forked from opencv/opencv_contrib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccalib.cpp
495 lines (416 loc) · 17 KB
/
ccalib.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CCALIB_CPP__
#define __OPENCV_CCALIB_CPP__
#ifdef __cplusplus
#include "precomp.hpp"
#include "opencv2/ccalib.hpp"
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/3d.hpp>
#include <opencv2/calib.hpp>
#include <opencv2/features.hpp>
#include <vector>
#include <cstring>
namespace cv{ namespace ccalib{
using namespace std;
const int MIN_CONTOUR_AREA_PX = 100;
const float MIN_CONTOUR_AREA_RATIO = 0.2f;
const float MAX_CONTOUR_AREA_RATIO = 5.0f;
const int MIN_POINTS_FOR_H = 10;
const float MAX_PROJ_ERROR_PX = 5.0f;
CustomPattern::CustomPattern()
{
initialized = false;
}
bool CustomPattern::create(InputArray pattern, const Size2f boardSize, OutputArray output)
{
CV_Assert(!pattern.empty() && (boardSize.area() > 0));
Mat img = pattern.getMat();
float pixel_size = (boardSize.width > boardSize.height)? // Choose the longer side for more accurate calculation
float(img.cols) / boardSize.width: // width is longer
float(img.rows) / boardSize.height; // height is longer
return init(img, pixel_size, output);
}
bool CustomPattern::init(Mat& image, const float pixel_size, OutputArray output)
{
image.copyTo(img_roi);
//Setup object corners
obj_corners = std::vector<Point2f>(4);
obj_corners[0] = Point2f(0, 0); obj_corners[1] = Point2f(float(img_roi.cols), 0);
obj_corners[2] = Point2f(float(img_roi.cols), float(img_roi.rows)); obj_corners[3] = Point2f(0, float(img_roi.rows));
if (!detector) // if no detector chosen, use default
{
Ptr<ORB> orb = ORB::create();
orb->setMaxFeatures(2000);
orb->setScaleFactor(1.15);
orb->setNLevels(30);
detector = orb;
}
detector->detect(img_roi, keypoints);
if (keypoints.empty())
{
initialized = false;
return initialized;
}
refineKeypointsPos(img_roi, keypoints);
if (!descriptorExtractor) // if no extractor chosen, use default
descriptorExtractor = ORB::create();
descriptorExtractor->compute(img_roi, keypoints, descriptor);
if (!descriptorMatcher)
descriptorMatcher = DescriptorMatcher::create("BruteForce-Hamming(2)");
// Scale found points by pixelSize
pxSize = pixel_size;
scaleFoundPoints(pxSize, keypoints, points3d);
if (output.needed())
{
Mat out;
drawKeypoints(img_roi, keypoints, out, Scalar(0, 0, 255));
out.copyTo(output);
}
initialized = !keypoints.empty();
return initialized; // initialized if any keypoints are found
}
CustomPattern::~CustomPattern() {}
bool CustomPattern::isInitialized()
{
return initialized;
}
bool CustomPattern::setFeatureDetector(Ptr<FeatureDetector> featureDetector)
{
if (!initialized)
{
this->detector = featureDetector;
return true;
}
else
return false;
}
bool CustomPattern::setDescriptorExtractor(Ptr<DescriptorExtractor> extractor)
{
if (!initialized)
{
this->descriptorExtractor = extractor;
return true;
}
else
return false;
}
bool CustomPattern::setDescriptorMatcher(Ptr<DescriptorMatcher> matcher)
{
if (!initialized)
{
this->descriptorMatcher = matcher;
return true;
}
else
return false;
}
Ptr<FeatureDetector> CustomPattern::getFeatureDetector()
{
return detector;
}
Ptr<DescriptorExtractor> CustomPattern::getDescriptorExtractor()
{
return descriptorExtractor;
}
Ptr<DescriptorMatcher> CustomPattern::getDescriptorMatcher()
{
return descriptorMatcher;
}
void CustomPattern::scaleFoundPoints(const double pixelSize,
const vector<KeyPoint>& corners, vector<Point3f>& pts3d)
{
for (unsigned int i = 0; i < corners.size(); ++i)
{
pts3d.push_back(Point3f(
float(corners[i].pt.x * pixelSize),
float(corners[i].pt.y * pixelSize),
0));
}
}
//Takes a descriptor and turns it into an (x,y) point
void CustomPattern::keypoints2points(const vector<KeyPoint>& in, vector<Point2f>& out)
{
out.clear();
out.reserve(in.size());
for (size_t i = 0; i < in.size(); ++i)
{
out.push_back(in[i].pt);
}
}
void CustomPattern::updateKeypointsPos(vector<KeyPoint>& in, const vector<Point2f>& new_pos)
{
for (size_t i = 0; i < in.size(); ++i)
{
in[i].pt= new_pos[i];
}
}
void CustomPattern::refinePointsPos(const Mat& img, vector<Point2f>& p)
{
Mat gray;
cvtColor(img, gray, COLOR_RGB2GRAY);
cornerSubPix(gray, p, Size(10, 10), Size(-1, -1),
TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 30, 0.1));
}
void CustomPattern::refineKeypointsPos(const Mat& img, vector<KeyPoint>& kp)
{
vector<Point2f> points;
keypoints2points(kp, points);
refinePointsPos(img, points);
updateKeypointsPos(kp, points);
}
template<typename Tstve>
void deleteStdVecElem(vector<Tstve>& v, int idx)
{
v[idx] = v.back();
v.pop_back();
}
void CustomPattern::check_matches(vector<Point2f>& matched, const vector<Point2f>& pattern, vector<DMatch>& good,
vector<Point3f>& pattern_3d, const Mat& H)
{
vector<Point2f> proj;
perspectiveTransform(pattern, proj, H);
for (uint i = 0; i < proj.size(); ++i)
{
double error = norm(matched[i] - proj[i]);
if (error >= MAX_PROJ_ERROR_PX)
{
deleteStdVecElem(good, i);
deleteStdVecElem(matched, i);
deleteStdVecElem(pattern_3d, i);
}
}
}
bool CustomPattern::findPatternPass(const Mat& image, vector<Point2f>& matched_features, vector<Point3f>& pattern_points,
Mat& H, vector<Point2f>& scene_corners, const double pratio, const double proj_error,
const bool refine_position, const Mat& mask, OutputArray output)
{
if (!initialized) {return false; }
matched_features.clear();
pattern_points.clear();
vector<vector<DMatch> > matches;
vector<KeyPoint> f_keypoints;
Mat f_descriptor;
detector->detect(image, f_keypoints, mask);
if (refine_position) refineKeypointsPos(image, f_keypoints);
descriptorExtractor->compute(image, f_keypoints, f_descriptor);
descriptorMatcher->knnMatch(f_descriptor, descriptor, matches, 2); // k = 2;
vector<DMatch> good_matches;
vector<Point2f> obj_points;
for(int i = 0; i < f_descriptor.rows; ++i)
{
if(matches[i][0].distance < pratio * matches[i][1].distance)
{
const DMatch& dm = matches[i][0];
good_matches.push_back(dm);
// "keypoints1[matches[i].queryIdx] has a corresponding point in keypoints2[matches[i].trainIdx]"
matched_features.push_back(f_keypoints[dm.queryIdx].pt);
pattern_points.push_back(points3d[dm.trainIdx]);
obj_points.push_back(keypoints[dm.trainIdx].pt);
}
}
if (good_matches.size() < MIN_POINTS_FOR_H) return false;
Mat h_mask;
H = findHomography(obj_points, matched_features, RANSAC, proj_error, h_mask);
if (H.empty())
{
// cout << "findHomography() returned empty Mat." << endl;
return false;
}
for(unsigned int i = 0; i < good_matches.size(); ++i)
{
if(!h_mask.data[i])
{
deleteStdVecElem(good_matches, i);
deleteStdVecElem(matched_features, i);
deleteStdVecElem(pattern_points, i);
}
}
if (good_matches.empty()) return false;
size_t numb_elem = good_matches.size();
check_matches(matched_features, obj_points, good_matches, pattern_points, H);
if (good_matches.empty() || numb_elem < good_matches.size()) return false;
// Get the corners from the image
scene_corners = vector<Point2f>(4);
perspectiveTransform(obj_corners, scene_corners, H);
// Check correctnes of H
// Is it a convex hull?
bool cConvex = isContourConvex(scene_corners);
if (!cConvex) return false;
// Is the hull too large or small?
double scene_area = contourArea(scene_corners);
if (scene_area < MIN_CONTOUR_AREA_PX) return false;
double ratio = scene_area/img_roi.size().area();
if ((ratio < MIN_CONTOUR_AREA_RATIO) ||
(ratio > MAX_CONTOUR_AREA_RATIO)) return false;
// Is any of the projected points outside the hull?
for(unsigned int i = 0; i < good_matches.size(); ++i)
{
if(pointPolygonTest(scene_corners, f_keypoints[good_matches[i].queryIdx].pt, false) < 0)
{
deleteStdVecElem(good_matches, i);
deleteStdVecElem(matched_features, i);
deleteStdVecElem(pattern_points, i);
}
}
if (output.needed())
{
Mat out;
drawMatches(image, f_keypoints, img_roi, keypoints, good_matches, out);
// Draw lines between the corners (the mapped object in the scene - image_2 )
line(out, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2);
line(out, scene_corners[1], scene_corners[2], Scalar(0, 255, 0), 2);
line(out, scene_corners[2], scene_corners[3], Scalar(0, 255, 0), 2);
line(out, scene_corners[3], scene_corners[0], Scalar(0, 255, 0), 2);
out.copyTo(output);
}
return (!good_matches.empty()); // return true if there are enough good matches
}
bool CustomPattern::findPattern(InputArray image, OutputArray matched_features, OutputArray pattern_points,
const double ratio, const double proj_error, const bool refine_position, OutputArray out,
OutputArray H, OutputArray pattern_corners)
{
CV_Assert(!image.empty() && proj_error > 0);
Mat img = image.getMat();
vector<Point2f> m_ftrs;
vector<Point3f> pattern_pts;
Mat _H;
vector<Point2f> scene_corners;
if (!findPatternPass(img, m_ftrs, pattern_pts, _H, scene_corners, 0.6, proj_error, refine_position))
return false; // pattern not found
Mat mask = Mat::zeros(img.size(), CV_8UC1);
vector<vector<Point> > obj(1);
vector<Point> scorners_int(scene_corners.size());
for (uint i = 0; i < scene_corners.size(); ++i)
scorners_int[i] = (Point)scene_corners[i]; // for drawContours
obj[0] = scorners_int;
drawContours(mask, obj, 0, Scalar(255), FILLED);
// Second pass
Mat output;
if (!findPatternPass(img, m_ftrs, pattern_pts, _H, scene_corners,
ratio, proj_error, refine_position, mask, output))
return false; // pattern not found
Mat(m_ftrs).copyTo(matched_features);
Mat(pattern_pts).copyTo(pattern_points);
if (out.needed()) output.copyTo(out);
if (H.needed()) _H.copyTo(H);
if (pattern_corners.needed()) Mat(scene_corners).copyTo(pattern_corners);
return (!m_ftrs.empty());
}
void CustomPattern::getPatternPoints(std::vector<KeyPoint>& original_points)
{
original_points = keypoints;
}
double CustomPattern::getPixelSize()
{
return pxSize;
}
double CustomPattern::calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints,
Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags,
TermCriteria criteria)
{
return calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs,
rvecs, tvecs, flags, criteria);
}
bool CustomPattern::findRt(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix,
InputArray distCoeffs, InputOutputArray rvec, InputOutputArray tvec, bool useExtrinsicGuess, int flags)
{
return solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, flags);
}
bool CustomPattern::findRt(InputArray image, InputArray cameraMatrix, InputArray distCoeffs,
InputOutputArray rvec, InputOutputArray tvec, bool useExtrinsicGuess, int flags)
{
vector<Point2f> imagePoints;
vector<Point3f> objectPoints;
if (!findPattern(image, imagePoints, objectPoints))
return false;
return solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, flags);
}
bool CustomPattern::findRtRANSAC(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs,
InputOutputArray rvec, InputOutputArray tvec, bool useExtrinsicGuess, int iterationsCount,
float reprojectionError, int minInliersCount, OutputArray inliers, int flags)
{
int npoints = imagePoints.getMat().checkVector(2);
CV_Assert(npoints > 0);
double confidence_factor = (double)minInliersCount / (double)npoints;
double confidence = confidence_factor < 0.001 ? 0.001 : confidence_factor > 0.999 ? 0.999 : confidence_factor;
solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess,
iterationsCount, reprojectionError, confidence, inliers, flags);
return true; // for consistency with the other methods
}
bool CustomPattern::findRtRANSAC(InputArray image, InputArray cameraMatrix, InputArray distCoeffs,
InputOutputArray rvec, InputOutputArray tvec, bool useExtrinsicGuess, int iterationsCount,
float reprojectionError, int minInliersCount, OutputArray inliers, int flags)
{
vector<Point2f> imagePoints;
vector<Point3f> objectPoints;
if (!findPattern(image, imagePoints, objectPoints))
return false;
double confidence_factor = (double)minInliersCount / (double)imagePoints.size();
double confidence = confidence_factor < 0.001 ? 0.001 : confidence_factor > 0.999 ? 0.999 : confidence_factor;
solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess,
iterationsCount, reprojectionError, confidence, inliers, flags);
return true;
}
void CustomPattern::drawOrientation(InputOutputArray image, InputArray tvec, InputArray rvec,
InputArray cameraMatrix, InputArray distCoeffs,
double axis_length, int axis_width)
{
Point3f ptrCtr3d = Point3f(float((img_roi.cols * pxSize)/2.0), float((img_roi.rows * pxSize)/2.0), 0);
vector<Point3f> axis(4);
float alen = float(axis_length * pxSize);
axis[0] = ptrCtr3d;
axis[1] = Point3f(alen, 0, 0) + ptrCtr3d;
axis[2] = Point3f(0, alen, 0) + ptrCtr3d;
axis[3] = Point3f(0, 0, -alen) + ptrCtr3d;
vector<Point2f> proj_axis;
projectPoints(axis, rvec, tvec, cameraMatrix, distCoeffs, proj_axis);
Mat img = image.getMat();
line(img, proj_axis[0], proj_axis[1], Scalar(0, 0, 255), axis_width); // red
line(img, proj_axis[0], proj_axis[2], Scalar(0, 255, 0), axis_width); // green
line(img, proj_axis[0], proj_axis[3], Scalar(255, 0, 0), axis_width); // blue
img.copyTo(image);
}
}} // namespace ccalib, cv
#endif // __OPENCV_CCALIB_CPP__
#endif // cplusplus