-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
79 lines (68 loc) · 2.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# https://repl.it/@JosephVossler/
#
# https://stackabuse.com/python-for-nlp-creating-bag-of-words-model-from-scratch/
# https://www.google.com/search?q=python%20index%20lines%20variable&cad=h
# https://www.google.com/search?q=bs.BeautifulSoup(raw_html,%20%27lxml%27&cad=h
# https://stackabuse.com/read-a-file-line-by-line-in-python/
# https://docs.python.org/3/library/pwd.html
# https://github.com/jvossler/Python_html_Word_Count
# https://stackoverflow.com/questions/860140/whoami-in-python
# https://www.learnpython.org/en/Loops
# https://www.w3schools.com/python/python_variables.asp
# https://www.google.com/search?q=python%20for%20loop%20tutorial&cad=h
#
import nltk
import numpy as np
import random
import string
import bs4 as bs
import urllib.request
import re
import lxml.html.soupparser
import nltk
nltk.download('punkt')
raw_html = urllib.request.urlopen('https://en.wikipedia.org/wiki/Natural_language_processing')
raw_html = raw_html.read()
article_html = bs.BeautifulSoup(raw_html, 'lxml')
article_paragraphs = article_html.find_all('p')
article_text = ''
for para in article_paragraphs:
article_text += para.text
corpus = nltk.sent_tokenize(article_text)
for i in range(len(corpus )):
corpus [i] = corpus [i].lower()
corpus [i] = re.sub(r'\W',' ',corpus [i])
corpus [i] = re.sub(r'\s+',' ',corpus [i])
print(len(corpus))
print(corpus[30])
#def main():
# filepath = sys.argv[1]
#
# if not os.path.isfile(filepath):
# print("File path {} does not exist. Exiting...".format(filepath))
# sys.exit()
#
# bag_of_words = {}
# with open(filepath) as fp:
# cnt = 0
# for line in fp:
# print("line {} contents {}".format(cnt, line))
# record_word_cnt(line.strip().split(' '), bag_of_words)
# cnt += 1
# sorted_words = order_bag_of_words(bag_of_words, desc=True)
# print("Most frequent 10 words {}".format(sorted_words[:10]))
#
#def order_bag_of_words(bag_of_words, desc=False):
# words = [(word, cnt) for word, cnt in bag_of_words.items()]
# return sorted(words, key=lambda x: x[1], reverse=desc)
#
#def record_word_cnt(words, bag_of_words):
# for word in words:
# if word != '':
# if word.lower() in bag_of_words:
# bag_of_words[word.lower()] += 1
# else:
# bag_of_words[word.lower()] = 1
#
#if __name__ == '__main__':
# main()