forked from vikram2000b/bad-teaching-unlearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunlearn.py
134 lines (107 loc) · 5.22 KB
/
unlearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from dataset import UnLearningData
import numpy as np
from utils import *
def UnlearnerLoss(output, labels, full_teacher_logits, unlearn_teacher_logits, KL_temperature):
labels = torch.unsqueeze(labels, dim = 1)
f_teacher_out = F.softmax(full_teacher_logits / KL_temperature, dim=1)
u_teacher_out = F.softmax(unlearn_teacher_logits / KL_temperature, dim=1)
# label 1 means forget sample
# label 0 means retain sample
overall_teacher_out = labels * u_teacher_out + (1-labels)*f_teacher_out
student_out = F.log_softmax(output / KL_temperature, dim=1)
return F.kl_div(student_out, overall_teacher_out)
def unlearning_step(model, unlearning_teacher, full_trained_teacher, unlearn_data_loader, optimizer,
device, KL_temperature):
losses = []
for batch in unlearn_data_loader:
x, y = batch
x, y = x.to(device), y.to(device)
with torch.no_grad():
full_teacher_logits = full_trained_teacher(x)
unlearn_teacher_logits = unlearning_teacher(x)
output = model(x)
optimizer.zero_grad()
loss = UnlearnerLoss(output = output, labels=y, full_teacher_logits=full_teacher_logits,
unlearn_teacher_logits=unlearn_teacher_logits, KL_temperature=KL_temperature)
loss.backward()
optimizer.step()
losses.append(loss.detach().cpu().numpy())
return np.mean(losses)
def fit_one_unlearning_cycle(epochs, model, train_loader, val_loader, lr, device):
history = []
optimizer = torch.optim.Adam(model.parameters(), lr = lr)
for epoch in range(epochs):
model.train()
train_losses = []
lrs = []
for batch in train_loader:
loss = training_step(model, batch, device)
loss.backward()
train_losses.append(loss.detach().cpu())
optimizer.step()
optimizer.zero_grad()
lrs.append(get_lr(optimizer))
result = evaluate(model, val_loader, device)
result['train_loss'] = torch.stack(train_losses).mean()
result['lrs'] = lrs
epoch_end(model, epoch, result)
history.append(result)
return history
def blindspot_unlearner(model, unlearning_teacher, full_trained_teacher, retain_data, forget_data, epochs = 10,
optimizer = 'adam', lr = 0.01, batch_size = 256, num_workers = 32,
device = 'cuda', KL_temperature = 1):
# creating the unlearning dataset.
unlearning_data = UnLearningData(forget_data=forget_data, retain_data=retain_data)
unlearning_loader = DataLoader(unlearning_data, batch_size = batch_size, shuffle=True,
num_workers=num_workers, pin_memory=True)
unlearning_teacher.eval()
full_trained_teacher.eval()
optimizer = optimizer
if optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr = lr)
else:
# if optimizer is not a valid string, then assuming it as a function to return optimizer
optimizer = optimizer#(model.parameters())
for epoch in range(epochs):
loss = unlearning_step(model = model, unlearning_teacher= unlearning_teacher,
full_trained_teacher=full_trained_teacher, unlearn_data_loader=unlearning_loader,
optimizer=optimizer, device=device, KL_temperature=KL_temperature)
print("Epoch {} Unlearning Loss {}".format(epoch+1, loss))
class UNSIR_noise(torch.nn.Module):
def __init__(self, *dim):
super().__init__()
self.noise = torch.nn.Parameter(torch.randn(*dim), requires_grad = True)
def forward(self):
return self.noise
def UNSIR_noise_train(noise, model, forget_class_label, num_epochs, noise_batch_size, device='cuda'):
opt = torch.optim.Adam(noise.parameters(), lr = 0.1)
for epoch in range(num_epochs):
total_loss = []
inputs = noise()
labels = torch.zeros(noise_batch_size).to(device)+forget_class_label
outputs = model(inputs)
loss = -F.cross_entropy(outputs, labels.long()) + 0.1*torch.mean(torch.sum(inputs**2, [1, 2, 3]))
opt.zero_grad()
loss.backward()
opt.step()
total_loss.append(loss.cpu().detach().numpy())
if epoch%5 == 0:
print("Loss: {}".format(np.mean(total_loss)))
return noise
def UNSIR_create_noisy_loader(noise, forget_class_label, retain_samples, batch_size, num_noise_batches=80, device='cuda'):
noisy_data = []
for i in range(num_noise_batches):
batch = noise()
for i in range(batch[0].size(0)):
noisy_data.append((batch[i].detach().cpu(), torch.tensor(forget_class_label), \
torch.tensor(forget_class_label)))
other_samples = []
for i in range(len(retain_samples)):
other_samples.append((retain_samples[i][0].cpu(), torch.tensor(retain_samples[i][2]),\
torch.tensor(retain_samples[i][2])))
noisy_data += other_samples
noisy_loader = torch.utils.data.DataLoader(noisy_data, batch_size=batch_size, shuffle = True)
return noisy_loader