Skip to content

Latest commit

 

History

History
62 lines (52 loc) · 3.51 KB

domain_randomization.md

File metadata and controls

62 lines (52 loc) · 3.51 KB

Domain Randomization

Physics

  1. OpenAI, "Learning Dexterous In-Hand Manipulation", arXiv:1808.00177, 2018. [Paper]

    Parameter Scaling factor range Additive term range
    object dimensions uniform([0.95, 1.05])
    object and robot link masses uniform([0.5, 1.5])
    surface friction coefficients uniform([0.7, 1.3])
    robot joint damping coefficients loguniform([0.3, 3.0])
    actuator force gains (P term) loguniform([0.75, 1.5])
    joint limits $N$(0, 0.15) rad
    gravity vector (each coordinate) $N$(0, 0.4) $m/s^2$
  2. X. B. Peng, et al., "Sim-to-Real Transfer of Robotic Control with Dynamics Randomization", ICRA, 2018. [Paper] [Blog]

    Parameter Range
    Link Mass [0.25, 4] x default mass of each link
    Joint Damping [0.2, 20] x default damping of each joint
    Puck Mass [0.1, 0.4]$kg$
    Puck Damping [0.01, 0.2]$Ns/m$
    Puck Friction [0.1, 5]
    Table Height [0.73, 0.77]$m$
    Controller Gains [0.5, 2] x default gains
    Action Timestep $\lambda$ [125, 1000]$s^{-1}$
  3. J. Tan, et al., "Sim-to-Real: Learning Agile Locomotion For Quadruped Robots", RSS, 2018. [Paper]

    Parameter Lower bound Upper bound
    mass 80% 120%
    motor friction 0$Nm$ 0.05$Nm$
    inertia 50% 150%
    motor strength 80% 120%
    control step 3$ms$ 20$ms$
    latency 0$ms$ 40$ms$
    battery voltage 14.0$V$ 16.8$V$
    contact friction 0.5 1.25
    IMU bias -0.05 radian 0.05 radian
    IMU noise (std) 0 radian 0.05 radian
  4. L. Pinto, et al., "Robust Adversarial Reinforcement Learning", PMLR, 2018. [Paper]

    • Robustness check using trained policy by changing mass, friction.
  5. A. Rajeswaran, et al., "EPOpt: Leaerning Robust Neural Network Policies Using Model Ensembels", ICLR, 2017. [Paper]

    • Robustness check using trained policy by changing mass, friction.
    Hopper $\mu$ $\sigma$ low high
    mass 6.0 1.5 3.0 9.0
    ground friction 2.0 0.25 1.5 2.5
    friction damping 2.5 1.0 1.0 4.0
    armature 1.0 0.25 0.5 1.5
    Half-Cheetah $\mu$ $\sigma$ low high
    mass 6.0 1.5 3.0 9.0
    ground friction 0.5 0.1 0.3 0.7
    friction damping 1.5 0.5 0.5 2.5
    armature 0.125 0.04 0.05 0.2

Vision