-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel2_fit.stan
53 lines (48 loc) · 1.85 KB
/
model2_fit.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
data{
int N; // Number of samples
vector[N] distance; // Distances
vector[N] meal_preparation_time; // Meal preparation times
vector[N] delivery_times; // Delivery times
array[N] int traffic_level; // Traffic levels
array[N] real delivery_person_rating;
array[N] int number_of_deliveries;
}
parameters{
real distance_coeff;
real mean;
vector[4] traffic_level_coeff;
real meal_prep_coeff;
real<lower=0> sigma;
real person_rating_coeff;
vector[4] deliveries_number_coeff;
}
transformed parameters {
vector[N] mu;
for(i in 1:N){
mu[i] = exp(distance_coeff * distance[i] + traffic_level_coeff[traffic_level[i]] + meal_prep_coeff * meal_preparation_time[i]+person_rating_coeff*delivery_person_rating[i]+deliveries_number_coeff[number_of_deliveries[i]]+mean);
}
}
model{
mean ~ normal(3, 0.1);
person_rating_coeff ~ normal(0,0.3);
distance_coeff ~ normal(0,0.3);
meal_prep_coeff ~ normal(0,0.3);
sigma ~ exponential(0.5);
delivery_times ~ inv_gamma(pow(mu, 2) / pow(sigma, 2) + 2, pow(mu,3) / pow(sigma, 2) + mu);
traffic_level_coeff[1] ~ normal(0, 0.3);
traffic_level_coeff[2] ~ normal(0, 0.3);
traffic_level_coeff[3] ~ normal(0, 0.3);
traffic_level_coeff[4] ~ normal(0, 0.3);
deliveries_number_coeff[1] ~ normal(0, 0.3);
deliveries_number_coeff[2] ~ normal(0, 0.3);
deliveries_number_coeff[3] ~ normal(0, 0.3);
deliveries_number_coeff[4] ~ normal(0, 0.3);
}
generated quantities {
vector[N] delivery_time;
vector[N] log_lik;
for (i in 1:N){
delivery_time[i] = inv_gamma_rng(pow(mu[i], 2) / pow(sigma, 2) + 2, pow(mu[i],3) / pow(sigma, 2) + mu[i]);
log_lik[i] = inv_gamma_lpdf(delivery_times[i] | pow(mu[i], 2) / pow(sigma, 2) + 2, pow(mu[i],3) / pow(sigma, 2) + mu[i]);
}
}