
conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
norm2 = tf.nn.lrn(conv2, 4, bias = 1.0, alpha = 0.001 / 9.0, beta = 0.75)
pool2 = tf.nn.max_pool(norm2, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'SAME')
reshape = tf.reshape(pool2, [batch_size, -1])
dim = reshape.get_shape()[1].value
weight3 = variable_with_weight_loss(shape = [dim, 384], stddev = 0.04, w1 = 0.004)
bias3 = tf.Variable(tf.constant(0.1, shape = [384]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)
weight4 = variable_with_weight_loss(shape = [384, 192], stddev = 0.04, w1 = 0.004)
bias4 = tf.Variable(tf.constant(0.1, shape = [192]))
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)
weight5 = variable_with_weight_loss(shape = [192, 10], stddev = 1.0 / 192.0, w1 = 0.0)
bias5 = tf.Variable(tf.constant(0.0, shape = [10]))
logits = tf.add(tf.matmul(local4, weight5), bias5)
def loss(logits, labels):
labels = tf.cast(labels, tf.int32)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels, name = 'cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name = 'cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'), name = 'total_loss')
loss = loss(logits, label_holder)
train_op = tf.train.AdagradOptimizer(1e-2 ).minimize(loss) ##############
#选择优化器 AdagradOptimizer ,学习率lr设为1e-3 收敛太慢
#lr设为1e-2 收敛差不多
top_k_op = tf.nn.in_top_k(logits, label_holder, 1)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
tf.train.start_queue_runners()
for step in range(1,max_steps):
start_time = time.time()
image_batch, label_batch = sess.run([images_train, labels_train])
_, loss_value = sess.run([train_op, loss], feed_dict = {image_holder: image_batch, label_holder: label_batch})
duration = time.time() - start_time
if step % 10 == 0:
examples_per_sec = batch_size / duration
sec_per_batch = float(duration)
format_str = ('%s: step %d, loss = %.2f(%.1f examples/sec; %.3f sec/batch)')
print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch))
# 检测
if ((step % 100 == 0) | (step+1 == max_steps)):
num_examples = 10000
import math
num_iter = int(math.ceil(num_examples / batch_size))
true_count = 0
total_sample_count = num_iter * batch_size
# print total_sample_count
step = 0
while step < num_iter:
image_batch, label_batch = sess.run([images_test, labels_test])
predictions = sess.run([top_k_op], feed_dict = {image_holder: image_batch, label_holder: label_batch})
true_count += np.sum(predictions)
step += 1
# print(true_count)
precision = true_count / total_sample_count
print('precision @ 1 = %.3f' %precision)