forked from berkeleydeeprlcourse/homework
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_figure1.py
48 lines (40 loc) · 1.26 KB
/
gen_figure1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
"""
generate figure for task2 question3
"""
import tensorflow as tf
import numpy as np
import tf_util
import gym
import load_policy
import _pickle as pickle
import seaborn as sns
import matplotlib.pyplot as plt
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('envname', type=str)
args = parser.parse_args()
print('loading data ...')
percents = [20,40,60,80,100]
dat = []
tar = []
for p in percents:
print('--> percent = %d' % p)
filename = 'log/{a}_per{b}_res.pkl'.format(a=args.envname,b=p)
with open(filename,'rb') as f:
returns,targets = pickle.load(f)
dat.append(returns)
tar.append(targets)
print(' >> done!')
dat = [dat,tar]
X = np.transpose(np.array(dat),[2,1,0]) # [batch, len, channels]
label = [p * 10 for p in percents]
sns.tsplot(data=X,time=label,condition=['learner','expert'])
plt.ylabel('returns')
plt.xlabel('rollouts from experts')
#plt.title('Performance for {a} with different rollouts from experts.\nrun bash run_all to get the figures.'.format(a=args.envname))
#plt.show()
plt.savefig('figures/fig1-{a}.png'.format(a=args.envname))
if __name__ == '__main__':
main()