-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
96 lines (85 loc) · 3.73 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
import argparse
import os
from collections import defaultdict
import sys
from CONSTANTS import DATA_DIR, COLUMN_NAMES
class KbDataset(Dataset):
def __init__(self, args: argparse.ArgumentParser):
self.args = args
csv_file = os.path.join(DATA_DIR[args.dataset], f'df_train.csv')
e1_col, rel_col, e2_col = COLUMN_NAMES[args.dataset]
print(f'Loading dataset from {csv_file}')
df_kg = pd.read_csv(csv_file)
self.pos_samples = df_kg[[e1_col,
rel_col, e2_col]].to_numpy(np.int64)
# print(self.pos_samples.shape)
if args.strategy == 'one_to_n':
self.gen_one_to_n_data(df_kg)
elif args.strategy == 'k_to_n' or args.strategy == 'gen_triplets':
self.gen_k_to_n_data(df_kg)
elif args.strategy == 'softmax':
self.gen_softmax_data(df_kg)
else:
raise NotImplementedError
def gen_one_to_n_data(self, df_kg):
e1_col, rel_col, e2_col = COLUMN_NAMES[self.args.dataset]
self.data = df_kg[[
e1_col, rel_col]].to_numpy(np.int64)
self.labels = np.zeros(
(len(self.data), self.args.num_entities), dtype=np.float32)
self.labels[np.arange(start=0, stop=self.labels.shape[0],
step=1), df_kg[e2_col].to_numpy(np.int64)] = 1
def gen_softmax_data(self, df_kg):
e1_col, rel_col, e2_col = COLUMN_NAMES[self.args.dataset]
self.data = df_kg[[
e1_col, rel_col]].to_numpy(np.int64)
self.labels = df_kg[e2_col].to_numpy(np.int64)
def gen_k_to_n_data(self, df_kg):
e1_col, rel_col, e2_col = COLUMN_NAMES[self.args.dataset]
self.data = df_kg[[
e1_col, rel_col]].drop_duplicates().to_numpy(np.int64)
e2_lookup = defaultdict(set)
for e1, r, e2 in zip(df_kg[e1_col], df_kg[rel_col], df_kg[e2_col]):
e2_lookup[(e1, r)].add(e2)
self.labels = np.zeros(
(len(self.data), self.args.num_entities), dtype=np.float32)
for idx, query in enumerate(self.data):
e1, r = query[0], query[1]
for e2 in e2_lookup[(e1, r)]:
self.labels[idx, e2] = 1
def __len__(self):
return self.data.shape[0]
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
class KbEvalGenerator(Dataset):
def __init__(self, eval_split: str, args: argparse.ArgumentParser):
self.args = args
pos_samples = defaultdict(set)
splits = ['train', 'valid', 'test']
e1_col, rel_col, e2_col = COLUMN_NAMES[args.dataset]
assert eval_split in splits
for spl in splits:
csv_file = os.path.join(DATA_DIR[args.dataset], f'df_{spl}.csv')
df_data = pd.read_csv(csv_file)
if spl == eval_split:
self.queries = df_data[[
e1_col, rel_col]].to_numpy(np.int64)
e2_list = df_data[e2_col].tolist()
for e1, r, e2 in zip(df_data[e1_col], df_data[rel_col], df_data[e2_col]):
pos_samples[(e1, r)].add(e2)
self.labels = np.zeros((self.queries.shape[0], self.args.num_entities))
self.filtered_labels = np.zeros(
(self.queries.shape[0], self.args.num_entities))
for i, query in enumerate(self.queries):
e1, r = query[0], query[1]
e2 = e2_list[i]
self.labels[i, e2] = 1
self.filtered_labels[i, list(pos_samples[(e1, r)] - {e2})] = 1
def __len__(self):
return self.queries.shape[0]
def __getitem__(self, idx):
return self.queries[idx], self.labels[idx], self.filtered_labels[idx]